Independence of events (with example)
Independence of two events

A is *independent* of B if

$$\Pr(A|B) = \Pr(A)$$
Independence of two events

A is *independent* of B if

$$\Pr(A|B) = \Pr(A)$$

This is same as

$$\Pr(A \cap B) = \Pr(A) \Pr(B) \quad (1)$$

and so also the same as

$$\Pr(B|A) = \Pr(B).$$
Independence of two events

A is independent of B if

\[\Pr(A|B) = \Pr(A) \]

This is same as

\[\Pr(A \cap B) = \Pr(A) \Pr(B) \] (1)

and so also the same as

\[\Pr(B|A) = \Pr(B). \]

We use (1) as definition of independent, and say that A, B are independent.
Independence of two events

A is *independent* of B if

\[\Pr(A|B) = \Pr(A) \]

This is same as

\[\Pr(A \cap B) = \Pr(A) \Pr(B) \] \hspace{1cm} (1)

and so also the same as

\[\Pr(B|A) = \Pr(B). \]

We use (1) as definition of independent, and say that \(A, B \) are *independent*.

Independence means: nothing you learn about one, tells you anything new about the other. E.g., if \(A, B \) are independent then:

\[\Pr(B|A) = \Pr(B) \]
\[\Pr(A|B^c) = \Pr(A) \]
\[\Pr(A^c|B^c) = \Pr(A^c) \]
Independence of many events

A_1, A_2, \ldots, A_n are independent if (informally) nothing you learn about some of the A's, tells you anything new about another. E.g., if A_1, \ldots, A_n, are independent then:

$$\Pr(A_1 | A_2 \cap A_3 \cap A_7) = \Pr(A_1)$$

$$\Pr(A_5^c | A_3 \cap A_7^c \cap A_{11}) = \Pr(A_5^c)$$

$$\Pr(A_6 | A_8) = \Pr(A_6)$$
Independence of many events

A_1, A_2, \ldots, A_n are independent if (informally) nothing you learn about some of the A's, tells you anything new about another. E.g., if A_1, \ldots, A_n, are independent then:

\[
\begin{align*}
\Pr(A_1 \mid A_2 \cap A_3 \cap A_7) &= \Pr(A_1) \\
\Pr(A_5^c \mid A_3 \cap A_7^c \cap A_{11}) &= \Pr(A_5^c) \\
\Pr(A_6 \mid A_8) &= \Pr(A_6)
\end{align*}
\]

Definition: A_1, A_2, \ldots, A_n are independent if for every subset of the A's,

Probability of intersection = product of probabilities.
Independence of many events

A_1, A_2, \ldots, A_n are *independent* if (informally) nothing you learn about some of the A's, tells you anything new about another. E.g., if A_1, \ldots, A_n, are independent then:

\[
\begin{align*}
\Pr(A_1 \mid A_2 \cap A_3 \cap A_7) &= \Pr(A_1) \\
\Pr(A_5^c \mid A_3 \cap A_7^c \cap A_11) &= \Pr(A_5^c) \\
\Pr(A_6 \mid A_8) &= \Pr(A_6)
\end{align*}
\]

Definition: A_1, A_2, \ldots, A_n are independent if for *every* subset of the A's,

\[
\text{Probability of intersection} = \text{product of probabilities}.
\]

I.e., for A, B, C, this means:

\[
\Pr(A \cap B) = \Pr(A) \Pr(B), \quad \Pr(A \cap C) = \Pr(A) \Pr(C), \quad \Pr(B \cap C) = \Pr(B) \Pr(C)
\]

AND

\[
\Pr(A \cap B \cap C) = \Pr(A) \Pr(B) \Pr(C).
\]
Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?

Answer

Let A_i be the event that the ith bulb works after a year. The A_i's are assumed independent, so

$$\Pr(\geq 1) = 1 - \Pr(0) = 1 - \Pr(A_1^c \cap \ldots \cap A_n^c) = 1 - \Pr(A_1^c) \ldots \Pr(A_n^c) = 1 - (1 - p)^n.$$

What is the probability that after one year, exactly k of the bulbs will still be working?

$$\Pr(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

where $\binom{n}{k}$ is the number of ways of selecting k bulbs out of the n to be working.
Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?

Answer: Let A_i be the event that the ith bulb works after a year. The A_i’s are assumed independent, so

\[
\Pr(\geq 1) = 1 - \Pr(0) = 1 - \Pr(A_1^c \cap \ldots \cap A_n^c) = 1 - \Pr(A_1^c) \ldots \Pr(A_n^c) = 1 - (1 - p)^n.
\]
Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?

Answer: Let A_i be the event that the ith bulb works after a year. The A_i’s are assumed independent, so

$$
\Pr(\geq 1) = 1 - \Pr(0) \\
= 1 - \Pr(A_1^c \cap \ldots \cap A_n^c) \\
= 1 - \Pr(A_1^c) \ldots \Pr(A_n^c) \\
= 1 - (1 - p)^n.
$$

What is the probability that after one year, exactly k of the bulbs will still be working?

$$
\Pr(k) = \binom{n}{k} p^k (1 - p)^{n-k}
$$
Example

A bulb will work for one year with probability p. To light my basement, I install n bulbs, all operating independently. What is the probability that after one year, at least one of the bulbs will still be working?

Answer: Let A_i be the event that the ith bulb works after a year. The A_i’s are assumed independent, so

$$
\Pr(\geq 1) = 1 - \Pr(0) \\
= 1 - \Pr(A_1^c \cap \ldots \cap A_n^c) \\
= 1 - \Pr(A_1^c) \ldots \Pr(A_n^c) \\
= 1 - (1 - p)^n.
$$

What is the probability that after one year, exactly k of the bulbs will still be working?

$$
\Pr(k) = (\#(n, k)) p^k (1 - p)^{n-k}
$$

where $\#(n, k)$ is the number of ways of selecting k bulbs out of the n to be working.