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Introduction

These are notes for the undergraduate probability course at the University of
Notre Dame.1 It covers the topics required for the actuaries Exam P.

Teaching this class I discovered that when first encountering probability it is
more productive to learn how to use the main theoretical results than knowing
their proofs. For this reason there are very few “theoretical” proofs in this text.
Instead, we illustrate each important concept with many we hope illuminating
examples. In particular, we have included more that 160 exercises, of varied
difficulty, and their complete solutions.

Probability comes alive during simulations. The book contains a very basic
introduction to R and the codes of several R simulations I have presented in class.

I have taught this course for several years and I have incorporated in this book
many of the remarks and questions I received from my students. In particular,
I used the explanations and arguments that seem to resonate the most with my
audiences. The various parts written in fine print represent topics that I covered
in class only if I had enough time.

1Started November 25, 2015. Completed January 3, 2016. Last modified on January 10, 2019.
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ii Introduction

Notation

• We denote by R the set of real numbers.

• We denote by Z the set of integers

Z = {0,±1,±2, . . . }.
• We denote by N the set of natural numbers,

N = {1, 2, . . . }.
• We denote by N0 the set of nonnegative integers

N0 = {0} ∪ N = {0, 1, 2, . . . }.
• x� y signifies that x is a lot bigger than y

• A notation such as x := bla-bla-bla or bla-bla-bla =: x indicates that
the symbol x denotes the quantity defined to be whatever bla-bla-bla
means. E.g.

√
2 := the positive number whose square is 2

• ∀ signifies for any, for all etc.

• ∃ signifies there exists, there exist.

• ⇒ stands for the term implies.

• i.i.d. = independent identically distributed

The Greek Alphabet

A α Alpha
B β Beta
Γ γ Gamma
∆ δ Delta
E ε Epsilon
Z ζ Zeta
H η Eta
Θ θ Theta
I ι Iota
K κ Kappa
Λ λ Lambda
M µ Mu

N ν Nu
Ξ ξ Xi
O o Omicron
Π π Pi
P ρ Rho
Σ σ Sigma
T τ Tau
Υ υ Upsilon
Φ ϕ Phi
X χ Chi
Ψ ψ Psi
Ω ω Omega
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Chapter 1

Sample spaces, events
and probability

1.1. Probability spaces

Here are some examples of chance experiments/phenomena to have in mind.
We will discuss more sophisticated ones as we progress in our investigation of
probability.

(i) Flip a coin once. The outcome is either Heads or Tails, and it is not
predictable.

(ii) Flip a coin twice. The possible outcomes are HH,HT, TT, TH, and
again, they are not predictable.

(iii) Roll a die. The possible outcomes are 1, 2, 3, 4, 5, 6, but they are not
predictable.

(iv) Roll a pair of distinguishable dice, say a red die and a green die. The
possible outcomes are the pairs

(n1, n2), n1, n2 ∈ {1, 2, 3, 4, 5, 6}.

(v) The number of light bulbs that need to be replaced during a fixed time
period (say 5 years) is an unpredictable quantity which could take any
value 0, 1, 2, . . . .

(vi) The life span of a light bulb or a machinery is an unpredictable quantity
which could be any nonnegative number.

(vii) The amount of damages an insurance company must pay over a calen-
dar year is an unpredictable quantity that can take any value in [0,∞)

1



2 1. Sample spaces, events and probability

(viii) Throw a dart at a circular dartboard of given radius r > 0. The
unpredictable outcome could be any point in the disc

Dr :=
{

(x, y) ∈ R2; x2 + y2 ≤ r2
}
.

Roughly speaking, the sample space of a random experiment/phenomenon is
the set S of all possible outcomes of that experiment. For example, the sample
space in the above experiments are

• (i) → {H,T},
• (ii) → {HH,HT, TT, TH},
• (iii) → {1, 2, 3, 4, 5, 6}
• (iv) →

{
(n1, n2); n1, n2 = 1, 2, 3, 4, 5, 6

}
,

• (v) → {0, 1, 2, . . . },
• (vi) → [0,∞),

• (vii) → [0,∞),

• (viii) → Dr.

Often, when dealing with chance phenomena, we are interested only in certain
events. E.g., we may want to know if the sum of observed numbers is 7. This
can happen if and only if the outcome of the roll belongs to the set

S7 =
{

(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)
}
.

In general, we define an event of a random experiment to be a subset of the
sample space. The sample space S itself is an event called the sure event. The
empty set ∅ is called the impossible event.

In concrete situations the events are described by properties:

• the event of flipping a coin three times and obtaining at least two heads.
This corresponds to the subset {HHH,HHT,HTH, THH} of the sam-
ple space.

• the event that the damages paid by an insurance company are bigger
than a given threshold etc.

Formally, events are sets and, as such, we can operate with them. These set
operations have linguistic counterparts.

• The union A ∪ B of sets corresponds to the linguistic OR, “A or B”.
A word of warning. This is not an exclusive “OR”, meaning that A
could happen, B could happen or both A and B could happen.

• The intersection A ∩ B of sets corresponds to the linguistic AND “A
and B”.

• The complement Ac of a set A corresponds to the linguistic negation
NOT, “not A’ ’.
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• The set difference A \B corresponds to the linguistic “A but not B”.

• The empty set ∅ corresponds to the linguistic impossible event

Example 1.1. Best of 7 final, Boston Ruins vs. Montreal Canadiens. For
k = 1, . . . , 7 we define Bk to be the event: Boston wins game k. The event
“Boston loses game 1, but wins game 2 and 3” is described mathematically by
the set

Bc
1 ∩B2 ∩B3.

The event “Boston wins the series with at most one loss” is encoded mathemat-
ically by the set(
B1 ∩B2 ∩B3 ∩B4

)
∪
(
Bc

1 ∩B2 ∩B3 ∩B4 ∩B5

)
∪
(
B1 ∩Bc

2 ∩B3 ∩B4 ∩B5

)
∪
(
B1 ∩B2 ∩Bc

3 ∩B4 ∩B5

)
∪
(
B1 ∩B2 ∩B3 ∩Bc

4 ∩B5

)
. ut

Definition 1.2. Consider a random experiment with sample space S. A probabil-
ity function or probability distribution associated to this experiment is a function
that assigns to each event E ⊂ S a real number P(E), called the probability of
E, satisfying the following properties.

(i) (Positivity)
0 ≤ P(E) ≤ 1, ∀E ⊂ S.

(ii) (Normalization) P(∅) = 0, P(S) = 1.

(iii) (Countable additivity) If E1, E2, . . . is a sequence of pairwise disjoint
events,

Ei ∩ Ej = ∅, ∀i 6= j,

then
P
(⋃
n≥1

En

)
=
∑
n≥1

P(En).

A probability space is a pair (S,P) consisting of a sample space S and a
probability distribution P on S. ut

Remark 1.3. (a) The above definition of probability function is too restrictive,
but it captures the main features of the modern concept of probability. The
modern period of probability theory begins with the 1933 groundbreaking mono-
graph [11] of the Russian mathematician A.N. Kolmogorov. However, as W.
Feller superbly demonstrates in his gem [5], one can still ask and answer many
interesting questions without a full adoption of Kolmogorov’s point of view.

(b) The way one associates a probability distribution to a random phenomenon
is based on empirical data and/or “reasonable” assumptions. The philosophical
meaning of the concept of probability is still being debated.1 Statements such as

1There are essentially to views on probability, the frequentist view

https://en.wikipedia.org/wiki/Frequentist_probability, and Bayesian view
https://en.wikipedia.org/wiki/Bayesian_probability

https://en.wikipedia.org/wiki/Frequentist_probability
https://en.wikipedia.org/wiki/Bayesian_probability
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“the probability of getting tails when flipping a fair coin is 50% ” can be under-
stood as saying that if we flip a coin many, many times, then roughly half the
time we will get tails. However, statements such as “there is a 30% chance of
rain tomorrow” may have different meanings to different people.

The probability of an event can be viewed as measuring the “amount of
information” we have about that event. ut

Definition 1.4. An event E in a probability space (S,P) is called almost sure
(a.s.) if P(E) = 1. An event E is called improbable if P(E) = 0. ut

Example 1.5. (a) Let us associate a probability function to the experiment
of rolling one “fair” die. The attribute “fair” is meant to indicate that all the
possible 6 outcomes are “equally likely” so each should have a probability of 1 in
6 of occurring. In this case

S = {1, . . . , 6},
and for every event E ⊂ S we have P(A) = |E|

6 = #E
6 , where |E| or #E denote

the cardinality of E, the number of elements of the set E.

One can simulate rolling a die on a computer. For example, to simulate 30
consecutive rolls of a die one can use the following R command2

sample(1:6, 30, replace=TRUE)

Intuitively, if we roll a die a very large number of times (say 6 million times),
then would should expect that the number 1 will show up roughly one sixth of
the time, i.e., “close” to one million times; see Figure 1.1.

(b) If the sample space S is finite and consists of N elements, then the uni-
form probability distribution is the probability distribution Punif such that all the
elementary outcomes are equally likely, i.e.,

Punif

(
{s}
)

=
1

N
, ∀s ∈ S.

In this case, for any event E ⊂ S we have

Punif

(
E
)

=
#E

N
.

Intuitively, Punif

(
E
)

represents the fraction of the sample space occupied by the
event (subset) E.

(c) In general, if the sample space S is discrete, i.e., finite or countable, then we can produce probability

functions on S as follows. Choose a function (weight) w : S → (0,∞) such that

Zw :=
∑
s∈S

w(s) <∞.

2Try this R command on your computer and see how many 6-s you get.
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Figure 1.1. Simulating 12000 rolls of a fair die and recording the frequency
of 1’s. The horizontal line at altitude 1/6 is the theoretically prescribed prob-
ability of getting a 1.

Define

pw(s) :=
1

Zw
w(s), ∀s ∈ S,

and think of pw(s) as the probability of the outcome s occurring. The probability of an event X ⊂ S

occurring is then

Pw(X) =
∑
x∈X

pw(x) =
1

Zw

∑
x∈X

w(x).

Note that,

Pw({s}) = pw(s) =
w(s)

Zw

so, the larger w(s), the more likely is the event {s} will occur.

When S is a finite set consisting of N elements and w(s) = 1, ∀s ∈ S, the resulting probability

function is the uniform probability distribution. Later we will discuss various other weights w that

appear in concrete problems.

(d) If the sample space is a compact interval S = [a, b], then the uniform prob-
ability distribution Punif on S associates to an event A ⊂ [a, b] the “fraction of
the length of [a, b] occupied by A”,

Punif(A) =
total length (A)

length (S)
=

total length (A)

(b− a)
.

For example, if S = [−1, 2], then the probability that a uniform random number
in [−1, 2] is negative, is 1/3. Note that the probability of the event “a uniform
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random number in this interval is equal to 0.5” is 0. Thus, the event that a random
number in this interval has a precise given value is possible, but improbable.

Similarly, if S is a region in the plane such as a disk or a square, then the
uniform probability distribution Punif on S associates to an event A ⊂ [a, b] the
“fraction of the area of S occupied by A”,

Punif(A) =
total area (A)

area (S)
.

Suppose that we throw at random a dart at a circular board, and all points
are equally likely to be hit. This means that the probability of hitting a given
region inside the board is proportional to its area. In particular, the probability
of hitting the center is 0, so almost surely, we will never hit the center. Hitting
the center is an improbable event, yet it is not an impossible event. ut

O

A

B

M

Figure 1.2. The length of a chord AB on a circle is determined by the
distance to the center O of its midpoint M .

Example 1.6 (Bertrand’s “Paradox”). Let us find the probability that a ran-
dom chord of a circle of unit radius has a length greater than

√
3, the side of

an inscribed equilateral triangle. Let us describe two possible solutions to this
problem.

Solution 1. The length of the chord depends only on its distance from the center
of the circle and not on its direction. For the chord to have length >

√
3, the

distance from the center of the circle to the chord must be < 1
2 . If this distance

is chosen uniformly in the interval [0, 1], we deduce that the sought probability
is 1

2 .

Solution 2. Any cord is uniquely determined by its center. Assume that its
midpoint is uniformly distributed in the unit circle. For the chord to have length
>
√

3, its midpoint must be located within of disk of radius 1/2 centered at the
origin. The area of this disk is π

4 and occupies 1
4 of the area of the disk of radius

1. Thus the sought probability is 1
4 .
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One question jumps at us. Which of the two solutions above is the correct
one? The answer is: both of them are correct ! The reason is that in the initial
formulation of our question the concept of random chord was not specified. There
are different natural choices of randomness when sampling chords, leading to
different answers. This example shows the need to describe precisely the concept
of randomness used in a concrete situation. ut

Here are a few useful consequences of the properties of a probability distri-
bution.

Proposition 1.7. If P is a probability function on a sample space S, the the
following hold.

(i) P(Ac) = 1− P(A), ∀A ⊂ S.

(ii) P(A \B) = P(A)− P(A ∩B), ∀A,B ⊂ S.

(iii) (Inclusion-Exclusion Principle)

P(A ∪B) = P(A) + P(B)− P(A ∩B), ∀A,B ⊂ S. (1.1)

(iv) (DeMorgan)

P(Ac ∩Bc) = 1− P(A ∪B). (1.2)

(v) ∀A,B ⊂ S, A ⊂ B ⇒ P(A) ≤ P(B).

ut

A

B

Figure 1.3. The area of the union A∪B is the area of A + the area of B −
the area of the overlap A ∩B.

Proof. The equality (i) follows from the disjoint union S = A ∪Ac so

1 = P(S) = P(A) + P(Ac).
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We deduce

0 ≤ P(Ac) = 1− P(A)⇒ P(A) ≤ 1.

To prove (ii) note from Figure 1.3 that we have a disjoint unionA = (A\B)∪(A∩B).
Hence

P(A) = P(A \B) + P(A ∩B).

The equality (iii) is proved in a similar fashion. We have a disjoint union

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \A),

so that

P(A ∪B) = P(A \B) + P(A ∩B) + P(B \A)

= P(A)− P(A ∩B) + P(A ∩B) + P(B)− P(A ∩B)

= P(A) + P(B)− P(A ∩B).

The De Morgan law follows from the equality

Ac ∩Bc = (A ∪B)c.

The last equality follows from the fact that A and B \ A are disjoint and
B = A ∪ (B \A). ut

Example 1.8. If the chance of raining on Saturday is 50% and the chance of
raining on Sunday is 50% , can one conclude that the chance of raining during
the weekend is 100%?

Define the events A = “it will rain on Saturday”, B = “it will rain on
Sunday”. Then the event ”it will rain during the weekend” is A ∪ B, and the
inclusion-exclusion principle implies

P (A ∪B) = P (A) + P (B)− P (A ∩B)

= 0.5 + 0.5− P (A ∩B) = 1− P (A ∩B).

This shows that one cannot conclude that P (A ∪ B) = 1. It shows that if
P(A ∩ B) > 0, i.e., if the probability that it will rain on both Saturday and
Sunday is positive, then the probability that it will rain on weekend is < 1. ut

The inclusion-exclusion formula applies to more general situations. Given
three events A1, A2, A3, then

P(A1 ∪A2 ∪A3) = P(A1) + P(A2) + P(A3)

−P(A1 ∩A2)− P(A1 ∩A3)− P(A2 ∩A3)

+P(A1 ∩A2 ∩A3).

(1.3)

Indeed, using (1.1) we deduce

P
(
A1 ∪A2 ∪ A3

)
= P(A1 ∪A2) + P(A3)− P

(
(A1 ∩A2) ∩A3

)
= P(A1) + P(A2)− P(A1 ∩A2) + P(A3)− P

(
(A1 ∩A3) ∪ (A2 ∪A3)

)
= P(A1) + P(A2)− P(A1 ∩A2) + P(A3)− P(A1 ∩A3 )− P(A2 ∩A3 ) + P(A1 ∩A2 ∩A3 ).
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More generally, if A1, . . . , An are n events, then we have the most general
inclusion-exclusion formula

P
(
A1 ∪A2 ∪ · · · ∪An

)
=

n∑
i=1

P(Ai)

−
∑

1≤i<j≤n
P(Ai ∩Aj)

+
∑

1≤i<j<k≤n
P(Ai ∩Aj ∩Ak)

· · ·

(1.4)

A sequence of events (An)n∈N is called increasing if

A1 ⊂ A2 ⊂ · · · .
In this case we set

lim
n→∞

An :=
⋃
n∈N

An.

A sequence of events (An)n∈N is called decreasing if

A1 ⊃ A2 ⊃ · · · .
In this case we set

lim
n→∞

An :=
⋃
n∈N

An.

From the countable additivity of a probability function we deduce immediately
the following useful fact.

Proposition 1.9. If (An)n∈N is either an increasing sequence of events, or a
decreasing sequence of events then

P
(

lim
n→∞

An

)
= lim

n→∞
P(An). (1.5)

ut

1.2. Finite sample spaces and counting

Suppose that the sample space S consists of n elements,

S := {s1, . . . , sn}.
Denote by P the uniform probability distribution on S. In this case, all outcomes
are equally likely and the probability of an event A is given by the classical
formula

P(A) =
#A

n
=

the number of favorable outcomes

the number of possible outcomes
. (F/P )



10 1. Sample spaces, events and probability

Above, an outcome is called favorable to the event A if it belongs to the set
A. Computing the probability of an event with respect to the discrete uniform
distribution reduces to a counting problem.

Example 1.10. Consider a randomly chosen family with three children. What
is the probability that they have exactly two girls? Here we tacitly assume that
all distributions of genders among the three children are equally likely.

To decide this, let us first introduce the symbols b for boy, and g for girl. We
first compute all the possible outcomes or gender distributions. Such an outcome
is encoded by a string of three b’s or g’s arranged in decreasing order of their
ages or, equivalently, in the order they were born. There are 8 possible outcomes

bbb, bbg, bgb, bgg , gbb, gbg , ggb , ggg.

Above, we have boxed the favorable outcomes, so the the probability that there
are exactly 2 girls is 3

8 .

We want to point out that this computation is based on a non-mathematical
assumption, namely that the probability of having a male offspring is equal to
the probability of having a female offspring. This is more or less true for the
human species, but it is not necessarily true for other species.

This problem involved rather small sample spaces. If the sample space is
larger, the problem gets more complicated. Think of the related problem, that of
a probability that a family with six children has exactly two girls? The techniques
we will develop in this section will describe a few simple principles that will allow
us to answer such question in an organized fashion. ut

Theorem 1.11 (Multiplication principle). If we perform, in order, r experiments
so that the number of possible outcomes of the k-th experiment is nk, then the
number of possible outcomes of this ordered sequence of experiments is n1n2 · · ·nr.

ut

Example 1.12. (a) Suppose that we roll a die 3 times. For each roll there are
6 possible outcomes so the total number of possible outcomes is 63 = 216. Each
outcome is a triplet (i, j, k), i, j, k ∈ {1, . . . , 6}.

(b) Up there in the Sky there is an inexhaustible box containing baby boys and
baby girls. Every time The Stork (see Figure 1.4) gets an order for a baby, she
picks a baby at random from the Box-up-in-the-Sky, and both genders are equally
likely to be picked up. Every order has thus two equally likely outcomes. The
multiplication principle shows that if a family orders successively 6 babies, there
are 26 = 64 possible outcomes (gender distributions). ut
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Figure 1.4. How many baby girls in a family with 6 kids?

Example 1.13 (Sampling with replacement). We have an urn containing n balls
labeled 1 through n. A sampling with replacement is the experiment consisting
of

• extracting one ball at random from the urn,

• recording the label of the extracted ball,

• and then placing the extracted ball back in the urn.

Suppose that we perform, in order, k samplings with replacement. The out-
come of such an ordered sequence of experiments is an ordered list of integers

(`1, `2, . . . , `k), 1 ≤ `i ≤ n.

The number of possible outcomes is thus nk. In Example 7.4 we explain how to
simulate in R the samplings with replacement. ut

Example 1.14 (Sampling without replacement). We have a box containing n
balls labeled 1 through n. A sampling without replacement consists of

• extracting one ball at random from the urn,

• recording the label of the extracted ball,

• and then throwing away the extracted ball away.

Suppose that we perform, in order, k samplings without replacement. The
first sampling without replacement has n possible outcomes. The second sam-
pling without replacement has n− 1 possible outcomes, because when we sample
the urn for the second time, there are only n − 1 balls left. The third sampling
without replacement has n − 2 possible outcomes. The k-th sampling without
replacement has n − (k − 1) = n − k + 1 possible outcomes. The outcome of k
successive samplings without replacement is called an arrangement of k objects
out of n (possible objects). Thus the number of arrangements of k objects out of
n is the total number of possible outcomes of an ordered sequence of k samplings
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without replacement is

Ak,n = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!
, (1.1)

where, for any nonnegative integer m, we set

m! :=

{
1, m = 0,

1 · 2 · · ·m, m > 0.

The number m! is called m factorial. For later usage, we introduce the notation

(x)k := x(x− 1) · · · (x− k + 1), ∀x ∈ R .

This function is usually referred to as the falling factorial or the Pochhammer
symbol.3

Thus the number of k samplings without replacements of n labeled objects
is Ak,n = (n)k. Note that

(10)3 = 10 · 9 · 8, (22)5 = 22 · 21 · 20 · 19 · 18︸ ︷︷ ︸
Decreasing 5 consecutive numbers starting at 22

.

In Example 7.6 it is explained how to use R to compute (n)k and to simulate
samplings without replacement. ut

Example 1.15 (Lottery). The country of Utopia organizes a lottery. The or-
ganizers use an urn containing balls labeled 0 to 99. Five balls are successively
drawn. The winner is the person that guesses all the numbers in the order they
were drawn. The odds of winning this lottery are 1 in (100)5 = 9, 034, 502, 400,
roughly 1 in 9 billion.

By comparison, the odds of dying due to an asteroid impact are4 1 in 79
million, about 100 times higher. According to the National Safety Council5, in
2016, the odds of an American being hit by lightning were 1 in 175, 000 (more
than 50 thousand times higher than winning the lottery). The odds death due
to an air incident were 1 in 9700, while the odds of an American dying due to
firearm discharge were about 1 in 8000. The odds of death by firearm assault
were 1 in 358, while the odd of death from heart disease or cancer were 1 in 7.ut

Example 1.16 (The birthday problem). We want to find the probability that,
in a group of k people labeled 1 through k, selected at random, there are two
people born on the same day of the year. We plan to use the formula (F/P ). We

3Some authors denote the Pochhammer symbol (x)k by (x)k.
4 A crash course in probability, The Economist, Jan.29, 2015

http://www.economist.com/blogs/gulliver/2015/01/air-safety.
5 http://www.nsc.org/learn/safety-knowledge/Pages/injury-facts-chart.aspx

http://www.economist.com/blogs/gulliver/2015/01/air-safety
http://www.nsc.org/learn/safety-knowledge/Pages/injury-facts-chart.aspx
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assume that a year consists of 365 days (so we neglect leap years) and, moreover,
a person is equally likely to be born on any day of the year.6

A possible outcome consists of an ordered list of k numbers in the set

{1, 2, . . . , 365}.

This is precisely the outcome of k samplings with replacement from a box with
365 labeled balls: the first extracted ball gives the birthday of the first person in
the group, the second extracted ball gives the birthday of the second person in
the group etc. Thus, the possible number of outcomes is 365k.

Denote by Ak the event “at least two people in the group have the same
birthday”. Its complement is the event Ack, “no two persons in the group have
the same birthday”. Then

P(Ack) = 1− P(Ak)

so it suffices to count the number of outcomes favorable to the event Ac. This is
equal with the number of outcomes of an ordered string of k samplings without re-
placement from a box with 365 birthdays. This number is 365·364 · · · (365−k+1).
If we set qk := P(Ack), then

qk =
365 · 364 · · · (365− k + 1)

365k
=

365

365
· 364

365
· · · 365− (k − 1)

365

=
(

1− 0

365

)(
1− 1

365

)
· · ·
(

1− k − 1

365

)
=

k−1∏
j=0

(
1− j

365

)
.

Hence

pk = P(Ak) = 1− qk = 1−
k−1∏
j=0

(
1− j

365

)
.

For example,

p22 ≈ 0.475, p23 ≈ 0.507, p30 ≈ 0.706, p51 ≈ 0.9744.

Figure 1.5 depicts the dependence of pk on k. ut

Example 1.17 (Permutations). A permutation of r objects labeled 1, . . . , r is
a way of arranging these objects successively, one after the other. For example,
there are 2 permutations of 2 labeled objects, (1, 2) and (2, 1), and there are 6
permutations of 3 objects

(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

6That is not really the case. The odds of being born in August are higher than the odds of being
born in any other month of the year. Apparently, the least common birthday is May 22.

https://www.yahoo.com/parenting/why-the-most-babies-are-born-in-the-summer-128339451207.

html

https://www.yahoo.com/parenting/why-the-most-babies-are-born-in-the-summer-128339451207.html
https://www.yahoo.com/parenting/why-the-most-babies-are-born-in-the-summer-128339451207.html


14 1. Sample spaces, events and probability

Figure 1.5. The Birthday Problem: pk is the probability that, in a random
group of k people, at least two have the same birthday.

Formally, a permutation of objects labeled 1, . . . , r is a bijection

` : {1, . . . , r} → {1, . . . , r},

where `(k) is the label of the object placed in the k-th position of the permuta-
tion. From this point of view, the object called `(1) is placed first, followed by
the object labeled `(2) etc. Thus, the permutation (3, 1, 2) corresponds to the
bijection

1 7→ 3 = `(1), 2 7→ 1 = `(2), 3 7→ 2 = `(3).

If we put r labeled objects in a box, then we can obtain a permutation of these
objects as follows. Extract one object from the box, record its label `1 and then
put the object on the table. Extract the second object from the box that now
contains (r−1) objects, record its label `2, and then put this object on the table,
next to `1. Continue in this fashion until the box is empty. On the table we will
then have a permutation `1, `2, . . . , `r of these objects.

This shows that a permutation of r labeled objects can be viewed as a string
of r samplings without replacement of these objects. The number of such strings
of samplings is

r! = (r)r = r(r − 1) · · · 2 · 1.
This shows that

The number of permutations of r labeled objects is r!.

For example, 5 people can be arranged in a line in 5! = 120 ways. The factorial
r! grows very fast with r.
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Remark 1.18. A very convenient way of estimating the size of r! for large r is
Stirling’s formula [5, §II.9]

r! ∼
√

2πr
(r
e

)r
as r →∞ , (1.2)

where we recall that the asymptotic notation xr ∼ yr as r →∞ signifies that

lim
r→∞

xr
yr

= 1.

ut

In Example 7.7 we explain how to use R to generate random permutations
and compute r!. ut

Example 1.19 (Combinations). To understand the concept of combination con-
sider the following question: how many 5-card hands can we get from a regular
52-card deck?

The problem can be recast in a more general context. Suppose that we have
a box containing n labeled balls and we extract k balls simultaneously, k ≤ n.
The outcomes of such an extraction is called a combination of k objects out of
n (possible objects). Two combinations are considered identical if they the sets
of extracted balls are identical. We denote by

(
n
k

)
or Ckn (read n choose k) the

number of combinations of k objects out of n.

We can extract these k balls successively, one by one, and at the end forget
about the order in which they were extracted. The number of such k successive
extractions is the number of arrangements of k balls out of n,

(n)k =
n!

(n− k)!
.

Two arrangements of k objects out of n can lead to the same combination because
different successions of extractions could end up extracting the same balls, but
in a different order. Thus, each permutation of k extracted balls is a possible
outcome of a succession of k extractions. Since the number of permutations of k
objects is k! we deduce that for each combination of k balls there are exactly k!
arrangements of k balls out of n yielding that combination and therefore

Ckn =

(
n

k

)
=

1

k!
(n)k =

n!

k!(n− k)!
. (1.3)

For example, the number of possible 5-card hands out of a deck of 52 is(
52

5

)
=

52 · 51 · 50 · 49 · 48

1 · · · 2 · 3 · 4 · 5
=

52 · 51 · 50 · 49 · 48

10 · 12

= 52 · 51 · 5 · 49 · 4 = 20 · 52 · 51 · 49 = 2, 598, 960.

This number can be computed R using the command



16 1. Sample spaces, events and probability

choose(52,5)

The binomial coefficients can be conveniently arranged in the so called Pascal
triangle (

0
k

)
: 1(

1
k

)
: 1 1(

2
k

)
: 1 2 1(

3
k

)
: 1 3 3 1(

4
k

)
: 1 4 6 4 1

...
...

...
...

...
...

...
...

...
...

Observe that each entry in the Pascal triangle is the sum of the neighbors imme-
diately above it. This translates into the equality7(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, ∀0 < k < n. (1.4)

Thus (
5

3

)
=

5!

2!3!
=

5 · 4
2!

= 10 = 6 + 4 =

(
4

2

)
+

(
4

3

)
.

Furthermore, the Pascal triangle is symmetric with respect to the middle vertical
axis. This translates into the equality(

n

k

)
=

(
n

n− k

)
, ∀0 ≤ k ≤ n .

Thus (
52

5

)
=

(
52

52− 5

)
=

(
52

47

)
. ut

Example 1.20 (Combinations and colorings). Another convenient way of inter-
preting combinations is through the concept of colorings.

Suppose that, after extracting the k balls, we paint them red, and then we
paint black the (n − k) balls left in the box. Thus, a combination of k objects
out of n is a way of coloring the balls with two colors, red and black, so that k
are red, and (n− k) are black. The number of such colorings is therefore

(
n
k

)
.

Let us look at the total number of possible colorings of n balls 1, . . . , n with
two colors, red and black, so some balls are colored red, and the other are colored
black. To find this number note that a coloring is the outcome of the following

7Can you give a proof of (1.4) that does not rely on the equality (1.3) but instead uses the combi-
natorial interpretation of

(n
k

)
?
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succession of n experiments. Take ball 1. It must be colored with one of 2
possible colors. Make a choice. Repeat this with balls 2 through n. Since each
experiment has 2 possible outcomes and we perform n experiments, we deduce
from the multiplication principle that the number of possible outcomes of such
successions of experiments is 2n.

On the other hand,

2n = number of colorings with 0 red balls

+number of colorings with 1 red ball

+number of colorings with 2 red balls + · · ·
We deduce

2n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
=

n∑
k=0

(
n

k

)
. (1.5)

The last equality can be expressed in terms of the Pascal triangle as saying that
the sum of the numbers on a row of the Pascal triangle is an appropriate power
of 2.

More generally, the number of colorings of n objects with m colors

c1, . . . , cm

such that n1 objects are colored with c1, n2 objects are colored with c2 etc, and
n1 + n2 + · · ·+ nm = n, is(

n

n1, . . . , nm

)
=

(
n1 + · · ·+ nm
n1, . . . , nm

)
=

n!

n1! · · ·nm!
.

In particular, (
n1 + n2

n1, n2

)
=

(
n1 + n2

n1

)
=

(
n1 + n2

n2

)
.

As an application of the above formula, suppose that we have a class consisting of
45 students. In how many we can assign grades A,B,C,D, F so that 10 students
get A’s, 20 students get B’s, 10 students get C’s, 3 students get D and 2 students
get F? The answer is (

45

10, 20, 10, 3, 2

)
=

45!

10!20!10!3!2!
.

In Example 7.8 we explain how to use R to simulate random combinations. ut

Example 1.21. Consider again the situation in Example 1.12(b), that of families
that have 6 children, and we ask what is the probability that one such family has
exactly two girls.

The children in such a family are labelled 1 through 6, according to the order
in which they were born. We have seen that there are 26 = 64 possible gender
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types of families with 6 children. Assigning genders to children can be viewed as
“coloring” the kids 1 through 6 with one of two colors: b(oy) or g(irl). Thus the
number families with exactly two girls correspond to coloring of 6 objects with
two colors b and g so that exactly two objects have the color g. Thus number
of such colorings is (

6

2

)
=

6 · 5
1 · 2

= 15.

Thus, the probability that a family with 6 children has exactly two girls is

15

64
≈ 0.2343. ut

Example 1.22 (Newton’s binomial formula). Let n be a positive integer. The
Newton binomial formula is the very useful identity

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n

)
yn. (1.6)

Because of this identity, the numbers
(
n
k

)
are often referred to as binomial coef-

ficients.

For example, when n = 2 this formula reads

(x+ y)2 = x2 + 2xy + y2,

when n = 3 it reads

(x+ y)3 = x3 + 3x2y + 3xy+y3,

while for n = 4 it reads

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

To prove formula (1.6) note that

(x+ y)n = (x+ y) · (x+ y) · · · (x+ y)︸ ︷︷ ︸
n

= ? xn + ? xn−1y + ? xn−2y2 + · · ·+ ? xn−kyk + · · ·+ ? yn,

where ? stands for a coefficient to be determined.

Let us explain how we expand the power (x + y)n, i.e., determine the mysterious coefficients ? .

We have n boxes, each containing the variables x, y

x, y , x, y , . . . , x, y︸ ︷︷ ︸
n

The terms in the expansion of (x+ y)n are obtained as follows.

• From each of the above boxes extract one of the variables it contains and the multiply the

extracted variables to obtain a monomial of the type xn−kyk.

• Do this in all the possible ways and add the resulting monomials.
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We can color-code the extraction process. We color black the boxes from which we extract the
variable x and red the boxes from which we extract the variable y. An extraction yields the monomial

xn−kyk if and only if we paint k of the boxes red, and (n− k) of the boxes black. The number of such

colorings is
(n
k

)
. Hence, in the expansion of (x+ y)n, we have

? xn−kyk =
(n
k

)
xn−kyk.

This proves Newton’s formula.

Note that if in (1.6) we let x = y = 1, then we deduce

2n = (1 + 1)n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+

(
n

3

)
· · · . (1.7)

This is precisely the identity (1.5).

If in (1.6) we let x = 1 and y = −1 we deduce

0 = (1− 1)n =

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−
(
n

3

)
+ · · ·

If we add this to (1.7) we deduce

2n = 2

(
n

0

)
+ 2

(
n

2

)
+ 2

(
n

4

)
+ · · ·

so that

2n−1 =

(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · . (1.8)

ut

For every real number x and any nonnegative integer k = 1, 2, . . . , we set(
x

k

)
:=

(x)k
k!

=
x(x− 1) · · · (x− k + 1)

k!
.

Example 1.23 (Poker hands). You are dealt a poker hand, 5 cards, without
replacement out of 52. We refer to the site

https://en.wikipedia.org/wiki/List_of_poker_hands

for precise definitions of the various poker hands.

(i) What is the probability that you get exactly k-hearts?

(ii) What is the most likely number of hearts you will get?

(iii) What is the probability that you will get two pairs, but not a fullhouse?

Denote by pk the probability that you get exactly k hearts. The number of
possible outcomes is

(
52
5

)
. There are 13 hearts and 39 = 52− 13 non-hearts in a

https://en.wikipedia.org/wiki/List_of_poker_hands
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deck. To get k hearts means that you also get 5− k non-hearts. There are
(

13
k

)
ways of choosing k hearts out of 13 and

(
39

5−k
)

non-hearts so

pk =

(
13
k

)(
39

5−k
)(

52
5

) .

We deduce

p0 ≈ 0.22, p1 ≈ 0.41, p2 ≈ 0.27, p3 ≈ 0.08, p4 ≈ 0.0107, p5 ≈ 0.0004.

Thus, you are more likely to get 1 heart.

A deck of card consists of 13 (face) values and 4 suits. If your hand consists
of two pairs, but not a full house, then you have 3 values in your hand.

There are
(

13
3

)
ways of choosing these values. Once these values are choses

there are
(

3
2

)
ways of choosing the two values that come in pairs. Once these

values are chosen there are
(

4
2

)
ways of chosing the suits for each pair and

(
4
1

)
of

choosing the suit for the single values. Thus the number of possible 2-pair-hands
is (

13

3

)(
3

2

)(
4

2

)2(4

1

)
=

13 · 12 · 11

6
· 3 · 62 · 4 = 13 · 2 · 11 · 12 · 36 = 123, 552.

The total possible number of 5-card hands is
(

52
5

)
= 2, 598, 960 so the probability

of getting two pairs is
123552

2598960
≈ 0.047. ut

Example 1.24. An urn contains 10 Red balls, 10 White balls and 10 Blue balls.
You draw 5 balls random, without replacement. What is the probability that
you do not get all the colors?

Denote by R the event no red balls, by W the event no white balls, and by B
the event no blue balls. We are interested in the probability of the event R∪W∪B.
We will compute the probability of this event by using the inclusion-exclusiion
principle (1.4). Hence

P(R ∪W ∪B) = P(R) + P(W ) + P(B)

−P(R ∩W )− P(W ∩B)− P(B ∩R) + P(R ∩W ∩B).

Now notice a few things.

• R ∩ B = “all the balls are White”, W ∩ B = “all the balls are Red”,
R ∩W = ”all the balls are Blue”.

• P(R ∩W ∩B) = 0.

• Because there are equal numbers of balls of different colors, we have

P(R) = P(W ) = P(B), P(R ∩W ) = P(W ∩B) = P(B ∩R).
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Hence

P(R ∪W ∪B) = 3P(R)− 3P(R ∩W )

To compute P(R) and P(R∩W ) we use formula (F/P ). The number of possible

outcomes of a five ball extraction out of 30 is
(

30
5

)
. The number of 5-ball extrac-

tions with no red balls is
(

20
5

)
, and the number of 5-ball extractions with no red

or white balls is
(

10
5

)
. Hence

P(R ∪W ∪B) = 3

(
20
5

)
−
(

10
5

)(
30
5

) ≈ 0.321. ut

Example 1.25 (Moivre-Maxwell-Boltzmann). Suppose that we randomly dis-
tribute 30 gifts to 20 people labelled 1 through 20. In doing so, some people
will get more than one gift, and some people may not get any gift. What is the
probability that at least one person will receive no gift.

Denote by E the event E = “at least one person does not receive any gift”.
For k = 1, 2, . . . , 20, we denote by Ek the event “the person k does not receive
any gift”. Then

E = E1 ∪ E2 ∪ · · · ∪ E20.

The inclusion-exclusion formula implies

P(E) =
∑

1≤i≤20

P(E1)︸ ︷︷ ︸
S1

−
∑

1≤i<j≤20

P(Ei ∩ Ej)︸ ︷︷ ︸
S2

+
∑

1≤i<j<j<k≤20

P(Ei ∩ Ej ∩ Ek)︸ ︷︷ ︸
S3

− · · ·

The sum S1 consists of 20 terms, one for each person. Each of these terms is
equal to the probability that a given person receives no gift,

P(E1) = · · · = P(E20) =

(
19

20

)30

.

To see this note that there are 1930 ways of distributing 30 gifts among the 19
people other than the first person. Similarly, there are 2030 ways of distributing
30 gifts to 20 people.

In general, for m = 1, 2, . . . , 19, the sum Sm consists of
(

20
m

)
terms, one term

for each subcollection of m persons. The corresponding term is equal to the
probability that no person in that subcollection receives a gift. Equivalently,
this is the probability that all the 30 gifts go to the 20 −m people outside this
subcollection. This probability is(

20−m
20

)30

.
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Thus

Sm =

(
20

m

)(
20−m

20

)30

.

and

P(E) = S1 − S2 + S3 − · · · =
19∑
m=1

(−1)m+1

(
20

m

)(
20−m

20

)30

≈ 0.9986.

This is a rather surprising conclusion. Although there are more gifts than per-
sons, the probability that at least one person will receive no gift is very close to
1. ut

Remark 1.26. Suppose that we distribute g gifts to N people. Then the prob-
ability that one of them will not receive a gift is

f(N, g) =

N−1∑
m=1

(−1)m+1

(
N

m

)(
N −m
N

)g
.

This is typically a long sum if N is large and you can use R or MAPLE to
compute it. Here is a possible R implementation.

options(digits=12)

f<-function(N,g){

x<-0

for(m in 1:(N-1)){

x<-x+ (-1)^(m+1)*choose(N,m)*(1-m/N)^g

}

cat("The probability that one person

does not get a gift is ", x, sep="")

}

The result Example 1.25 can be found using the R command

f(20,30)

Example 1.27 (Derangements and matches). This is an old and famous prob-
lem in probability that was first considered by Pierre-Remond Montmort. It is
sometimes referred to as Montmort’s matching problem in his honor. It has an
amusing formulation, [17, II.4].

A group of n increasingly inebriated sailors on shore leave is making its
unsteady way from pub to pub. Each time the sailors enter a pub they take
off their hats and leave them at the door. On departing for the next pub, each
intoxicated sailor picks up one of the hats at random. What is the probability
pn that no sailor retrieves his own hat?

A derangement is said to occur if no sailor picks up his own hat. Denote by
D thus event A match occurs if at least one sailor picks up his own hat. Denote
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by M this event. Thus, we are asked what is the probability P(D). Note that
D = M c so that

P(D) = 1− P(M)

so it suffices to find the probability of a match. For k = 1, . . . , n denote by Mk

the event “the k-th sailor picks up his own hat”. Clearly

M = M1 ∪M2 ∪ · · · ∪Mn.

To compute the probability of M we will use the inclusion-exclusion principle
(1.4) to deduce that

P(M) =

n∑
i=1

P(Mi)︸ ︷︷ ︸
S1

−
∑
i<j

P(Mi ∩Mj)︸ ︷︷ ︸
S2

+
∑
i<j<k

P(Mi ∩Mj ∩Mk)︸ ︷︷ ︸
S3

− · · · .

The sum S1 consists of n terms P(M1), . . . ,P(Mn) and they all are equal to each
other because any two sailors have the same odds of getting their own hats. (Here
we tacitly assume that all sailors display similar behaviors.) Hence

S1 = nP(M1).

The sum S2 consists of
(
n
2

)
terms, one term for each group of two sailors. These

terms are equal to each other because the probability that two of the sailors pick
up their own hats is equal to the probability of any other two sailors pick up
their own hats. Hence

S2 =

(
n

2

)
P(M1 ∩M2).

Similarly, the term Sk consists of
(
n
k

)
terms, one term for each group of k sailors,

and these terms are equal to each other. Hence

Sk =

(
n

k

)
P(M1 ∩ · · · ∩Mk).

We deduce

P(M) = nP(M1)−
(
n

2

)
P(M1 ∩M2) +

(
n

3

)
P(M1 ∩M2 ∩M3)− · · · .

To compute the probability P(M1∩· · ·∩Mk), i.e., the probability that the sailors
1, . . . , k pick up their own hats we use the formula (F/P ).

The number of possible outcomes is equal to the number of permutations of
n objects (hats), i.e., n!. The number of favorable outcomes is the number of
permutations of (n − k) objects (the first k hats have returned to their rightful
owners). Hence

P(M1 ∩ · · · ∩Mk) =
(n− k)!

n!
,

Sk =

(
n

k

)
(n− k)!

n!
=

n!

k!(n− k)!
· (n− k)!

n!
=

1

k!
.
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We deduce

P(M) =
1

1!
− 1

2!
+

1

3!
− · · · ,

P(D) = 1− P(M) = 1− 1

1!
+

1

2!
− 1

3!
+ · · · =

n∑
k=0

(−1)k

k!
.

Note that as n→∞ we have

P(D)→
∞∑
k=0

(−1)k

k!
=

1

e
≈ 0.367.

Intuitively, this says that if the number of sailors is large, then the probability of
a derangement is > 0.36. ut

Example 1.28 (Combinations with repetitions). Suppose we have k identical
balls that we want to place in n distinguishable boxes labeled B1, . . . , Bn. We
are allowed to place more than one ball in any given box, and some boxes may
not contain any ball. In how many ways can we do this?

Such a placement of balls can be encoded by a string

1, . . . , 1︸ ︷︷ ︸
k1

, 2, . . . , 2︸ ︷︷ ︸
k2

, . . . , n, . . . , n︸ ︷︷ ︸
kn

where k1 denotes the number of balls in box B1 etc. Note that

k1 + · · ·+ kn = k.

Such a distribution of balls is called a combination with repetition of k objects
out of n. We denote by

((
n
k

))
(read n multi-choose k) the number of such combi-

nations.

To find the number of such combinations with repetition, imagine that we
have (n − 1) separating vertical walls arranged successively along a horizontal
line and producing in this fashion (n− 1) chambers C1, . . . , Cn; see top of Figure
1.6. Now place ki balls in the chamber Ci arranged successively along the line;
see bottom of Figure 1.6.

CCCC C
1 2 3 n-1 n

CCCC C
1 2 3 n-1 n

Figure 1.6. Walls and balls.
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Along the line we have now produced n+k−1 points: k of these points mark
the location of the balls, and n−1 of these points mark the locations of the walls.

Suppose now that we have n+k−1 points on the line arranged in increasing
order

x1 < x2 < · · · < xn+k−1.

We can use such an arrangement of points to obtain a distribution of k balls in
n chambers as follows.

• Choose n− 1 of these points and mark them w. This is where we will
place the walls.

• Mark the remaining points b. This is where we will place the balls.

Figure 1.7. We’ve placed 7 balls, in 7 chambers delimited by 6 walls.

For example, in Figure 1.7 we have placed 1 ball in the first chamber, no balls
in chamber 2, 2 balls in chamber 3, no balls in chamber 4, 1 ball in chamber 5, 3
balls in chamber 6, and no balls in chamber 7. Thus, a placement of k identical
balls in n boxes corresponds to a choice of n− 1 locations out of n+ k− 1 where
we are to place the walls. Thus((n

k

))
=

(
n+ k − 1

n− 1

)
=

(
n+ k − 1

k

)
. ut

1.3. Conditional probability, independence and
Bayes’ formula

Example 1.29. Somebody rolls a pair of dice and you are on the lookout for
the event

A = “the outcome is a double”.

Suppose you are also told that the event B :=“the sum of the numbers is 10” has
occurred. What could be the probability of A given that B has occurred?

Clearly, the extra information that we have, cuts down the number of possible
outcomes to {

(4, 6), (5, 5), (6, 4)
}
.

Of these outcomes, the only one is favorable, (5, 5), so the probability of A given
B ought to be 1

3 . ut
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1.3.1. Conditional probability. The above simple example is the motivation
for the following fundamental concept.

Definition 1.30 (Conditional probability). Suppose that (S,P) is a probability
space. If A,B ⊂ S are two events such that P(B) 6= 0, then the conditional
probability of A given B is the real number P(A|B) defined by

P(A|B) :=
P(A ∩B)

P(B)
. (1.9)

ut

If A and B are as in Example 1.29, then

P(A) =
6

36
=

1

6
, P(B) =

3

36
=

1

12
, P(A ∩B) =

1

36
,

so that

P(A|B) =
1
36
1
12

=
12

36
=

1

3
.

From the definition of conditional probability we obtain immediately the follow-
ing very useful multiplication formula

P(A ∩B) = P(A|B)P(B) = P(B|A)P(A) . (1.10)

If we think of probability as a measure of degree of belief, we can think of con-
ditional probability as an update of that degree, in the light of new information.

Example 1.31. Alice and Bob are playing a gambling game. Each rolls one die
and the person with higher numbers wins. If they tie, they roll again. If Alice
just won, what is the probability that she rolled a 5?

Let A be the event “Alice wins” and Ri the event “she rolls an i”. We are
looking for the probability P(R5|A). If we write the outcomes with Allice’ s roll
first, then the event A is

(2, 1) (3, 1) (4, 1) (5, 1) (6, 1)
(3, 2) (4, 2) (5, 2) (6, 2)

(4, 3) (5, 3) (6, 3)
(5, 4) (6, 4)

(6, 5)

Thus A has 1 + 2 + 3 + 4 + 5 = 15 favorable outcomes, while R5 ∩ A has only 4
favorable outcomes so that

P(R5|A) =
P(R5 ∩A)

P(A)
=

4

15
≈ 0.266. ut

Example 1.32. From a deck of cards draw four cards at random, without re-
placement. If you get j aces, draw j cards from another deck. What is the
probability of getting exactly 2 aces from each deck?
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Define the events

A = “two aces from the first deck”,

B = “two aces from the second deck”.

We are interested in the probability of the event A ∩B. Using (1.10) we deduce

P(A ∩B) = P(B|A)P(A).

Note that

P(A) =

(
4
2

)(
48
2

)(
52
4

) ≈ 0.0249, P(B|A) =

(
4
2

)(
52
2

) ≈ 0.0045

so that

P(A ∩B) ≈ 0.0001131. ut

Example 1.33 (The two-children paradox). A family has two children. Consider
the following situations

(i) One of the children is a boy.

(ii) One of the children is a boy born on a Thursday.

Let us compute, in each case the probability that both children are boys.
Denote by B the event “a child is a boy”, by BT he event “a child is a boy born
on a Thursday”, by B∗ the event “a child is a boy not born on a Thursday” and
by G “a child is a girl”. We will we use compound events such that BG signifying
the first child is a boy and the second is a girl.

(i) We are interested in the probability

pi = P(BB|BB ∪BG ∪GB) =
P(BB)

P(BB) + P(BG) + P(GB)

=
1
4

1
4 + 1

4 + 1
4

=
1

3
≈ 0.333 .

(ii) We are interested in the probability

pii := P
(
BB|BTG ∪GBT ∪BTB ∪B∗BT

)
=

P(BTB) + P(B∗BT )

P(BTG) + P(GBT ) + P(BTB) + P(B∗BT )
.

Observe that

P(BT ) =
1

14
, P(B∗) =

6

14
.

We deduce

pii =
1
14

1
2 + 6

14
1
14

2 1
14 ·

1
2 + 1

14
1
2 + 6

14
1
14

=
13

27
≈ 0.481 .

The inequality pii > pi may seem surprising at a first look. Knowing that one
of the children is a boy born on a Thursday seems to increase the odds that



28 1. Sample spaces, events and probability

the other child is also a boy, although the above argument does not seem to
distinguish between Thursday or Wednesday!

However, if we think of probability as quantifying the amount of information
about an event, this inequality seems more more palatable: the information
that the family has a boy born on a Thursday is much more precise than the
information that the family has at least a boy and thus one can expect more
accurate inferences in the second case. ut

Definition 1.34. Suppose that S is a sample space and A ⊂ S is an event.
A partition of the event A is a collection of events (An)n≥1 with the following
properties.

(i) The events (An)n≥1 are mutually disjoint (exclusive), i.e.,

An ∩Am = ∅, ∀m 6= n.

(ii) The event A is the union of the events An,

A =
⋃
n≥1

An.

ut

Proposition 1.35. Suppose that S is a sample space, P is a probability function
on S and B ⊂ S is such that P(B) 6= 0. Then the correspondence A 7→ P(A|B)
defines a probability function on S, i.e., the following hold.

(i) 0 ≤ P(A) ≤ P(A|B) ≤ 1, for any event A ⊂ S.

(ii) If B ⊂ A ⊂ S, then P(A|B) = 1. In particular, P(S|B) = 1.

(iii) If (An)n≥1 is a partition of the event A, then

P(A|B) =
∑
n≥1

P(An|B) .

ut

The fact that A 7→ P(A|B) is a probability distribution implies the following
equalities satisfies by all probability functions.

Corollary 1.36.

P(Ac|B) = 1− P(A|B), ∀A ⊂ S ,

P(A1 ∪A2|B) = P(A1|B) + P(A2|B)− P(A1 ∩A2|B) . ut
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1.3.2. Independence. The notion of conditional probability is intimately re-
lated to the subtle and very important concept of independence.

Definition 1.37. Suppose that (S,P) is a probability space. Two eventsA,B ⊂ S
are called independent and we write this A ⊥⊥ B, if

P(A ∩B) = P(A)P(B). ut

Note that if P(A) = 0 or P(B) = 0, then 0 ≤ P(A∩B) ≤ min(P(A),P(B)} = 0
so the events A and B are independent. If P(A)P(B) 6= 0, then

P(A|B) =
P(A ∩B)

P(B)

so A,B are independent if and only if

P(A|B) = P(A) .

Proposition 1.38. If the events A,B are independent, then the events A,Bc

are also independent.

Proof. We know that P(A ∩B) = P(A)P(B). We have

P(A ∩Bc) = P(A \A ∩B) = P(A)− P(A ∩B) = P(A)− P(A)P(B)

= P(A)
(

1− P(B)
)

= P(A)P(Bc).

ut

Example 1.39. Flip a fair coin twice and consider the events

A = {head in the first flip} = {HT,HH},

B = {head in the second flip} = {TH,HH},

C = {the two flips yield different results} = {TH,HT}.

Note that A ∩B = {HH} so

P(A ∩B) =
1

4
= P(A)P(B)

so the events A,B are independent. Similarly, it is easy to show that any two of
the above events are independent. Hence, these events are pairwise independent.
However, it does not seem quite right to say that the three events A,B,C are
independent since C is not independent of A ∩B. Indeed

A ∩B ∩ C = ∅

so 0 = P(C ∩A ∩B) 6= P(C)P(A ∩B) = 1
8 . ut
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Definition 1.40 (Independence). (a) The sequence of events

A1, A2, . . . , An, . . .

is called independent if, for any k ≥ 1, and for any i1 < · · · < ik we have

P(Ai1 ∩ · · · ∩Aik) = P(Ai1) · · ·P(Aik).

(b) The sequence of collections of events C1,C2, . . . ,Cn, . . . is called independent if
any sequence of events {A1, A2, . . . } such that An ∈ Cn for any n, is independent.

ut

Let us observe that the sequence of events {A1, A2, . . . , An, . . . , } is indepen-
dent if and only if the sequence of collections of events

{A1, A
c
1}, {A2, A

c
2}, . . . , {An, Acn}, . . .

is independent.

Example 1.41. (a) Suppose we roll a die until the first 6 appears. What is the
probability that this occurs on the n-th roll, n = 1, 2, . . . ? The event of interest
is

Bn = {the first 6 appears in the n-th roll}.
Consider the event

Ak = {the k-th roll yields a 6}. (1.11)

It is reasonable to assume that the rolls are independent of each other, i.e., the
result of a roll is not influenced by and does not influence other rolls. This implies
that the events A1, . . . , An are independent. Observing that Bn occurs if during
the first (n− 1) rolls we did not get a 6 and we got a six on the nth roll, i.e.,

Bn = Ac1 ∩ · · · ∩Acn−1 ∩An
we deduce from the independence assumption that

P(Bn) = P(Ac1) · · ·P(Acn−1)P(An).

Now observe that P(Ak) = 1
6 . We deduce

P(Bn) =
1

6

(
5

6

)n−1

.

(b) Suppose we roll a die 10 times. Denote by N the number of times we get a
6. What is the probability P(N = 2)?

For 1 ≤ i < j ≤ j denote by Bij the event that we get 6 at the i-th and j-th
roll, and no 6 otherwise. We have

P(Bij) =

(
1

6

)2(5

6

)8

,
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because Bij is the intersection of 10 independent events Ai, Aj and Ack, k 6= i, j,

where Ai is described by (1.11). Two of these events have probability 1
6 and the

remaining 8 have probability 5
6 .

The event {N = 2} is the union of the disjoint events Bij , 1 ≤ i < j ≤ 10.

There are
(

10
2

)
such events and all have the same probability. Hence

P(N = 2) =

(
10

2

)(
1

6

)2(5

6

)8

. ut

Definition 1.42. Suppose A,B,C are three events in a sample space (S,P) such
that P(C) > 0. We say that A,B are conditionally independent given C if

P(A ∩B|C) = P(A|C)P(B|C).

ut

Proposition 1.43 (Markov property). Suppose A+, A−, A0 are three events in
a sample space (S,P) such that P(C) > 0. Then A+, A− are conditionally inde-
pendent given A0 if and only if

P(A+|A− ∩A0) = P(A+|A0). (1.12)

Proof. We have

P(A+|A− ∩A0) =
P(A+ ∩A− ∩A0)

P(A− ∩A0)
=

P(A+ ∩A−|A0)P(A0)

P(A−|A0)P(A0)

=
P(A+ ∩A−|A0)

P(A−|A0)
.

We see that

P(A+|A− ∩A0) = P(A+|A0)⇐⇒ P(A+ ∩A−|A0)

P(A−|A0)
= P(A+|A0)

⇐⇒P(A+ ∩A−|A0) = P(A+|A0)P(A−|A0).

ut

Remark 1.44. In applications A+ is a future event, A0 is a present event and
A− is a past event. The Markov property is often phrased as follows

The future is independent of the past given the present if and only if the
probability of the future given past and present is equal to the probability of the
future given the present. ut
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1.3.3. The law of total probability.

Example 1.45. Alex flips a fair coin n+ 1 times coins and Betty flips that coin
n times. Alex wins if the number of heads he gets is strictly greater than the
number Betty gets. What is the probability that Alex will win?

The situation seems biased in favor of Alex since he’s allowed one coin flip
more than Betty so, from this perspective, it seems that the Alex’ winning prob-
ability ought to be better than 1/2.

Denote by X and respectively Y the number of Heads of Alex and respectively
Betti after n steps. At that moment Alex has one more coin flip to go.

There are three possibilities: X > Y , X = Y and X < Y . Set

p := P(X > Y ).

On account of symmetry,

P(Y > X) = P(X > Y ) = p.

Hence

P(X = Y ) = 1− 2p.

In the first case X > Y Ale has already won. In the third case, X < Y , he cannot
win. If we denote by A the event “Alex wins”, then we conclude that

P(A) = P(A,X > Y ) + P(A,X = Y ) + P(A,X < Y )︸ ︷︷ ︸
=0

(use multiplication formula)

= P(A|X > Y )P(X > Y ) + P(A|X = Y )P(X = Y )

= P(X > Y ) +
1

2
P(X = Y ) = p+

1

2
(1− 2p) =

1

2
.

This shows that Alex and Betty have equal chances of winning, even though Al
is allowed one extra flip! ut

The computations in Example 1.45 used a very simple but potent principle.

Theorem 1.46 (Law of total probability). Suppose that (S,P) is a probability
space and the events B1, . . . , Bn, . . . form a partition of S such that P(Bk) 6= 0,
∀k = 1, . . . , n. Then for any event A ⊂ S we have

P(A) = P(A|B1)P(B1) + · · ·+ P(A|Bn)P(Bn) + · · · . (1.13)

Proof. We have

A =
(
A ∩B1

)
∪
(
A ∩B2

)
∪ · · ·

and the sets
(
A ∩B1

)
,
(
A ∩B2

)
, . . . are pairwise disjoint. Hence

P(A) = P
(
A ∩B1

)
+ P

(
A ∩B2

)
+ · · ·
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= P
(
A|B1

)
P(B1) + P

(
A|B2

)
P(B2) + · · ·

ut

Remark 1.47. In concrete situations the partition B1, B2, . . . , Bn, . . . comes in
the guise of a classification by type: any outcome of the random event con only
by on one and only one of the types B1, . . . , Bn, . . . .

Example 1.48. Suppose that we have an urn containing b black balls and r red
balls. A ball is drawn from the urn and discarded. Without knowing its color,
what is the probability that a second ball drawn is black?

For k = 1, 2 denote by Bk the event “the k-th drawn ball is black”. We are
asked to find P(B2). The first drawn ball is either black (B1) or not black (Bc

1).
From the law of total probability we deduce

P(B2) = P(B2|B1)P(B1) + P(B2|Bc
1)P(Bc

1).

Observing that

P(B1) =
b

b+ r
and P(Bc

1) =
r

b+ r
,

we conclude

P(B2) =
b− 1

b+ r − 1
· b

b+ r
+

b

b+ r − 1
· r

b+ r
=

b(b− 1) + br

(b+ r)(b+ r − 1)

=
b(b+ r − 1)

(b+ r)(b+ r − 1)
=

b

b+ r
= P(B1).

Thus, the probability that the second extracted ball is black is equal to the
probability that the first extracted ball is black. This seems to contradict our
intuition because when we extract the second ball the composition of available
balls at that time is different from the initial composition.

This is a special case of a more general result, due to S. Poisson, [1, Sec. 5.3].

Suppose in an urn containing b black and r red balls, n balls
have been drawn first and discarded without their colors being
noted. If another ball is drawn drawn next, the probability
that it is black is the same as if we had drawn this ball at the
outset, without having discarded the n balls previously drawn.

To quote John Maynard Keynes8, [10, p.394],

This is an exceedingly good example of the failure to perceive
that a probability cannot be influenced by the occurrence of
a material event but only by such knowledge as we may have,
respecting the occurrence of the event.

8John Maynard Keynes (1883-1946) was an English economist widely considered to be one of the

most influential economists of the 20th century and the founder of modern macroeconomics.
https://en.wikipedia.org/wiki/John_Maynard_Keynes

https://en.wikipedia.org/wiki/John_Maynard_Keynes


34 1. Sample spaces, events and probability

ut

Example 1.49. Consider again the situation in Example 1.27 with n inebriated
sailors. Label the sailors S1, . . . , Sn and assume that, as they exit a pub, they
wait in line to pick a hat at random from the ones available. Thus S1 picks a hat
uniformly random from the n available hats, S2 picks a hat uniformly random
from the (n− 1) available hats etc. We assume that no sailors pays attention to
what hats where picked before him. Denote by pk the probability that the sailor
Sk picks his own hat. Clearly p1 = 1

n . What about p2, p3, . . . ?

Denote by Hk the event “the sailor Sk picked his own hat” and by Ak, k > 1,
the event “none of the sailors S1, . . . , Sk−1 picked Sk’s hat”.

For k > 1 we have

pk = P(Hk) = P(Hk|Ak)P(Ak) + P(Hk|Ack)P(Ack).

Note that P(Hk|Ack) = 0 because if any of the first (k−1) sailors picked Sk’s hat,
the chances that Sk picks his own hat are nil. Hence

pk = P(Hk|Ak)P(Ak).

Now observe that

P(Hk|Ak) =
1

n− k + 1
because the sailor Sk has at its disposal n− (k − 1) hats, and we know that one
of them is his.

To compute P(Ak) we use (F/P ). The number of outcomes favorable to Ak
is equal to the number of ordered samplings without replacement of (k− 1) hats
from a box containing (n− 1) hats, i.e., all the hats, but Sk’s hat. This number
is equal to the number of arrangements of (k− 1) objects out of (n− 1) possible,
i.e.,

(n− 1)!

( (n− 1)− (k − 1) )!
=

(n− 1)!

(n− k)!
.

Similarly, the number of possible outcomes is equal to the number of arrange-
ments of k objects out of n.

n!

(n− (k − 1))!
=

n!

(n− k + 1)!

so that

P(Ak) =

(n−1)!
(n−k)!

n!
(n−k+1)!

=
(n− 1)!

(n− k)!
· (n− k + 1)!

n!
=
n− k + 1

n
.

Thus

pk =
1

n− k + 1
· n− k + 1

n
=

1

n
= p1, ∀k = 1, 2, . . . , n. (1.14)

We have reached the same surprising conclusion as in the previous example,
reinforcing Keynes’ remark.
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To better appreciate the surprising nature of the above result consider the
following equivalent formulation.

Suppose the n inebriated sailors board a plane. They enter successively
and each picks a seat at random from the available ones. The above result
shows that the probability that the 5th sailor pick his assigned seat equals the
probability that the 20th sailor picks his assigned seat, which in turn is equal to
the probability that the 1st sailor picks his assigned seat, i.e., 1

n ut

Example 1.50 (The Monty Hall Problem). (Illustrate with the MAPLE app.)
Contestants in the show Let’s make a deal were often placed in situations such
as the following: you are shown three doors. Behind one door is a car; behind
the other two doors are donkeys.

Figure 1.8. Donkey and car

You pick a door, but you don’t open. Label that door # 1. To build some
suspense the host opens up one of the two remaining doors to reveal a donkey.
What is the probability that there is a car behind the door # 1 that you chose?
Should you switch curtains and pick the third, unopened, door if you are given
the chance?

Many people argue that the two unopened doors are the same, so they each
will contain the car with probability 1/2, and hence there is no point in switching.
As we will now show, this naive reasoning is incorrect.

To compute the answer, we will make the following assumptions.9

A1: The host knows behind what door is the car hidden,

A2: The host always chooses to show you a donkey.

A3: If there are two unchosen doors with donkeys, then the host chooses
one at random, by tossing a fair coin.

Denote by C1 the event “there is a car behind door #1” and by C3 the event
“there is a car behind the third, unopened, door”. The probability of winning by

9Under different assumptions one gets different answers!
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switching is P(C3). Note that

P(C1) + P(C3) = 1.

We will compute P(C3) by relying on the law of total probability. We have

P
(
C3

)
= P

(
C3|C1

)
P(C1) + P

(
C3|Cc1

)
P
(
Cc1
)

= 0 · 1

3
+ 1 · 2

3
=

2

3
.

Thus the probability of winning by switching your choice after a door with a
donkey is revealed is 2

3 . In particular P(C1) = 1
3 . Thus, the switching strategy

increases the chances of winning by a factor of 2. ut

Example 1.51 (Craps). In this game, a player rolls a pair of dice.

• If the sum is 2, 3, or 12 on his first roll, the player loses.

• If the sum is 7 or 11, he wins.

• If the sum belongs to J = {4, 5, 6, 8, 9, 10}, this number becomes his “point”, and he wins

if he “makes his point” that is, his number comes up again before he throws a 7.

What is the probability that the player wins?

Let W denote the event “the player” wins. For s = {2, . . . , 12} denote by Bs the event “the first

roll of the dice yields the sum s”. We set

ps := P(Bs).

Note that

s 2 3 4 5 6 7 8 9 10 11 12

p 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
(1.15)

From the law of total probability we deduce

P(W ) =

12∑
s=2

P(W |Bs)P(Bs).

Observe the following.

• If k = 7, 11, then P(W |Bk) = 1.

• If k = 2, 3, 12, then P(W |Bk) = 0.

We denote by J the set of points, J = {4, 5, 6, 9, 9, 10}. We deduce

P(W ) = P(B7) + P(B11) +
∑
j∈J

P(W |Bj)P(Bj) =
6

36
+

2

36
+
∑
j∈J

P(W |Bj)pj . (1.16)

For s ∈ {2, . . . , 12} we denote by Ts the number of rolls until we get the first s. Note that for any j ∈ J
we have

P(W |Bj) = P(Tj < T7).

We have

P(Tj < T7) =
∑
k=1

P(Tj = k, T7 > k).

The event {Tj = k, T7 > k} occurs if during the first k − 1 rolls the player did not get a 7 or j and

he got a j at the k-th roll. The probability qj of not getting a 7 or a j is qj = 1 − p7 − pj . Since the

successive rolls are independent we deduce

P(Tj = k, T7 > k) = qk−1
j pj
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so that

P(Tj < T7) =

∞∑
k=1

qk−1
j pj = pj

(
1 + qj + q2j + · · ·

)
= pj ·

1

1− qj

= pj ·
1

1− (1− p7 − pj)
=

pj

pj + p7
.

From (1.16) we deduce

P(W ) =
8

36
+
∑
j∈J

p2j

pj + p7
.

Using the table (1.15) we deduce

P(W ) =
8

36
+ 2

(
(3/36)2

3/36 + 6/36
+

(4/36)2

4/36 + 6/36
+

(5/36)2

5/36 + 6/36

)

=
8

36
+

2

36

(
9

9
+

16

10
+

25

11

)
≈ 0.4929. ut

Example 1.52 (A before B). The computation of the probability P(Tj < T7) in
the previous example is a special case of the following more general problem. A
random experiment is performed repeatedly and the outcome of an experiment
is independent of the outcomes of the previous experiments. While performing
these experiments we keep track of the occurrence of the mutually exclusive
events A and B. We assume that A and B have positive probabilities. What is
the probability that A occurs before B? For example if we roll a pair of dice, A
could be the event “the sum is 4” and B could be the event “the sum is 7”. In
this case

P(A) =
3

36
=

1

12
, P(B) =

6

36
=

1

6
/

To answer this question we distinguish two cases.

1. B = Ac. Thus, P(A ∪ B) = 1, so during an experiment with probability 1
either A or B occurs. Thus A occurs before B iff and only if A occurs at the first
trial so, in this case, the probability that A occurs before B is P(A).

2. B 6= Ac. Denote by E the event “A occurs before B”. Set C = (A∪B)c so C
signifies that neither A, nor B occurs. Note that

P(C) = 1− P(A ∪B) = 1− P(A)− P(B).

The collection A,B,C is a partition of the sample space. We condition on the
first trial. Thus, either, A, or B, or C occurs. If A occurs then E occurs as well.
If B occurs then Ec occurs. If C occurs, then neither A, nor B occurred, we wipe
the slate clean, and we’re back to where we started, as if we have not performed
the first trial. From the law of total probability we deduce

P(E) = P(E|A)P(A) + P(E|B)P(B) + P(E|C)P(C).

The above discussion shows that

P(E|A) = 1, P(E|B) = 0, P(E|C) = P(E).
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Hence

P(E) = P(A) + P(E)P(C)⇒ P(E)
(

1− P(C)
)

= P(A)

⇒ P(E) =
P(A)

1− P(C)
=

P(A)

P(A) + P(B)
. ut

Example 1.53 (Gambler’s Ruin). Ann decided to gamble. She chose a two-
player game of chance with the winning probability p and losing probability
q = 1 − p. She gets one dollar for every win and pays Bob one dollar for every
loss. We denote by β the bias of the game defined by

β =
q

p
.

Thus the game is fair if β = 1, i.e., p = q = 1
2 , it is biased in favor of Ann if

β < 1, i.e., q < p, and it is biased in favor of Bob if β > 1, i.e., q > p.

Ann starts with an amount a of dollars and she decided to play the game
until whichever of the following two outcomes occurs first.

• Her fortune reaches a level N prescribed in advance.

• She is ruined, i.e., her fortune goes down to zero.

You can think that N is equal to the combined fortunes of Ann and Bob
so when Ann’s fortune reaches N Bob is ruined. Obviously when her fortune
reaches 0, she is ruined. The number p is the winning probability of Ann, while
q = 1− p is Bob’s winning probability.

Denote by Wa “Ann’s starts with an initial amount = a (in dollars), and her
fortune reaches the level N before she is ruined”. Set

wa := P(Wa).

We will refer to wa as the winning probability.

Denote by Ra the event ‘Ann’s starts with a dollars and is ruined before her
fortune reaches the level N .” Set

ra := P(Ra).

We will refer to ra the ruin probability. The events Wa and Ra are disjoint so
that

wa + ra ≤ 1.

A priori we could not exclude the possibility wa + ra < 1. This could happen
if the probability that Ann plays forever, without getting ruined or reaching the
level N were positive. The computations below will show that the odds of this
happening are nil. (This is an example of possible but improbable event.)

We assume that both a and N are nonnegative integers, N ≥ a. We distin-
guish several cases.
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(a) The game is fair i.e., p = 1
2 and β = 1. (You can think that Ann tosses a

coin: tails she wins, heads, the house wins. We condition on the first game. If
she loses it (with probability 1/2), her fortune goes down to a − 1, and if she
wins is (with the same probability), her fortune goes up to a+ 1 and the process
starts anew.

Let us denote by W the event ‘Ann wins the first game” and by L the event
“Ann loses her first game”. The law of total probability then implies

wa = P(Wa) = P(Wa|W )P(W ) + P(Wa|L)P(L),

ra = P(Ra) = P(Ra|W )P(W ) + P(Ra|L)P(L).
(1.17)

Now observe that

P(Wa|W ) = P(Wa+1) = wa+1, P(Wa|L) = P(Wa−1) = wa−1,

P(Ra|W ) = P(Ra+1) = ra+1, P(Ra|L) = P(Ra−1) = ra−1.
(1.18)

We deduce

wa =
1

2
(wa−1 + wa+1), ra =

1

2
(ra−1 + ra+1).

Equivalently, this means

wa+1 − wa = wa − wa−1, ra+1 − ra = ra − ra−1. (1.19)

This shows that both sequences (wa)a=1,...,N and (ra)a=1,...,N are arithmetic pro-
gressions. Note that

w0 = 0, wN = 1, r0 = 1, rN = 0.

The ratio of (wa) is w1 − w0 = w1. Thus

wa = w0 + aw1 = aw1.

From the equality 1 = wN = Nw1 we deduce

w1 =
1

N
, wa =

a

N
, a = 0, 1, . . . , N. (1.20)

The ratio of the arithmetic progression (ra) is r1 − r0 = r1 − 1. Hence

ra = r0 + a(r1 − 1) = 1 + a(r1 − 1).

From the equality rN = 0 we deduce

0 = rN = 1 +N(r1 − 1)⇒ r1 − 1 = − 1

N
,

ra = 1− a

N
=
N − a
N

= 1− wa. (1.21)

Observing that N − a is Bob’s fortune, we see Ann’s ruin probability is equal to
Bob’s winning probability. Note that

lim
N→∞

ra(N) = 1.

Figure 1.9 depicts a computer simulation of a sequence of fair games. Ann
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Figure 1.9. Gambler’s ruin simulation with N = 10, a = 6, p = 0.5.

started with $6 and has decided to end the game if she reaches $10 or is ruined,
whichever comes first. In this example, and it took over 70 games for Ann to lose
her fortune without reaching the $10 goal. In this case, her chances of reaching
the $10 goal are 60%. In Example 3.34 we will analyze how many games it takes
on average for Ann to win.

(b) The game is biased in favor of Ann, i.e., p > q (and thus β 6= 1). The equality (1.17) continues to

hold, but in this case we have P(W ) = p, P(L) = q. The equality (1.18) takes a different form in this
case

wa = pwa+1 + qwa−1, ra = pra+1 + qra−1. (1.22)

Taking into account that p+ q = 1 we deduce

0 = pwaa+ 1 + qwa−1 − wa = pwaa+ 1 + qwa−1 − (p+ q)wa

= p(wa+1 − wa)− q(wa − wa−1).

A similar argument shows that

p(ra+1 − ra) = q(ra − ra−1).

Now set

da = wa − wa−1, ∀a = 1, . . . N.

We can rewrite the above equality as

pda+1 = qda ⇐⇒ da+1 =
q

p
da = βda.

Thus the sequence d1, . . . , dN is a geometric progression with ratio β so that

da = βa−1d1, ∀a = 1. . . . N.

On the other hand, we have

w0 + d1 + d2 + d3 + · · ·+ dn

= w0 + (w1 − w0) + (w2 − w1) + (w3 − w2) + · · ·+ (wa − wa−1) = wa.

Hence

wa = d1
1− βa

1− β
= w1

1− βa

1− β
. (1.23)
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To find w1 we need to use the boundary condition wN = 1 and we deduce

w1
1− βN

1− β
= wN = 1,

so that

w1 =
1− β

1− βN
, wa =

1− βa

1− βN
=

1−
(
q
p

)a
1−

(
q
p

)N .
A similar argument shows that the ruin probability is

ra = ra(N) =
1−

(
p
q

)N−a
1−

(
p
q

)N = 1− wa = 1−
1− βa

1− βN
.

Note that

lim
N→∞

ra(N) =

{
1, β > 1,

βa, β < 1.
ut

1.3.4. Bayes’ formula.

Example 1.54. Two candidates A and B ran in a mayoral election. The can-
didate A received 55% of the votes, while B received the remaining 45% of the
votes. When analyzing the youth vote, the pollster discovered that 40% of A’s
voters where under 35 years of age, while only 20% of B’s voters where under
35. What percentage of people under 35 voted for A?

Denote by Y the event “the person is under 35”, by A the event “the person
voted for A” and by B the event “the person voted for B”. The question then
asks to compute the conditional probability P(A|Y ), i.e., the probability that the
person voted for A given that it is under 35. The information extracted by the
pollster reads

P(A) = 0.55, P(B) = 0.45, P(Y |A) = 0.4, P(Y |B) = 0.2.

We have

P(A|Y ) =
P(A ∩ Y )

P(Y )

(1.10)
=

P(Y |A)P(A)

P(Y )

(1.13)
=

P(Y |A)P(A)

P(Y |A)P(A) + P(Y |B)P(B)

=
0.55 · 0.4

0.55 · 0.4 + 0.2 · 0.45
≈ 0.70.

Thus approximatively 70% of people under 35 voted for A. ut

The argument used in the above example is a special case of the following
versatile result.

Theorem 1.55 (Bayes’ Formula). Suppose that (S,P) is a probability space and
(Bn)N≥1 is a partition of S such that

P(Bn) > 0, ∀n ≥ 1.
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Then, for any event A ⊂ S, and any k ≥ 1, we have

P(Bk|A) =
P(A|Bk)P(Bk)

P(A)
=

P(A|Bk)P(Bk)∑
n≥1 P(A|Bk)P(Bk)

. (1.24)

Proof. We have

P(Bk|A)
(1.10)

=
P(A ∩Bk)

P(A)
=

P(A|Bk)P(Bk)

P(A)

(1.13)
=

P(A|Bk)P(Bk)∑
n≥1 P(A|Bk)P(Bk)

.

ut

Corollary 1.56. Suppose that (S,P) is a probability space and B is an event
such that 0 < P(B) < 1. Then for any event A such that P(A) 6= 0 we have

P(B|A) =
P(A|B)P(B)

P(A)
=

P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)
.

Proof. Observe that B1 = B,B2 = Bc is a partition of S. Clearly

P(B),P(Bc) > 0.

Now apply (1.24). ut

Example 1.57 (Bayesian inference: Maximum A Posteriori). Suppose doctors are asked to report the

number of cases of smallpox and chickenpox, and the symptoms they observed. This survey shows that

90% of the patients with smallpox have spots and 80% of the patients with chickenpox have spots. We
can write this as conditional probabilities

P(spots|smallpox) = 0.9, P(spots|chickenpox) = 0.8.

These are called the likelihoods of smallpox and respectively chickenpox.

In diagnosing a disease a doctor needs to take into account the conditional probabilities

P(smallpox|spots), P(chickenpox|spots)

called a posteriori estimates.

If initially, or a priori, we assume that

P(smallpox) = P(chickenpox) = p,

then we deduce from the Bayes’ formula that

P(smallpox|spots) =
P(spots|smallpox)P(smallpox)

P(spots)
= 0.9

p

P(spots)
,

P(chickenpox|spots) =
P(spots|chickenpox)P(chickenpox)

P(spots)
= 0.8

p

P(spots)
.

This analysis shows that when observing spots, the patient is more likely to have smallpox. In this case,
the decision was based on the likelihoods, and the largest one decided which disease is more likely. This
strategy is called MLE or Maximum Likelihood Estimates. The probabilities P(smallpox),P(chickenpox)
are called priors and the doctor made the a priori assumption that they are equal.

Suppose now that the doctor is aware that statistical data also show that the priors are

P(smallpox) = 0.01, P(chickenpox) = 0.1.
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Then

P(smallpox|spots) =
0.9 · 0.01

P(spots)
=

0.009

P(spots)
,

P(chickenpox|spots) =
0.8 · 0.1
P(spots)

=
0.08

P(spots)
.

Thus, with a different assumptions on priors, we reach a different conclusion. This strategy is called

MAP or Maximum A Posteriori estimate.

The above decision making process is an example of what is commonly referred to as Bayesian
inference. This principle is playing an increasingly bigger part in Machine Learning and Artificial

Intelligence. ut

Example 1.58. The polygraph is an instrument used to detect physiological
signs of deceptive behavior. Although it is often pointed out that the polygraph is
not a lie detector, this is probably the way most of us think of it. For the purpose
of this example, let us retain this notion. Let us assume that the polygraph
test is indeed very accurate and that it decides “lie” or “truth” correctly with
probability 0.95. Now consider a randomly chosen individual who takes the test
and is determined to be lying. What is the probability that this person did indeed
lie?

Consider the event L “the person lies” and the event LP “the polygraph says
the person lied”. We are are interested in the conditional probability P(L|LP ).
Note that Lc signifies that the person is truthful, while LcP signifies that the
polygraph says the person is truthful. We know that

P (LP |L) = 0.95 = P (LcP |Lc) = 0.95.

In particular
P(LP |Lc) = 1− P(LcP |Lc) = 0.05.

The quantity P(LP |L), the probability that the detector says you’re lying, given
that you lied is called the likelihood of lying. We set

λ := P(L).

The quantity λ determines the prior information. Bayes’ formula implies

P(L|LP ) =
P(LP |L)P(L)

P(LP |L)P(L) + P(LP |Lc)P(Lc)
=

0.95λ

0.95λ+ 0.05(1− λ)
.

The graph of P(L|LP ) as a function of the prior λ = P(L) is depicted in Figure
1.10.

The probability λ is typically very small. If we assume that only 1 in 1000
people lies, i.e., λ = 0.001, then

p(λ) ≈ 0.018.

This tells that the probability that a person lied, given that the polygraph says so
is very small, < 2% !
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Figure 1.10. The graph of p(λ).

We can turn this on its head and conclude that the probability that a person
told the truth, given that the polygraph said otherwise is very large, > 98%. The
graph of p(λ) shows that p(λ) > 0.90 if λ > 0.3. Thus the polygraph works well
on a sample with large number of liars, but is not that good on truthful people.ut

Example 1.59. Approximately 1% of women aged 40 − 50 years have breast
cancer. A woman with breast cancer has a 90% chance of a positive test from
a mammogram, while a woman without cancer has a 10% chance of a (false-
)positive result. What is the probability that a woman has breast cancer given
that she just had a positive test?

We denote by B the event “the woman has breast cancer” and by T the event
“the woman tested positive for breast cancer”. We know that

P(B) = 0.01, P(Bc) = 0.99, P(T |B) = 0.9, P(T |Bc) = 0.1.

We are asked to find P(B|T ). Bayes’ formula implies

P(B|T ) =
P(T |B)P(B)

P(T |B)P(B) + P(T |Bc)P(Bc)
=

0.9 · 0.01

0.9 · 0.01 + 0.1 · 0.99

=
0.009

0.009 + 0.099
=

9

9 + 99
≈ 0.083.

This answer is somewhat surprising. Indeed, when 95 physicians were asked the
question “What is the probability a woman has breast cancer given that she
just had a positive test”, their average answer was 75%. The two statisticians
who carried out this survey indicated that physicians were better able to see
the answer when the data were presented in frequency format. Ten out of 1, 000
women have breast cancer. Of these 9 will have a positive mammogram. However,
of the remaining 990 women without breast cancer, 99 will have a positive test,
and again we arrive at the answer 9/(9 + 99). ut
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1.4. Exercises

Exercise 1.1. A certain thick and asymmetric coin is tossed and the probability
that it lands on the edge is 0.1. If it does not land on the edge, it is twice as
likely to show heads as tails. What is the probability that it shows heads?

Exercise 1.2. Let A and B be two events such that

P(A) = 0.3, P(A ∪B) = 0.5, and P(A ∩B) = 0.2.

Find

(i) P(B),

(ii) the probability that A but not B occurs,

(iii) P(A ∩Bc),

(iv) P(Ac),

(v) the probability that B does not occur, and

(vi) the probability that neither A nor B occurs.

Exercise 1.3. Let A be the event that “it rains on Saturday” and B the event
that “it rains on Sunday”. Suppose that P(A) = P(B) = 0.5. Furthermore, let
p denote the probability that it rains on both days. Express the probabilities of
the following events as functions of p:

(i) it rains on Saturday but not Sunday.

(ii) It rains on one day but not the other.

(iii) It does not rain at all during the weekend.

Exercise 1.4. The probability in Exercise 1.3(b) is a decreasing function of p.
Explain this intuitively.

Exercise 1.5. People are asked to assign probabilities to the events “rain on
Saturday” “rain on Sunday”, “rain both days”, and “rain on at least one of the
days”. Which of the following suggestions are consistent with the probability
axioms:

(i) 70%, 60%, 40%, and 80%,

(ii) 70%, 60%, 40%, and 90%,

(iii) 70%, 60%, 80%, and 50%, and

(iv) 70%, 60%, 50%, and 90%?

Exercise 1.6. You are asked to select a password for a Web site. It must consist
of five lowercase letters and two digits in any order. How many possible such
passwords are there if (a) repetitions are allowed, and (b) repetitions are not
allowed?
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Exercise 1.7. An Indiana license plate consists of three letters followed by three
digits. Find the probability that a randomly selected plate has (a) no duplicate
letters, (b) no duplicate digits, (c) all letters the same, (d) only odd digits, and
(e) no duplicate letters and all digits equal.

Exercise 1.8. “A thousand monkeys, typing on a thousand typewriters will
eventually type the entire works of William Shakespeare” is a statement often
heard in one form or another. Suppose that one monkey presses 10 keys at
random.What is the probability that he types the word HAMLET if he is (a)
allowed to repeat letters, and (b) not allowed to repeat letters? (Assume that
the typewriter has precisely 26 symbols.)

Exercise 1.9. Four envelopes contain four different amounts of money. You are
allowed to open them one by one, each time deciding whether to keep the amount
or discard it and open another envelope. Once an amount is discarded, you are
not allowed to go back and get it later. Compute the probability that you get
the largest amount under the following different strategies: (a) You take the first
envelope. (b) You open the first envelope, note that it contains the amount x,
discard it and take the next amount which is larger than x (if no such amount
shows up, you must take the last envelope). (c) You open the first two envelopes,
call the amounts x and y, and discard both and take the next amount that is
larger than both x and y.

Exercise 1.10. On a chessboard (8 × 8 squares, alternating black and white),
you place three chess pieces at random. What is the probability that they are
all (a) in the first row, (b) on black squares, (c) in the same row, and (d) in the
same row and on the same color?

Exercise 1.11. In a regular coordinate system, you start at (0, 0) and flip a fair
coin to decide whether to go sideways to (1, 0) (East) or up to (0, 1) (North). You
continue in this way, and after n flips you have reached the point (j, k), where
j + k = n. What is the probability that (a) all the j steps sideways came before
the k steps up, (b) all the j steps sideways came either before or after the k steps
up, and (c) all the j steps sideways came in a row?

Exercise 1.12. An urn contains n red balls, n white balls, and n black balls. You
draw k balls at random without replacement (where k ≤ n). Find an expression
for the probability that you do not get all colors.

Exercise 1.13. You are dealt a poker hand.10 What is the probability of getting
(a) royal flush, (b) straight flush, (c) four of a kind, (d) full house, (e) flush?

Exercise 1.14. From the integers 1, . . . , 10, three numbers are chosen at random
without replacement. (a) What is the probability that the smallest number is 4?

10For the definition of poker hands see
https://en.wikipedia.org/wiki/List_of_poker_hands

https://en.wikipedia.org/wiki/List_of_poker_hands
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(b) What is the probability that the smallest number is 4 and the largest is 8?
(c) If you choose three numbers from 1, . . . , n, what is the probability that the
smallest number is j and the largest is k for possible values of j and k?

Exercise 1.15. An urn contains n white and m black balls. You draw repeatedly
at random and without replacement. What is the probability that the first black
ball comes in the k-th draw, k = 1, 2, . . . , n+ 1 ?

Exercise 1.16. A city with 6 districts has 6 robberies in one week. Assume that
robberies are located randomly, and all districts are equally likely to be robbed.

(i) What is the probability that that some district had more than one
robbery?

(ii) Answer the same question in the case when the city has 10 districts
and was robbed 8 times.

(iii) In which of the above two cases the probability that one district was
robbed more than once is larger?

Exercise 1.17. Eggs are delivered to a restaurant by the gross (1 gross = 12
dozen). From each gross, a dozen of eggs are chosen at random. If none are
cracked, the gross is accepted, and if more than one egg is cracked, the gross is
rejected. If exactly one egg is cracked, an additional dozen eggs from the same
gross are inspected. If this lot has no cracked eggs, the entire gross is accepted,
otherwise it is rejected. Suppose that a gross has eight cracked eggs. What is
the probability that it is accepted?

Exercise 1.18. Let A and B be disjoint events. Show that

P(A|A ∪B) =
P(A)

P(A) + P(B)
.

Exercise 1.19. Let A,B, and C be three events such that P(B ∩C) > 0. Show
that

P(A ∩B ∩ C) = P(A|B ∩ C)P(B|C)P(C)

and that

P(A|B ∩ C) =
P(A ∩B|C)

P(B|C)
.

Exercise 1.20. Let A,B, and C be independent events. Show that A is inde-
pendent of both B ∩ C and B ∪ C.

Exercise 1.21. A coin has probability p of showing heads. Flip it three times
and consider the events A, “at most one tails” and B, “all flips are the same”.
For which values of p are A and B independent?

Exercise 1.22. A politician considers running for election and has decided to
give it two tries. He figures that the current conditions are favorable and that
he has about a 60% chance of winning this election and, win or lose the first
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election, he has a 50% chance in the next election. However, if he does win this
election, he estimates that there ought to be a 75% chance of being reelected.

(i) Find the probability that he wins both elections.

(ii) Find the probability that he wins the first election and loses the second.

(iii) If you learn that he won the second election, what is the probability
that he won the first election?

(iv) If he loses the first election, what is the probability that he wins the
second?

Exercise 1.23. In December 1992, a small airplane crashed in a residential
area near Stockholm, Sweden. In an attempt to calm the residents, the airport
manager claimed that they should now feel safer than before since the probability
of two crashes is much smaller than the probability of one crash and hence it has
now become less likely that another crash will occur in the future. What do you
think of his argument?

Exercise 1.24. Bob and Joe are working on a project. They each have to finish
their individual tasks to complete the project and work independent of each
other. When Bob is asked about the chances of him getting his part done, Joe
getting his part done, and then both getting the entire project done, he estimates
these to be 99%, 90%, and 95%, respectively. Is this reasonable?

Exercise 1.25. You roll a die and consider the events A, “the number you get
is even”, and B, “you get at least 2”. Find P(B|A) and P(A|B).

Exercise 1.26 (The prosecutor’s fallacy). 11 Let G be the event that an accused
is guilty and T the event that some testimony is true. Some lawyers have argued
that P(G|T ) = P(T |G). Prove that this is the case if and only if P(G) = P(T ).

Exercise 1.27. We are given 20 urns U1, U2, . . . , U20, each containing 19 balls,
such that U1 contains 19 green balls, U2 contains 1 red ball and 18 green, U3

contains two red balls and 17 green etc. We select an urn at random and the we
sample without replacement two balls. What is the probability that the second
ball we sample is green?

Exercise 1.28 (The prisoner’s dilemma). Three prisoners, Al, Bob, and Charlie,
are in a cell. At dawn two will be set free and one will be hanged, but they do
not know who will be chosen. The guard offers to tell Al the name of one of the
other two prisoners who will go free but Al stops him, screaming, “No, don’t!
That would increase my chances of being hanged to 1/2.” Is Al correct in his
assessment? Justify your answer.

Exercise 1.29. You roll a die twice and record the largest number (if the two
rolls give the same outcome, this is the largest number).

11The prosectors made this error during the famous Dreyfus affair.

https://en.wikipedia.org/wiki/Dreyfus_affair
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(i) Given that the first roll gives 1, what is the conditional probability that
the largest number is 3?

(ii) Given that the first roll gives 3, what is the conditional probability that
the largest number is 3?

Exercise 1.30. Roll two fair dice. Let Ak be the event that the first die gives
k, and let Bn be the event that the sum is n. For which values of n and k are
Ak and Bn independent?

Exercise 1.31. You are offered to play the following game: A roulette wheel is
spun eight times. If any of the 38 numbers (0, 00, 1 − 36) is repeated, you lose
$10, otherwise you win $10. Should you accept to play this game? Argue by
computing the relevant probability.

Exercise 1.32. Consider the following simplified version of the birthday problem
in Example 1.16. Divide the year into “winter half” and “summer half.” Suppose
that the probability that an individual is born in the winter half is p. What is
the probability that two people are born in the same half of the year? For which
value of p is this minimized?

Exercise 1.33. Consider three dice, A, B, and C, numbered on their six sides
as follows:

A : 1, 1, 5, 5, 5, 5,

B : 3, 3, 3, 4, 4, 4,

C : 2, 2, 2, 2, 6, 6.

If all three dice are rolled at once, which is the most likely to win?

Exercise 1.34. Three fair dice are rolled. Given that there are no 6s, what is
the probability that there are no 5s?

Exercise 1.35. Suppose that parents are equally likely to have (in total) one,
two or three children. A girl is selected at random. What is the probability
that the family has no older girl? (Assume that the genders of the children are
independent and are equally likely to be male or female.)

Exercise 1.36. The distribution of blood types in the United States according
to the ?ABO classification? is O: 45%, A:40%, B: 11%, and AB: 4%. Blood
is also classified according to Rh type, which can be negative or positive and is
independent of the ABO type (the corresponding genes are located on different
chromosomes). In the U.S. population, about 84% are Rh positive. Sample two
individuals at random and find the probability that

(i) both are A negative,

(ii) one of them is O and Rh positive, while the other is not,

(iii) at least one of them is O positive,
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(iv) one is Rh positive and the other is not AB,

(v) they have the same ABO type, and

(vi) they have the same ABO type and different Rh types.

Exercise 1.37. In a blood transfusion, you can always give blood to somebody
of your own ABO type (see Exercise 1.36). Also, type O can be given to anybody
and those with type AB can receive from anybody (people with these types are
called universal donors and universal recipients, respectively). Suppose that two
individuals are chosen at random. Find the probability that

(i) neither can give blood to the other,

(ii) one can give to the other but not vice versa,

(iii) at least one can give to the other, and

(iv) both can give to each other.

Exercise 1.38. In the United States, the overall chance that a baby survives
delivery is 99.3%. For the 15% that are delivered by cesarean section, the chance
of survival is 98.7%. If a baby is not delivered by cesarean section, what is its
survival probability?

Exercise 1.39. Bob is flying from O’Hare to Sydney with a stopover at LAX.
He knows that at O’Hare luggages are mishandled with probability p = 1

100 and
if they are correctly handled at O’Hare, the probability that they are mishandled
at LAX is also p = 1

100 .

(i) What the probability that his luggage was mishandled at O’Hare given
that its luggage was missing in Sydney?

(ii) What the probability that his luggage was mishandled at LAX given
that its luggage was missing in Sydney?

Exercise 1.40. You roll a die and flip a fair coin a number of times determined
by the number on the die. What is the probability that you get no heads?

Exercise 1.41. You have three pieces of string and tie together the ends two by
two at random.

(i) What is the probability that you get one big loop?

(ii) Generalize to n pieces of string.

Exercise 1.42. We sample with replacement a regular deck of cards until we
get an ace, or we get a spade but not the ace of spades. What is the probability
that the ace comes first?

Exercise 1.43. From a deck of cards, draw four cards at random without re-
placement. If you get k aces, draw k cards from another deck. What is the
probability to get exactly k aces from the first deck and exactly n aces from the
second deck?
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Exercise 1.44. Graduating students from a particular high school are classified
as weak or strong. Among those who apply to college, it turns out that 56% of
the weak students but only 39% of the strong students are accepted at their first
choice. Does this indicate a bias against strong students?

Exercise 1.45. A box contains two regular quarters and one fake two-headed
quarter.

(i) You pick a coin at random. What is the probability that it is the
two-headed quarter?

(ii) You pick a coin at random, flip it, and get heads. What is the proba-
bility that it is the two-headed quarter?

Exercise 1.46. Two cards are chosen at random without replacement from a
deck and inserted into another deck. This deck is shuffled, and one card is drawn.
If this card is an ace, what is the probability that no ace was moved from the
first deck?

Exercise 1.47. A transmitter randomly sends the bits 0 and 1 to a receiver.
Each bit is received correctly (0 as 0, 1 as 1) with probability 0.9. Bits are
received correctly independent of each other and, on the average, twice as many
0s as 1s are being sent.

(i) If the sequence 10 is sent, what is the probability that 10 is received?

(ii) If the sequence 10 is received, what is the probability that 10 was sent?

Exercise 1.48. Consider two urns, one with 10 balls numbered 1 through 10
and one with 100 balls numbered 1 through 100. You first pick an urn at random,
then pick a ball at random, which has number 5.

(i) What is the probability that it came from the first urn?

(ii) What is the probability in (i) if the ball was instead chosen randomly
from all the 110 balls?

Exercise 1.49. The serious disease D occurs with a frequency of 0.1% in a certain
population. The disease is diagnosed by a method that gives the correct result
(i.e., positive result for those with the disease and negative for those without it)
with probability 0.99. Mr Smith goes to test for the disease and the result turns
out to be positive. Since the method seems very reliable, Mr Smith starts to
worry, being “99% sure of actually having the disease.” Show that this is not the
relevant probability and that Mr Smith may actually be quite optimistic.

Exercise* 1.50. In Example 1.53 suppose that Bob’s fortune is infinite, Ann
starts with one dollar, and her winning probability is p > 1

2 . What is the proba-
bility that she eventually goes broke?
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Exercise 1.51. Four red balls and two blue balls are placed at random into two
urns so that each urn contains three balls. What is the probability of getting a
blue ball in the following instances.

(i) You select a ball at random from the first urn?

(ii) You select an urn at random and then select a ball from it at random?

(iii) You discard two balls from the second urn and select the last ball?

Exercise 1.52. In a factory, if the most recent accident occurred exactly k days
before today, then the probability that an accident occurs today is pk ; there is
no accident with probability 1− pk . During the n successive days immediately
after an accident, what is the probability that

(i) There are no accidents?

(ii) There is exactly one accident?



Chapter 2

Random variables

2.1. Some general facts

Loosely speaking a random variable (or rv) is a numerical quantity associated to
the outcome of a random experiment. As such, it is a random quantity. Here is
a more formal description.

Definition 2.1. A random variable is a function X : S → R, where (S,P) is
probability space. ut

The following examples illustrate this idea.

Example 2.2. (a) Roll a pair of dice. The sum of the numbers on the two dice
is a random variable. Its values can be any number {2, 3, . . . , 12}.

(b) Roll a pair of dice 1, 000 times. The number of times we get 7 is a random
variable. Its value can be any of the numbers {0, 1, . . . , 1000}.

(c) Roll a pair of dice until you get a sum of 7. The number of rolls needed to get
a 7 is a random variable. It can take any value {1, 2, . . . ,∞}.
(d) The lifetime of a lightbulb is a random variable. It can take any value in the
interval [0,∞). ut

The random variables in Example 2.2(a),(b),(c) are discrete random vari-
ables, while the random variable in (d) is continuous.

Convention. Random variables are to be denoted by Capital letters

A,B,C, . . . , Y, Z.

53
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Definition 2.3. Let X be a random variable. The cumulative distribution func-
tion(cdf) of X is the function

F : R→ [0, 1], F (x) := P(X ≤ x). ut

Definition 2.4 (Quantiles). Suppose that X is a random variable with cumu-
lative distribution function FX . For any number p ∈ (0, 1] the p-quantile of X,
denoted by QX(p) is the smallest number x0 such that

FX(x0) = P(X ≤ x0) ≥ p.

Thus, x0 is the p-quantile of X, x0 = QX(p), if

• P(X ≤ x0) ≥ p and

• P(X ≤ x) < p, fo any x < x0.

The median of X is the 0.5-quantile. The p-quantile defines a function
QX : (0, 1]→ R that is a sort of inverse of the cdf FX . ut

Remark 2.5. In statistics, the term percentile is often used when referring to
quantiles. For example, the median is the 50-th percentile. A number x0 is the
28-th percentile of the random variable X if x0 is the 0.28-quantile of X, i.e.,

P(X ≤ x0) ≥ 0.28

and, if x1 < x0, then P(X ≤ x1) < 0.28. ut

Example 2.6. Suppose that H denotes the height (in inches) of a random indi-
vidual in the country of Lilliput. The statement “the height 1 inch is the 60-th
percentile of H” signifies two things:

• at least 60% of Lilliputians have height ≤ 1, and

• less than 60% have height ≤ 0.9999.

ut

Definition 2.7 (Independence). Fix a sample space (S,P).

(i) The random variables X1, . . . , Xn : S → R are called independent if,
for any numbers x1, . . . , xn ∈ R, the events{

X1 ≤ x1

}
, . . . ,

{
Xn ≤ xn

}
are independent, i.e.,

P(X1 ≤ x1, . . . Xn ≤ xn) = P(X1 ≤ x1) · · ·P(Xn ≤ xn). (2.1)

(ii) An infinite sequence of random variables Xn : S → R, n = 1, 2, . . . ,
is called independent if X1, . . . , Xn are independent for any n. The
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sequence is called iid (independent, identically distributed) if it is in-
dependent and the random variables have the same cdf, i.e.,

P(Xi ≤ x) = P(Xj ≤ x), ∀x ∈ R, i, j.

ut

We will use the notation X ⊥⊥ Y to indicate that the random variables X
and Y are independent.

Remark 2.8. One can prove that the random variables X1, . . . , Xn are indepen-
dent if and only if for “any”1 sets B1, . . . , Bn ⊂ R the events{

X1 ∈ B1

}
, . . . {Xn ∈ Bn

}
are independent, i.e.,

P
(
X1 ∈ B1, . . . Xn ∈ Bn

)
= P

(
X1 ∈ B1

)
· · ·P

(
Xn ∈ Bn

)
. (2.2)

B1 = (−∞, x1], . . . , Bn = (−∞, xn],

then the equality (2.2) becomes (2.1). ut

2.2. Discrete random variables

A random variable X is called discrete if its range is a finite or countable set of
real numbers x1, x2, . . . , xn, . . . .

Definition 2.9. (a) Let X be a discrete random variable with range

X = {x1, x2, . . . }.
The probability mass function (pmf) (or the law) ofX is the function pX : X → [0, 1]
given by

pX(xk) := P(X = xk).

A mode of X is a value x∗ in the range X where p(x) has a local maximum.

(b) Two discrete random variables X, Y with ranges X and respectively Y are
called equivalent, and we denote this X ∼ Y , if X = Y and pX = pY . ut

Example 2.10. Let G be the number of girls in a random family with three
children. The range of G is G = {0, 1, 2, 3} and its pmf is

p : {0, 1, 2, 3} → [0, 1], p(0) = p(3) =
1

8
, p(1) = p(2) =

3

8
.

The median of G is 1: 50% of families with 3 children have at most one girl. The
modes of G are 1 and 2 as they are the most likely values. We can encode this
in a pie chart as in Figure 2.1.

1The term “any” needs to be taken with a grain of salt due to some rather subtle foundational
issues.
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Figure 2.1. The distribution of the number of girls in a random sample of
1000 families with 3 children.

The cdf of this random variable is

F (x) =



0, x < 0,

p(0) = 1
8 , x ∈ [0, 1),

p(0) + p(1) = 1
2 , x ∈ [1, 2),

p(0) + p(1) + p(2) = 7
8 , x ∈ [2, 3),

1, x ≥ 3.

(2.3)

Figure 2.2. The graph of the cdf F (x).
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The 0.6 quantile of the random variableG is the smallest number x0 ∈ {0, 1, 2, 3}
such that F (x0) ≥ 0.6. From (2.3) we see that 2 is the 0.6-quantile. More gen-
erally, the quantile function of G, QG : (0, 1]→ {0, 1, 2, 3}, is given by

QG(p) =


0, p ∈ (0, 1/8]

1, p ∈ (1/8, 1/2],

2, p ∈ (1/2, 7/8],

3, p ∈ (7/8, 1].

Let us observe that the cdf of G is right-continuous, while the quantile function
is left-continuous. (This is true for all discrete random variables.)

In Example 7.9 we explain how to simulate in R, custom discrete random
variables such as this. ut

Example 2.11. Suppose we roll a die and we declare the result a success, if we
get a 6 and failure otherwise. We let X be the random variable with range {0, 1},
where X = 1 indicates success, and X = 0 indicates failure. The pmf of X is

p0 = P(X = 0) =
5

6
, p1 = P(X = 1) =

1

6
. ut

Example 2.12. Suppose we roll a die n times and X denotes the number of
times we get a 6. As in the previous example, we will call success the event of
getting a 6. Then X is a random variable with range{

0, 1, . . . , n
}
.

To compute its pmf we consider the independent events A1, . . . , An, where Ak
is the event “we have success at the k-th roll”. The event {X = k} can be
described as the event of having exactly k successes in n independent trials. The
independence of the event A1, . . . , An probability of having successes at trials
t1, . . . , tk, but at no other trials is(

1

6

)k (5

6

)n−k
.

We deduce

P(X = k) =

(
n

k

)(
1

6

)k (5

6

)n−k
because there are exactly

(
n
k

)
ways of choosing k trials out of n and declare them

the successful trials. Each such choice has the same probability
(

1
6

)k (5
6

)n−k
. ut

Example 2.13. If we roll a die and we denote by X the number of rolls until
we have our first success, i.e., we get the first 6, then X is a discrete random
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variable with range {1, 2, . . . }. The computation in Example 1.41 shows that its
pmf is

P(X = n) =

(
5

6

)n−1 1

6
, ∀n = 1, 2, . . . . (2.4)

If F denotes the cdf of X, then

F (x) = P(X = 1) + P(X = 2) + · · ·+ P(X = n), ∀n ∈ N, x ∈ [n, n+ 1).

For n a positive integer, F (n) is the probability that the first 6 appears after at
most n trials. Thus 1−F (n) is the probability that there is no 6 during the first
n trials. The probability of this event is

P(X > n) =

(
5

6

)n
,

so that

F (n) = 1−
(

5

6

)n
. ut

Proposition 2.14. Suppose that X ⊂ R is a finite or countable set,

X = {x1, x2, . . . }.

A function p : X → [0, 1] is the probability distribution of a discrete random
variable with range X if and only if it satisfies the normalization condition∑

x∈X

p(x) = 1. (2.5)

ut

2.2.1. Fundamental examples of discrete random variables.

Example 2.15 (Discrete Uniform Distribution). Suppose that X ⊂ R is a finite
set consisting of precisely n elements

X =
{
x1, . . . , xn

}
.

The discrete uniform distribution assigns to each value xk the same probability
of occurring

p(xk) =
1

n
. ut

Example 2.16 (Bernoulli trials). Fix a probability space (S,P) and an event
E ⊂ S with probability P(E) = p ∈ [0, 1]. We refer to E as “success” and to p
as the probability of success, i.e., the probability that the event E occurs. (For
example, we can declare success if we get a 6 in a roll of a fair die, in which
case p = 1/6.) We set q := 1− p and we think of q as the probability of failure.
An experiment in which we observe if the given event E has occurred is called a
Bernoulli trial .
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We can encode a Bernoulli trial as the indicator function of the event E, i.e.,
the function

IE : S → {0, 1}, IE(s) =

{
1, s ∈ E,
0, s ∈ S \ E.

The indicator function IE is the random variable that takes value 1, if E occurs
and 0 otherwise. The probability mass function of IE is then

P(IE = 0) = q, P(IE = 1) = p.

We will denote by Ber(p). Any discrete random variable X with the above
probability mass function is called a Bernoulli random variable with success
probability p and we will indicate this by X ∼ Ber(p). ut

Example 2.17 (Binomial distributions). Suppose we perform a sequence of n
independent Bernoulli trials each with the same probability of success p. Let
X denote the number of successes observed during these n trials. Then X is a
discrete random variable with range {0, 1, 2, . . . , n}. Arguing as in Example 2.12
we deduce that

P(X = k) =

(
n

k

)
pkqn−k, ∀k = 0, 1, . . . , n. (2.6)

This probability distribution is called the binomial distribution corresponding to
n trials and success probability p. We will denote by Bin(n, p) this pmf and we
will use the notation by X ∼ Bin(n, p) to indicate that X is a discrete random
variable with this pmf. Note that Ber(p) = Bin(1, p).

The probability mass of Bin(n = 10, p = 0.4) is depicted in Figure 2.3. It
has only one mode, located at 4. This is the most probable value of Bin(10, 0.4).
The r.v. in Example 2.12 is Bin(n, 1/6).

Figure 2.3. The binomial distribution Bin(10, 0.4).
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The graph of the CDF of Bin(n = 10, p = 1/3) is depicted in Figure 2.4.

Figure 2.4. The cdf of binomial distribution Bin(10, 1/3).

The binomial random variable can be mechanically simulated with the famous
Galton quincunx or Galton board 2; see Figure 2.5.

Figure 2.5. Galton’s board

There is another convenient way of viewing a binomial random variable
X ∼ Bin(n, p). Fix an event E with probability P(E) = p. Suppose that we
perform a sequence of n independent trials. For k = 1, . . . , n we denote by Xk

the random variable that is equal to 1 if the event E has occurred at the k-th
trial and equal to zero if it did not.

The variables X1, . . . , Xn are independent and have the same pmf, namely
Ber(p). Clearly X1 + · · ·+Xn is the number of successes in n independent trials,
i.e.,

X = X1 + · · ·+Xn.

Thus, any binomial random variable X ∼ Bin(n, p) is the sum of n independent
Bernoulli random variables with the same probability of success p. ut

2For an interactive computer simulation of a Galton board we refer to the Math is Fun site
http://www.mathsisfun.com/data/quincunx-explained.html

http://www.mathsisfun.com/data/quincunx-explained.html
http://www.mathsisfun.com/data/quincunx-explained.html
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Example 2.18 (Propagation of lies). Suppose we have a sequence of 101 people,

P1, . . . , P100, P101.

The first 100 people are liars and its is known that they lie independently of each
other with equal probability 1

2 .

The person P1 is told an information, communicates it (truthfully or falsely
with equal probabilities) to P2 who in turn communicates it the same fashion to
P3 and so on until P101 receives some information. We want to find out what is
the probability that the information that reaches P101 is the correct information.
We denote by E this event.

1st Method. Note that the transmission consisted of 100 person-to-person
communications. We denote by L the number of lies among these 100 communi-
cations. Note that L ∼ Bin(100, 1/2).

Note that the information received by P101 is the true information if the
number of lies during the transmission is even. Thus

P(E) = P(L = 0) + P(L = 2) + P(L = 4) + · · ·

=

(
n

0

)
1

2n
+

(
n

2

)
1

2n
+

(
n

4

)
1

2n
+ · · ·

=
1

2n

((
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · ·

)
(1.8)
=

1

2n
· 2n−1 =

1

2
.

2nd Method. Here is an alternative way of proving the above equality. The
propagation of information can be viewed as a length 100 sequence of T and L’s,

1
L→ 2

T→ 3
L→ · · · .

where a T/F on the k-th arrow signifies that the k-th transmission was unal-
tered/changed. All sequences of 100 T ’s and F ’s have the same likelihood of
occurring namely 1

2n .

There is a one-to-one correspondence between the strings of transmissions
that with and even number of lies and those with an odd number of lies described
by flipping the symbol on the first arrow in the string. This shows that the
probability that L is odd is equal to the probability that L is even and these two
probabilities add up to 1. ut

Example 2.19 (Geometric distributions). Suppose that we perform a sequence
of independent Bernoulli trials with success probability p until we get the first
success. We let T denote the epoch when we record the first success. Then T
is a discrete random variable with range {1, 2, . . . }. Arguing as in Example 2.13
we deduce that

P(T = n) = pqn−1, ∀n = 1, 2, . . . (2.7)
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The above probability distribution is called the geometric distribution with prob-
ability of success p. We will use the notation T ∼ Geom(p) to indicate that X is a
r.v. with such a distribution. The random variable in Example 2.13 is geometric
with success probability 1/6.

The geometric distribution enjoys the memoryless property : :

for n0, n > 0, the conditional probability that we will observe the
first success after more than n0 +n trials, given that we performed
n trials with recording a success, is independent of n.

More precisely

P(T > n0 + n|T > n) = P(T > n0), for any n, n0 ∈ N . (2.8)

ut

Example 2.20 (Negative binomial distributions). Fix a natural number k. Sup-
pose that we independently repeat a Bernoulli trial with probability of success p
until we register k successes. Denote by Tk the epoch when we register the k-th
success. Clearly P(Tk < k) = 0. Note that Tk = N ≥ k if and only if at the N -th
trial we registered a success and during the previous N − 1 trials we registered
exactly k − 1 successes. There are

(
N−1
k−1

)
possibilities for the epochs when these

(k − 1) successes took place. Using the independence and (2.6) we deduce that

P(Tk = N) = p

(
N − 1

k − 1

)
pk−1qN−k =

(
N − 1

k − 1

)
pkqN−k, N ≥ k. (2.9)

The above pmf is called the negative binomial distribution with probability of
success p, and number of successes k. We will use the notation NegBin(k, p) to
denote this pmf and we will use the notation X ∼ NegBin(k, p) to indicate that
X is a random variable with this distribution. Note that in the case k = 1 we
obtain the geometric distribution, i.e., Geom(p) ∼ NegBin(1, p).

Let us observe that if X1, . . . , Xk are independent geometric random vari-
ables, with the same probability of success p, then

X1 + · · ·+Xk ∼ NegBin(k, p).

In Example 7.10 we explain how to operate in R with these random variables.
ut
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Example 2.21 (Banach’s Problem). In an address honoring Stefan Banach,3

Hugo Steinhaus4 made a humorous reference to the smoking habits of the famous
mathematician.

An eminent mathematician fuels a smoking habit by keeping matches in both
trouser pockets. When impelled by need, he reaches a hand into a randomly
selected pocket and grubs about for a match. Suppose he starts with n matches
in each pocket. What is the probability that when he first discovers a pocket to
be empty of matches the other pocket contains exactly m matches?

Denote by Lm the event “the first empty pocket is the left one and there
are m matches remaining in the right pocket”. Denote by Rm the event “the
first empty pocket is the right one and there are m matches remaining in the left
pocket”. We are looking for the probability of Lm ∪ Rm. Clearly these events
are disjoint and are equally likely so

P(Lm ∪Rm) = P(Lm) + P(Rm) = 2P(Lm).

Model this as a sequence of Bernoulli trials with success probability p = 1
2 of

choosing the left pocket and failure probability q = 1
2 of choosing the right

pocket. The event Lm occurs after N = n+ 1 +n−m = 2n+ 1−m trials during
which we registered exactly n+ 1 successes, with the (n+ 1)-th occurring at the
last trial.

We are looking at a negative binomial random variable Tn+1 , the epoch of
the (n+ 1)-th success, and we are interested in the probability
P(Tn+1 = 2n+1−m). Using (2.9) with N = 2n+1−m and k = n+1 we deduce

P(Lm) = P(Tn+1 = 2n+ 1−m) =

(
2n+ 1−m− 1

n+ 1− 1

)
1

22n+1−m

=

(
2n−m
n

)
1

22n+1−m .

Thus the probability we are seeking is

2P(Lm) = 2

(
2n−m
n

)
1

22n+1−m =

(
2n−m
n

)
1

22n−m . ut

Example 2.22 (The hypergeometric distribution). Suppose that we have a bin
containing w white balls and b black balls. We select n balls at random from
the bin and we denote by X the number of white balls among the selected ones.
This is a random variable with range 0, 1, . . . , n called the hypergeometric random

3Stefan Banach (1892-1945) was a Polish mathematician who is generally considered one of the
world’s most important and influential 20th-century mathematicians.

https://en.wikipedia.org/wiki/Stefan_Banach
4Hugo Steinhaus (1887-1972) was a Polish mathematician and educator. He is credited with ”dis-

covering” the mathematician Stefan Banach, with whom he gave a notable contribution to functional
analysis.
https://en.wikipedia.org/wiki/Hugo_Steinhaus

https://en.wikipedia.org/wiki/Stefan_Banach
https://en.wikipedia.org/wiki/Hugo_Steinhaus
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variable with parameters w, b, n. We will use the notation X ∼ HGeom(w, b, n)
to indicate this and we will refer to its pmf as the hypergeometric distribu-
tion. For example, if A is the number of aces in a random poker hand, then
A ∼ HGeom(4, 48, 5).

To compute P(X = k) when X ∼ HGeom(w, b, n) we use the formula (F/P ).
The number of possible outcomes is(

w + b

n

)
.

A favorable outcome for the event X = k is determined by a choice of k white
balls (out of w) and another independent choice of n − k black balls (out of b).
Thus, the number of favorable outcomes is(

w

k

)(
b

n− k

)
,

so that

P(X = k) =

(
w
k

)(
b

n−k
)(

w+b
n

) . ut

Figure 2.6. The Poisson distribution with parameter λ = 5.

Example 2.23 (The Poisson distribution). A Poisson random variable with
parameter λ > 0 is a discrete random variable with range {0, 1, 2, . . . } and prob-
ability mass function

P(X = k) = pk(λ) = e−λ
λk

k!
, ∀k = 0, 1, 2, . . . ,

We will denote by Poi(λ) this pmf and we will use the notation X ∼ Poi(λ) to
indicate that the pmf of X is Poi(λ).
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Note that the numbers (pk(λ))k≥0 do indeed satisfy the normalization condi-
tion (2.5)

p0(λ) + p1(λ) + p2(λ) + · · · = e−λ
(

1 +
λ

1!
+
λ2

2!
+ · · ·

)
︸ ︷︷ ︸

=eλ

= 1.

In Example 7.10 we explain how to operate with Poisson variables in R.

The Poisson distribution typically models the occurrence of rare events in a
given unit of time. Then pk(λ) would be the probability that k of these events
took place during that unit of time. One can show that for fixed λ, if n is very
large so pn = λ/n is very small, then

Bin(n, pn) ≈ Poi(λ), npn = λ. (2.10)

We describe below a simple argument justifying (2.10). Fix a natural number k and a positive
number λ. Suppose that we run the same experiment a large number N of times. The probability of

success in each experiment is assumed very small

p ≈
λ

N
.

As usual, set q = 1− p. The probability of having exactly k successes in this long sequence of N trials
is then (N

k

)
pkqN−k ≈

N(N − 1) · · · (N − k + 1)

k!

λk

Nk

(
1−

λ

N

)N−k
=
N(N − 1) · · · (N − k + 1)

Nk

λk

k!

(
1−

λ

N

)N−k
= 1 ·

(
1−

1

N

)(
1−

2

N

)
· · ·
(

1−
k − 1

N

)
λk

k!

(
1−

λ

N

)N−k
If we keep k fixed, but let N →∞, we have

1 ·
(

1−
1

N

)(
1−

2

N

)
· · ·
(

1−
k − 1

N

)
→ 1.

Next observe that

(
1−

λ

N

)N−k
=


(

1−
λ

N

)−N
λ

︸ ︷︷ ︸
xN


− λ
N

(N−k)

,

lim
N→∞

xN = e, lim
N→∞

λ

N
(N − k) = λ,

so that

lim
N→∞

(
1−

λ

N

)N−k
= e−λ,

lim
N→∞

(N
k

)
pkqN−k =

λk

k!
e−λ = pk(λ). (2.11)

Thus pk(λ) is an approximation for the probability of occurrence of k rare events. ut
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Remark 2.24. The result (2.10) was proved by Siméon D. Poisson in 1837.
Perhaps the first person to put Poisson’s result to use was von Bortkewitsch
in his analysis, published in 1898 of the number of deaths of Prussian officers
who were kicked by their steeds. We refer to [17, VIII.6] for many interesting
applications of this law. ut

Example 2.25 (Overbooking). Empirical data suggest that about 12% of all
booked passengers do not show up at the gate due to cancellations and no-shows.
If an airline sells 110 tickets for a flight that seats 100 passengers, what is the
probability that the airline overbooked, i.e., it sold more tickets than seats?

We consider the event “passenger shows-up at the gate”. The empirical data
show that the probability of this event is 1−0.12 = 0.88. We assume that the 110
passengers booked for that flight make independent decisions, and each decides
with probability 0.88 to show up at the gate.

We are thus dealing with a binomial experiment, with 110 trials and proba-
bility of success 0.88. Denote by X the number of passengers that show-up at the
gate. The probability F (x) := P(X ≤ x) is the cumulative distribution function
of Bin(110, 0.88). The probability that the flight was overbooked is then

P(X > 100) = 1− P(X ≤ 100) = 1− FX(100).

The computation of the cumulative distribution of the binomial random vari-
ables has been implemented in R. More precisely, FX(100) is computed using the
command

pbinom(100,110, 0.88)

and yields the result

FX(100) ≈ 0.8633, P(X > 100) ≈ 0.1366.

Suppose that for a 100-seat flight the airline would like to sell the maximum num-
ber of tickets such that the chance of overbooking is less than 5%. Thus we need
to find n > 100 such that if X ∼ Bin(n, 0.88), then P(X > 100) < 0.05. Using a
trial and error approach that can be implemented in R using the command

for(i in 101:115){

print(i)

print(1-pbinom(100,i,0.88))

}

we deduce that for n = 109 sold tickets we have

P(X > 100) = 0.0823

while for n = 108 sold tickets we have

P(X > 100) = 0.0449.



2.2. Discrete random variables 67

Thus, if the company books 108 passengers, the odds of overbooking are less than
5%, i.e., fewer than 1 in 20 flights will be overbooked. ut

2.2.2. Probability generating functions. The statistics of a random vari-
able with range contained in the set 0, 1, 2, . . . can be efficiently encoded in a
single function called the probability generating function associated to the ran-
dom variable. Any statistical quantity associated to such a random variable can
be expressed in terms of its probability generating function.

Definition 2.26 (The probability generating function). Suppose that X is a
discrete random variables whose range is contained in the set N0 = {0, 1, 2, . . . }.

For n ∈ N0 we set pn := P(X = n). The probability generating function or
pgf of X is the function

GX : [0, 1]→ R, GX(s) = p0 + p1s+ · · ·+ pns
n + · · · =

∞∑
n=0

pns
n. (2.12)

ut

Remark 2.27. The series in (2.12) has nonnegative terms and it is convergent
for any s ∈ [0, 1]. Note that

GX(1) = p0 + p2 + · · ·+ pn + · · · = 1. ut

Example 2.28. (a) The probability generating function (pgf) of the random
variable G in Example 2.10 is

1

8︸︷︷︸
P(G=0)

s0 +
3

8︸︷︷︸
P(G=1)

s1 +
3

8︸︷︷︸
P(G=2)

s2 +
1

8︸︷︷︸
P(G=3)

s3 =
1

8

(
1 + s

)3
=

(
1 + s

2

)3

.

(b) The pgf of the Bernoulli variable Ber(p)with probability of success p is

GBer(p)(s) = q + ps, q = 1− p .

(c) The pgf of a binomial random variable Bin(n, p) corresponding to n indepen-
dent Bernoulli trials with success probability p (see Example 2.17) is

GBin(n,p)(s) = P(X = 0) + P(X = 1)s+ P(X = 2)s2 + · · ·+ P(X = n)sn

=

(
n

0

)
qn +

(
n

1

)
qn−1ps+

(
n

2

)
qn−2p2s2 + · · ·+

(
n

n

)
pnsn.

Using Newton’s binomial formula (1.6) we deduce

GBin(n,p)(s) = (q + ps)n = GBer(p)(s)
n . (2.13)
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(d) The pgf of a geometric random variable Geom(p) with success probability p
(see Example 2.19) is

GGeom(p)(s) = ps+ pqs2 + pq2s3 + · · ·+ pqn−1sn + · · ·

= sp(1 + qs+ q2s2 + · · · (qs)n−1 + · · · =
ps

1− qs
.

(2.14)

(e) Let NegBin(k, p) be the negative binomial distribution corresponding to the
waiting time of k successes in a sequence of Bernoulli trials with success proba-
bility p. Then its pgf is

GNegBin(k,p)(s) = (ps)k(1− qs)−k =

(
ps

1− qs

)k
= GGeom(p)(s)

k . (2.15)

The equality

GNegBin(k,p)(s) = GGeom(p)(s)
k.

is no accident. It is a manifestation of a more general principle that we will
discuss later when we give a very simple proof of (2.15).

Here is an elementary, but more involved proof of (2.15). Using (2.9) we deduce

GNegBin(k,p)(s) =
∑
n≥k

(n− 1

k − 1

)
pkqn−ksn = pkq−k

∑
n≥k

(n− 1

k − 1

)
(qs)n

(n = k +m)

= pkq−k
∑
m≥0

(k +m− 1

k − 1

)
(qs)k+m = (ps)k

∑
m≥0

(k +m− 1

m

)
(qs)m.

The last sum can be dramatically simplified. To see how, start with the well known equality

(1− x)−1 = 1 + x+ x2 + · · · , |x| < 1.

Derivating this equality we obtain

(1− x)−2 = 1 + 2x+ 3x2 + · · · , |x| < 1.

Derivating again we deduce

2(1− x)−3 = 2 + 3 · 2 x+ 4 · 3 x2 + · · · , |x| < 1.

Derivating (k − 1) times we obtain

(k − 1)!(1− x)−k = 1 · 2 · · · (k − 1) (1− x)−k

= (k − 1)! + k(k − 1) · · · 2 x+ (k + 1)(k) · · · 3 x2 + · · · , |x| < 1.

Hence

(1− x)−k =
(k − 1)!

(k − 1)!
+
k(k − 1) · · · 2

(k − 1)!
x+

(k + 1)(k) · · · 3
(k − 1)!

x2 + · · ·

=
(k − 1

k − 1

)
+
( k

k − 1

)
x+

(k + 1

k − 1

)
x2 + · · ·

=
∑
m≥0

(m+ k − 1

k − 1

)
xm =

∑
m≥0

(m+ k − 1

m

)
xm, |x| < 1.

This proves (2.15).
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(f) The probability generating function of a hypergeometric random variable
HGeom(w, b, n) (see Example 2.22) is

GHGeom(w,b,n)(s) =
1(
w+b
n

) w∑
k=0

(
w

k

)(
b

n− k

)
sk . (2.16)

(g) The probability generating function of a Poisson random variable Poi(λ) with
parameter λ > 0 (see Example 2.23) is

GPoi(λ)(s) = p0(λ) + p1(λ)s+ p2(λ)s2 + · · · = e−λ +
λ

1!
e−λs+

λ2

2!
e−λs2 + · · ·

= e−λ
(

1 +
λs

1!
+

(λs)2

2!
+ · · ·+ (λs)k

k!
+ · · ·

)
= e−λ · eλs.

Hence

GPoi(λ)(s) = eλ(s−1) . (2.17)

ut

2.2.3. Statistical invariants of discrete random variables. The pmf of
a discrete random variable contains most of the useful information concerning
that random variable. We want to describe below certain numerical invariants
of a discrete random variable that are defined in terms of its pmf but are easier
to manipulate and often can be computed even when we do not have precise
information about the pmf.

Definition 2.29. Suppose that X is a discrete random variable with range
X = {x1, x2, . . . , } and probability mass function p : X → [0, 1].

(a) Let s ∈ [1,∞). We say that X is s-integrable and we write this X ∈ Ls, if∑
x∈X

|x|sp(x) <∞. (2.18)

We say that X is integrable if it it is 1-integrable, i.e.,∑
x∈X

|x|p(x) <∞ . (2.19)

(b) If X is integrable, then we define its expectation or mean to be the real
number

E[X] :=
∑
x∈X

xp(x) .

Often, the mean of a discrete random variable X is denoted by the Greek letter
µ.
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(c) If n ∈ {1, 2, 3, . . . } and X is n-integrable, then we define its n-th moment to
be the quantity

µn[X] :=
∑
x∈X

xnp(x) .

Note that µ1[X] = E[X]. ut

Remark 2.30. If a discrete random variable is s-integrable for some s ≥ 1, then
it is r-integrable for any r ∈ [1, s]. ut

Example 2.31 (Casino-craps). A casino owner is willing to run craps is his casino he could be reasonably

sure that it would yield a profit of $ 100 per day. The gambler’s winning probability is 0.4929 while the
house’s winning probablity is 1− 0.4929 = 0.5071.

Assuming that the house earns a dollar if the gambler loses a game of craps and pays a dollar
otherwise, we see that the winning per game of craps is a random variable X with values ±1 and pmf

p = P(X = 1) = 0.5071, q = 1− p = P(X = −1) = 0.4929.

The expectation of this random variable is

µ = E[X] = 1 · p+ (−1) · q = 0.0142

This is the expected house winning per game. If the house runs 10, 000 craps games per day, then it can
expect to win $ 142 per day. The following R program simulates the average winning in a sequence of

n = 1000 games of craps.

#Fix the gambler’s winning probability

p=0.4929

# The casino’s winning probability

q=1-p

prob=c(p,q)

#define the random variable: Casino gets 1 dollar every time it wins

and pays one dollar when it loses

X=c(-1,1)

#the mean of X

mu=sum(X*prob)

mu

# The number of games per day is n

n=10000

"expected winning per day is"

n*mu

#simulate n games; store the winnings in the vector w

w=sample(X, n, replace=TRUE, prob)

#cummulative winnings

cumwin=cumsum(w)

#average winning per game

avwin=cumwin/(1:n)

plot(1:n , avwin, type="l", xlab="Number of games", ylab="Running average",

main="Average house profite for the game of craps")

abline(h=mu,col="red")
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Definition 2.32. Let X be a discrete random variable with range X and prob-
ability mass function p : X → [0, 1]. If X is 2-integrable and its mean is
µ = µ1[X], then we define its variance to be the quantity

var[X] =
∑
x∈X

(x− µ)2p(x) . (2.20)

The standard deviation of X is defined to be the quantity

σ[X] =
√
var[X]. ut

Remark 2.33. Above, the square integrability of X guarantees that the variance
of X is finite, even when the range of X is unbounded. ut

Proposition 2.34. Let X be a discrete random variable with range X and
probability mass function p : X → [0, 1]. If X is 2-integrable, then

var[X] := µ2[X]− µ1[X]2 . (2.21a)

var[cX] = c2 var[X] , ∀c ∈ R. (2.21b)

Proof. Set µ := E[X]. We have

var[X] =
∑
x∈X

(x− µ)2p(x) =
∑
x∈X

(x2 − 2µx+ µ2)p(x)

=
∑
x∈X

x2p(x)︸ ︷︷ ︸
=µ2(X)

−2µ
∑
x∈X

xp(x)︸ ︷︷ ︸
=µ

+ µ2
∑
x∈X

p(x)︸ ︷︷ ︸
=1

= µ2[X]− µ2.

Next observe that

var[cX] := µ2[cX]− µ1[cX]2 = c2µ2[X]− c2µ1[X]2

= c2(µ2[X]− µ1[X]2) = c2 var[X].

ut

Example 2.35. A discrete random variable with finite range is integrable be-
cause in this case the sum (2.18) consists of finitely many terms.

For example, if G is the random variable in Example 2.10 describing the
number of girls in a random family with three children, then its range is {0, 1, 2, 3}
and its expectation is

E[G] = 0p(0) + 1p(1) + 2p(2) + 3p(3) =
3

8
+

6

8
+

3

8
=

12

8
=

3

2
= 1.5.

We should interpret this by saying that the average number of girls in a family
with 3 children is 1.5 girls. The variance of G is

02p(0) + 12p(1) + 22p(2) + 32p(3)− 9

4
=

3

8
+

4 · 3
8

+
9 · 1

8
− 9

4
=

24

8
− 9

4
=

3

4
. ut
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Figure 2.7. Simulating 1000 rolls of a fair die..

Example 2.36. Let D be the random variable describing the number we get
after rolling one fair die. Its range is {1, 2, 3, 4, 5, 6}, and each number is equally
likely. We deduce that

E[D] =
1 + 2 + 3 + 4 + 5 + 6

6
=

21

6
=

7

2
= 3.5.

One can interpret this as follows. Roll the die a large number N of times so we
get the numbers d1, d2, . . . , dN . Then, with high confidence, the average number

d1 + · · ·+ dN
N

is close to 3.5. This phenomenon is depicted in Figure 2.7 which shows what is
the average number we obtain after n = 1, . . . , 1000 rolls. The variance of D is

var[D] =
12 + 22 + 32 + 42 + 52 + 62

6
− 49

4
=

35

12
≈ 2.916. ut

Example 2.37. Suppose we roll a pair of dice and S is the sum of the two
numbers we observe. The range of S is {2, 3, . . . , 12}. We have

E[S] = 2P(S = 2) + 3P(S = 3) + · · ·+ 7P(S = 7) + . . .+ 12P(S = 12)

=
2 · 1 + 3 · 2 + · · ·+ 7 · 6 + 8 · 5 + · · ·+ 12 · 1

36

=
2 + 6 + 12 + 20 + 30 + 42 + 40 + 36 + 30 + 22 + 12

36
=

252

36
= 7.

Proposition 2.38. Suppose that X is an integrable, discrete, random variable
with range contained in 0, 1, 2, . . . , then we have

E[X] =
∑
n≥0

P(X > n) . (2.22)
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Proof. We have∑
n≥0

P(X > n) = P(X > 0) + P(X > 1) + P(X > 2) + · · ·

= P(X = 1) + P(X = 2) + P(X = 3) + · · ·︸ ︷︷ ︸
P(X>0)

+P(X = 2) + P(X = 3) + P(X = 4) + · · ·︸ ︷︷ ︸
P(X>1)

+P(X = 3) + P(X = 4) + P(X = 5) + · · ·︸ ︷︷ ︸
P(X>2)

+ · · ·

= P(X = 1) + 2P(X = 2) + 3P(X = 3) + · · · =

ut

Example 2.39. Consider again situation in Example 2.13. Suppose that X is
the number of rolls of a die until the first 6 appears. This is a geometric random
variable with success probability 1/6. Its range is {1, 2, . . . } and, as explained in
Example 2.13 we have

P(X > n) =

(
5

6

)n
.

Hence

E[X] = 1 +
5

6
+

(
5

6

)2

+ · · ·+
(

5

6

)n
+ · · · = 1

1− 5
6

= 6.

Thus the mean (or expectation) of X is 6.

This is a very intuitive conclusion: the chance of getting a 6, when rolling a
die, is 1 in 6 so, on average, would should expect 6 rolls of the die until we get
the first 6. ut

Proposition 2.40. Suppose that X is a discrete random variable with range
contained in N0 = {0, 1, 2, . . . }. If GX(s) is the pgf of X, then

GX(1) = 1 (2.23a)

E[X] = G′X(1). (2.23b)

µ2[X] = G′′X(1) +G′X(1), (2.23c)

var[X] = G′′X(1) +G′X(1)−G′X(1)2. (2.23d)
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Proof. We have

GX(s) = p0 + p1s+ p2s
2 + · · ·+ pns

n + · · · ,

so

GX(1) = p0 + p1 + p2 + · · · = 1.

Next,

G′X(s) = 0p0 + 1p1 + 2p2s+ · · ·+ npns
n−1 + · · · ,

G′X(1) = 0p0 + 1p1 + 2p2 + · · ·+ npn + · · · = E[X].

Finally,

G′′X(s) =
∑
n≥0

n(n− 1)pns
n−2,

so that

G′′X(1) =
∑
n≥0

n(n− 1)pn =
∑
n≥0

n2pn −
∑
n≥0

npn

= E[X2]− E[X] = µ2[X]−G′X(1).

This proves (2.23c). The equality (2.23d) now follows from (2.23b) and (2.20).
ut

Example 2.41 (Binomial distributions). Suppose that X ∼ Bin(n, p) is a bi-
nomial random variable corresponding to n independent Bernoulli trials with
success probability p. Then its probability generating function is (see Example
2.28(c))

GX(s) = (q + ps)n, q = 1− p.

We have

G′X(s) = np(q + ps)n−1, E[X] = G′X(1) = np(p+ q)n−1 = np.

Next,

G′′X(s) = n(n− 1)p2(q + ps)n−2, G′′X(1) = n(n− 1)p2.

var[X] = n(n− 1)p2 + np− (np)2 = np− np2 = np(1− p) = npq.

We can rewrite this as

E[Bin(n, p)] = np, var[Bin(n, p)] = npq , (2.24)

Let us observe a simple consequence of the above equality namely

np = E
[

Bin(n, p)
]

=

(
n

1

)
p1qn−1 + · · ·+ k

(
n

k

)
pkqn−k + · · ·+ n

(
n

n

)
qn. (2.25)

ut
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Example 2.42 (The geometric distribution). Suppose that T1 ∼ Geom(p) is the
waiting time for the first success in a sequence of independent Bernoulli trials
with success probability p. The r.v. T1 is a geometric random variable with
success probability p. Its probability generating function is given by (2.14),

GT1(s) =
ps

1− qs
, q = 1− p.

We have

G′T1(s) =
p(1− qs)− ps(−q)

(1− qs)2
=

p

(1− qs)2
,

so that

E[X] = G′T1(1) =
p

(1− q)2
=

1

p
.

This is in perfect agreement with the special case p = 1/6 analyzed in Example
2.39 using a different method. Next

G′′T1(s) =
2pq

(1− qs)3
, G′′T1(1) =

2q

p2

so that

var[T1] =
2q

p2
+

1

p
− 1

p2
=

2q

p2
+
p− 1

p2
=

q

p2
.

Hence

E[Geom(p)] =
1

p
, var[Geom(p)] =

q

p2
. (2.26)

ut

Example 2.43 (Negative binomial distributions). The probability distribution
of the waiting time Tk to observe k successes in a sequence of Bernoulli trials with
success probability p, is the so called negative binomial distribution corresponding
to k successes with probaility p. We write this Tk ∼ NegBin(k, p). Using (2.15)
we deduce as above that

E[Tk] = G′Tk(1) =
k

p
= kE[T1].

A similar computation shows that

var[Tk] = k var[T1] =
kq

p2
.

Hence

E[NegBin(k, p)] =
k

p
, var[NegBin(k, p)] =

kq

p2
. (2.27)

ut



76 2. Random variables

Example 2.44 (Hypergeometric distributions). Suppose thatX ∼ HGeom(w, b, n)
is a hypergeometric random variable; see Example 2.22. Its probability generating
function is

GX(s) =
1(
N
n

) w∑
k=0

(
w

k

)(
b

n− k

)
sk, N := w + b.

We can identify GX(s) as the coefficient of xn in the polynomial

Q(s, x) =
1(N
n

) (1 + sx)w(1 + x)b.

We write this

GHGeom(w,b,n)(s) = Coeff

(
xn :

1(N
n

) (1 + sx)w(1 + x)b

)
. (2.28)

We have

∂Q

∂s
(s, x) =

wx(1 + x)b(N
n

) (1 + sx)w−1,

The mean of X is G′X(1) and it is equal to the coefficient of xn in

∂Q

∂s
(1, x) =

wx(w+b
n

) (1 + x)N−1 =
w
(N−1
n−1

)(N
n

) =
wn

N
=

wn

w + b
.

Hence

E
[

HGeom(w, b, n)
]

=
w

w + b
· n . (2.29)

We have

∂2Q

∂s2
(s, x) =

w(w − 1)x2(1 + x)b(N
n

) (1 + sx)w−2.

Next, G′′X(1) is the coefficient of xn in

∂2Q

∂s2
(1, x) =

w(w − 1)x2(1 + x)N−2(N
n

)
so

G′′X(1) =
w(w − 1)

(N−2
n−2

)(N
n

) = w(w − 1)

(N−2)!
(n−2)!(N−n)!

N !
n!(N−n)!

= w(w − 1)
n(n− 1)

N(N − 1)
= µ

(w − 1)(n− 1)

N − 1
.

We deduce

var[X] = G′′X(1) +G′X(1)−G′X(1)2 = µ
(w − 1)(n− 1)

N − 1
+ µ− µ2

= µ ·
(w − 1)(n− 1) +N − 1

N − 1
− µ2.

ut
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Example 2.45 (Poisson distributions). Suppose that X ∼ Poi(λ) is a Poisson
random variable with parameter λ; see Example 2.23. Its probability generating
function is (see Example 2.28(g)

GX(s) = eλ(s−1).

We have
G′X(s) = λeλ(s−1), G′′X(s) = λ2eλ(s−1), G′′X(1) = λ2

so that

E[X] = G′X(1) = λ, G′′X(1) = λ2, var[X] = λ2 + λ− λ2 = λ.

Hence,

E
[

Poi(λ)
]

= λ, var
[

Poi(λ)
]

= λ . ut

2.2.4. Functions of a discrete random variable. Suppose that X is a dis-
crete random variable with range X and probability mass function p : X → [0, 1].
Then, for any function f : R→ R, we get a new random variable f(X) with the
property that if the value of X for a random experiment is x, then the value of
f(X) for the same experiment is f(x). Note that

P
(
f(X) = y

)
=

∑
x∈X
f(x)=y

p(x).

Example 2.46. Suppose that X is a discrete random variable with range

Z = {0,±1,±2, . . . },
and pmf

pn := P(X = n), ∀n ∈ Z.
Then X2 is the random variable with range

{02, 12, 22, 32, . . . } = {0, 1, 4, 9, . . . },
and pmf

P(X2 = 0) = p0, P(X2 = 1) = p1 + p−1, P(X2 = 22) = p−2 + p2, . . . . ut

Theorem 2.47 (The law of the subconscious statistician). 5 Suppose that X is
a discrete random variable with range

X = {x1, x2, . . . }
and pmf

p(xk) = P(X = xk), k = 1, 2, . . . .

Then, for any function f , if the expectation of f(X), it is given by

E[ f(X) ] =
∑
k≥1

f(xk)p(xk) . ut

5Sometime this is also known as the law of the unconscious statistician or LoTUS.
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Corollary 2.48 (Linearity of the expectation). Suppose that X is a discrete
random variable and f, g are functions. Then

E
[
f(X) + g(X)

]
= E

[
f(X)

]
+ E

[
g(X)

]
.

In particular, for any real constants a, b we have

E[aX + b] = aE[X] + b .

Proof. Suppose that the range of X is

X = {x1, x2, . . . }

and its pmf is

pk = P(X = xk), k = 1, 2, . . . .

Then∑
k≥1

(
f(xk) + g(xk)

)
pk =

∑
k≥1

f(xk)pk +
∑
k≥1

g(xk)pk = E
[
f(X)

]
+ E

[
g(X)

]
.

ut

Using (2.20) we obtain the following result.

Corollary 2.49. Suppose that X is a 2-integrable discrete random variable with
mean µ. Then

µn[X] = E[Xn], ∀n ∈ {1, 2, . . . } ,

var[X] = E[X2]− E[X]2 = E
[

(X − µ)2
]
. ut

Moreover, for any a, b ∈ R we have

var[aX + b] = a2 var[X] .

Proof. Only the last equality requires a proof. Denote by µX the mean of X.
We set Y := aX + b. From Corollary 2.48 we deduce that the mean µY of Y is
µY = aµX + b. Hence

Y − µY = aX + b− (aµX + b) = a(X − µX),

so

var[Y ] = E
[

(Y − µY )2
]

= E[a2(X − µX)2
]

= a2E
[

(X − µX)2
]

= a2 var[X].

ut

Corollary 2.50. Suppose that X is a discrete random variable with range con-
tained in {0, 1, 2, . . . }. We denote by GX(s) its probability generating function.
Then, for any s ∈ [0, 1] we have

GX(s) = E[sX ]. (2.30)
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Proof. For n = 0, 1, 2, . . . we set pn := P(X = n). The law of subconscious
statistician shows that

E[sX ] = p0s
0 + p1s

1 + p2s
2 + · · · = GX(s).

ut

Corollary 2.51 (Monotonicity of the expectation). Suppose that X is a discrete
r.v. with range X and f, g : X → R are functions such that

f(x) ≤ g(x), ∀x ∈X .

Then

E
[
f(X)

]
≤ E

[
g(X)

]
.

Proof. Let p : X → [0, 1] denote the pmf ofX. From the law of the subconscious
statistician we deduce

E
[
f(X)

]
=
∑
x∈X

f(x)p(x) ≤
∑
x∈X

g(x)p(x) = E
[
g(X)

]
.

ut

Example 2.52 (Markov inequality). Suppose that Y is a discrete random vari-
able with range Y consisting only of nonnegative numbers and pmf p(y). Then
we have the classical Markov inequality

Y ≥ 0⇒ P
(
Y > c

)
≤ 1

c
E
[
Y
]
, ∀c > 0 . (2.31)

Let c > 0

P(Y > c) =
∑

y∈Y, y>c
p(y)

so

cP(Y > c) =
∑

y∈Y, y>c
cp(y) <

∑
y∈Y, y>c

yp(y) ≤
∑
y∈Y

yp(y) = E[Y ].

ut

Theorem 2.53 (Chebyshev’s inequality). Suppose that X is a 2-integrable dis-
crete random variable. Denote by µ its expectation, µ = E[X], by v its variance
v = E[(X − µ)2] and by σ its standard deviation, σ =

√
v. Then for any positive

numbers c, r we have

P
(
|X − µ| > cσ

)
≤ 1

c2
. (2.32a)

P
(
|X − µ| > r

)
≤ σ2

r2
. (2.32b)
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Proof. Let X be the range of X and p : X → [0, 1] be the associated probability
mass function. We have

c2σ2P
(
|X − µ| > cσ

)
= c2σ2

∑
x∈X , |x−µ|>cσ

p(x) =
∑

x∈X , |x−µ|>cσ

c2σ2p(x)

≤
∑

x∈X , |x−µ|>cσ

(x− µ)2p(x) ≤
∑
x∈X

(x− µ)2p(x) = v = σ2.

This proves (2.32a) The inequality (2.32b) is obtained by choosing c such that
cσ = r, i.e., c = r

σ .

ut

Remark 2.54. In more pedestrian terms, Chebyshev’s inequality states that the
probability that the actual value of a random variable deviates from the mean by
a multiple c of the standard deviation is 1/c2. For example, if c = 100, then the
odds that X is more than 100 deviations away from its mean are less than 1 in
10, 000. Note that if the standard deviation is very, very small, then 100 standard
deviations is small quantity. Hence the probability of deviating from the mean
by a small quantity is small if the standard deviation is very, very small. ut

2.3. Continuous random variables

2.3.1. Definition and basic invariants. The lifespan of a bulb can be any
nonnegative real number. This random quantity does not have a discrete range
and it is in some sense “continuous”. Here is a more precise definition.

Definition 2.55. A random variable X is called continuous if there exists a
function

p : R→ [0,∞)

such that

P(X ≤ x) =

∫ x

−∞
p(s)ds, ∀x ∈ R.

The function p is called the probability density function (pdf) of X. The random
variable is said to be concentrated on an interval I if p(x) = 0 for all x 6∈ I. ut

Remark 2.56. (a) If X is a continuous r.v. with probability density function p,
then p(x) has the following statistical interpretation:

the probability that the value of X is located in the infinitesimal interval
[x, x+ dx] is p(x)dx.

The cumulative distribution function (cdf) of X is

F (x) = P(X ≤ x) =

∫ x

−∞
p(s)ds.
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In particular, we have

1 = P(X <∞) =

∫ ∞
−∞

p(x)dx . (2.33)

Moreover F ′(x) = p(x) for all but countably many x.

(b) Given a fixed real number c, we have

P(X < c) = P(X ≤ c) = FX(c) .

Indeed,

P(X < c) = lim
ε↘0

P(X ≤ c− ε) = lim
ε↘0

∫ c−ε

−∞
p(s)ds =

∫ c

−∞
p(s)ds = P(X ≤ c).

(c) For any real numbers a ≤ b we have

P(a ≤ X ≤ b) = P(X ≤ b)− P(X < a)

= FX(b)− FX(a) =

∫ b

a
p(s)ds.

(2.34)

(d) Given a fixed real number c, the probability that X = c is zero. Indeed

P(X = c) = P(c ≤ X ≤ c) = P(X ≤ x)− P(X < c) = 0. ut

Figure 2.8. The probability density function of a random variable uniformly
distributed on [1, 3].

The equality (2.33) has a converse.

Proposition 2.57. Any function p : R→ [0,∞) satisfying∫ ∞
−∞

p(x)dx = 1

is the pdf of some continuous random variable. ut



82 2. Random variables

Definition 2.58. Suppose that X is a continuous random variable with proba-
bility density

p : R→ [0,∞)

and s is a real number ≥ 1.

(a) We say that X is s-integrable and we write this X ∈ Ls if∫ ∞
−∞
|x|sp(x)dx <∞.

We say that X is integrable if it it is 1-integrable, i.e.,∫
R
|x|p(x) <∞. (2.35)

We say that X is square integrable if it is 2-integrable, i.e.,∫
R
|x|2p(x) <∞.

(b) If X is integrable, then we define its expectation or mean to be the real
number

E[X] :=

∫
R
xp(x)dx =

∫ ∞
−∞

xp(x)dx .

Often, the mean of a discrete random variable X is denoted by the Greek letter
µ.

(c) If n ∈ {1, 2, 3, . . . } and X is n-integrable, then we define its n-th moment to
be the quantity

µn[X] :=

∫
R
xnp(x)dx .

Note that µ1[X] = E[X].

(d) If X is square integrable, and µ = E[X], then we define the variance of X to
be the quantity

var[X] :=

∫
R

(x− µ)2p(x)dx . (2.36)

The standard deviation of X is defined to be the quantity

σ[X] =
√
var[X] . ut

Remark 2.59. If a continuous random variable is s-integrable for some s ≥ 1,
then it is r-integrable for any r ∈ [1, s]. ut

Proposition 2.60. If X is square integrable, then

var[X] = µ2[X]− µ1[X]2 .
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Proof. We have

var[X] =

∫
R

(x− µ)2p(x)dx =

∫
R

(x2 − 2µx+ µ2)p(x)dx

=

∫
R
x2p(x)dx− 2µ

∫
R
xp(x)dx︸ ︷︷ ︸

=µ

+µ2

∫
R
p(x)dx︸ ︷︷ ︸
=1

= µ2[X]− 2µ2 + µ2 = µ2[X]− µ1[X]2.

ut

Proposition 2.61. Suppose that X is a nonnegative continuous random vari-
able. Then

E[X] =

∫ ∞
0

P(X > x)dx.

Idea of proof. Let p(x) be the pdf of X. Denote by F (x) the cdf of X. Then

P(X > x) = 1− F (x)⇒ d

dx
P(X > x) = −F ′(x) = −p(x)dx.

Integrating by parts we have

∫ ∞
0

P(X > x)dx = xP(X > x)
∣∣∣x=∞

x=0︸ ︷︷ ︸
=0

+

∫ ∞
0

xp(x) = E[X].

ut

Proposition 2.61 has a simple geometric interpretation: the expectation of a
nonnegative random variable is the area of the region to the right of the y-axis,
between the graph of the cdf F (x) and the horizontal line y = 1; see Figure 2.9.
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Figure 2.9. The expectation of a nonnegative random variable (with cdf
depicted in blue) is the area of the (green) shaded region.

Theorem 2.62 (The law of the subconscious statistician). Suppose that X is a
continuous random variable with probability density p(x) and gf(x) is a function
such that f(X) is either a continuous random variable, or a discrete random
variable. If g(X) is integrable, then

E[f(X)] =

∫
R
g(x)p(x)dx. (2.37)

ut

The next results are immediate consequences of the law of subconscious statis-
tician.

Corollary 2.63. Suppose that X is a continuous, integrable random variable
with mean µ. Then for any a, b ∈ R we have (linearity of expectation)

E[aX + b] = aE[X] + b. (2.38)

If X is k-integrable, c ∈ R, then

µk[X] = E[Xk] , µk[cX] = ckµk[X]. (2.39)

If X is square integrable, then

var[X] = E
[

(X − µ)2
]

= E[X2]− E[X]2 . (2.40a)

var[cX] = c2 var[X], ∀c ∈ R . (2.40b)

ut
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Corollary 2.64 (Monotonicity of the expectation). Suppose that X is a contin-
uous r.v. with f, g : R→ R are functions such that

f(x) ≤ g(x), ∀x ∈ R.

and each of the random variables f(X) or g(X) is either discrete or continuous.
Then

E
[
f(X)

]
≤ E

[
g(X)

]
. ut

Proposition 2.65 (Markov Inequality). Suppose that Y is an integrable contin-
uous, nonnegative random variable. Then for any c > 0 we have

P(Y > c) ≤ 1

c
E
[
Y
]
. (2.41)

Proof. Denote by pY (y) the density of Y . Since Y is nonnegative, pY (y) = 0 for
y < 0. Hence

E[Y ] =

∫ ∞
0

ypY (y)dy.

Then

cP(Y > c) =

∫ ∞
c

cpY (y)dy ≤
∫ ∞
c

ypY (y)dy ≤
∫ ∞

0
ypY (y)dy = E[Y ].

ut

Theorem 2.66 (Chebyshev’s inequality). Suppose that X is a 2-integrable con-
tinuous random variable. Denote by µ its expectation, µ = E[X], by v its variance
v = E[(X − µ)2] and by σ its standard deviation, σ =

√
v. Then for any positive

numbers c, r we have

P
(
|X − µ| ≥ cσ

)
≤ 1

c2
. (2.42a)

P
(
|X − µ| > r

)
≤ σ2

r2
. (2.42b)

ut

Proof. Consider the nonnegative random variable Y = (X − u)2. Observe that
|X −µ| > r if and only if Y ≥ r2. Markov’s inequality implies that, for all c > 0,

P(|X − µ| > r) = P(Y > r2) <
1

r2
E
[
Y
]

=
1

r2
E
[

(X − µ)2
]

=
1

r2
var[X] =

σ2

r2
.

This proves (2.42b). The inequality (2.42a) is obtained by letting r = cσ in
(2.42b).

ut
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2.3.2. Important examples of continuous random variables. subh

We describe below a few frequently encountered continuous random variables.

Example 2.67 (Uniform distribution). A continuous r.v. X is said to be uni-
formly distributed on the finite interval [a, b] and we write this

X ∼ Unif(a, b)

if its pdf is

p(x) =
1

b− a
×

{
1, x ∈ [a, b],

0, x 6∈ [a, b].

From the definition it follows that∫ ∞
−∞

p(x)dx =

∫ b

a
p(x)dx =

1

b− a

∫ b

a
dx = 1.

Using (2.34) we deduce that for any interval I = [c, d] ⊂ [a, b], the probability
that X belongs to I is proportional to the length (d− c) of the interval. Indeed

P(x ≤ X ≤ d) =
1

b− a

∫ d

c
dx =

d− c
b− a

.

This shows that the probability that X takes a value in a given interval does not
depend on the location of the interval, but only of its size. Figure 2.8 depicts the
graph of this probability density in the special case [a, b] = [1, 3].

We see that X is s-integrable for any s ≥ 1. Moreover, for any natural
number k, the k-th momentum of X is

µk[X] =
1

b− a

∫ b

a
xkdx =

bk+1 − ak+1

(k + 1)(b− a)
.

In particular, its mean is

µ = E[X] = µ1[X] =
b2 − a2

2(b− a)
=
b+ a

2
.

Let us note that b+a
2 is the midpoint of the interval [a, b]. Its second momentum

is

µ2[X] =
b3 − a3

3(b− a)
=
a2 + ab+ b2

3

and its variance is

var[X] = µ2[X]− µ1[X]2 =
a2 + ab+ b2

3
− (b+ a)2

4

=
4a2 + 4ab+ 4b2 − 3a2 + 6ab− 3b2

12
=

(b− a)2

12
.

ut
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Figure 2.10. Exponential distribution with parameter λ = 2.

Example 2.68 (Exponential distribution). A continuous random variable T is
said to be exponentially distributed with parameter λ > 0, and we write this

T ∼ Exp(λ)

if its pdf is

p(t) =

{
0, t < 0,

λe−λt, t ≥ 0.

The parameter λ is called the rate of the exponential random variable. Let us
observe that the above function p(x) is a pdf because it is nonnegative and∫ ∞

−∞
p(t)dt = λ

∫ ∞
0

e−λtdt = λ

(
− 1

λ
e−λt

) ∣∣∣t=∞
t=0

= 1.

Figure 2.10 depicts a portion of the graph of the pdf of an exponentail random
variable with parameter λ = 2.

Denote by F (t) the cumulative distribution function of the random variable
T . Clearly F (t) = 0, for any t ≤ 0. For t > 0 we have

F (t) =

∫ t

0
λe−λs = λ

(
− 1

λ
e−λs

) ∣∣∣s=t
s=0

= 1− e−λt.

Typically T models the lifetime of a product (think light bulb, computer, car),
or waiting times between two consecutive events, e.g., waiting time for a bus,
waiting time between two consecutive orders at an online store etc. The function

G(t) = 1− F (t) = P(T > t)
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is called the survival function and it gives the probability that the product will
last for more that t units of time. Note that

P(T > t) = λ

∫ ∞
t

e−λsds = e−λt .

The usefulness of the exponential distribution is due to the memoryless property :

for t0, t > 0, the conditional probability that the object will last
more than t0 + t units of time, given that it lasted at least t units
of time is independent of t.

More precisely

P(T > t0 + t|T > t) = P(T > t0), for any t, t0 > 0 . (2.43)

Indeed

P(T > t0 + t|T > t) =
P(T > t0 + t, T > t)

P(T > t)

=
P(T > t0 + t)

P(T > t)
=
−λ(t0 + t)

e−λt
= e−λt0 = P(T > t0).

The exponential random variables are the only random variables with the
memoryless property. We refer to [9] for more surprising properties of the expo-
nential distribution.

We see that T is s-integrable for any s ≥ 1. Moreover, for any natural number
k, the k-th momentum of X is

µk[T ] = λ

∫ ∞
0

tke−λtdt

(x = λt, t = λ−1x, tk = λ−kxk, dt = λ−1dx)

= λ−k
∫ ∞

0
xke−xdx

(see Proposition 2.71(iv))

= λ−kk!.

In particular

E[T ] = µ1[T ] =
1

λ
, µ2[T ] =

2

λ2
, var[T ] = µ2[T ]− µ1[T ]2 =

1

λ2
.

If T happens to model the lifetime of a light bulb, then the expected lifetime is 1
λ

so that λ is measured in [unit-of-time]−1. We can then interpret λ as describing
how many light bulbs we expect to replace in a given unit of time. This explains
the terminology “rate” used when referring to λ.
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The half-life of an exponential random variable T ∼ Exp(λ) is its median,
i.e., its 0.5-quantile. The half-life is then the smallest solution h = h(λ) of the
equation

P(T ≤ h) =
1

2
.

Equivalently, this means

e−λh = P(T > h) =
1

2

which shows that

h(λ) =
ln 2

λ
. (2.44)

When we say that a radioactive material has a life time h0 we mean that the
lifetime of this material until it has decayed completely is an exponential random
variable X ∼ Exp(λ) such that h(λ) = h0. In Example 4.33 we give another
statistical interpretation to the concept of half-life that will perhaps give a more
convincing explanation for the name half-life. ut

Remark 2.69. The geometric random variables are intimately related to the
exponentially distributed ones. Fix a small positive number and assume that
every δ seconds we perform a Bernoulli experiment with probability of success
pδ. Denote by T the time we have to wait until the first success. This is a
geometrically distributed discrete r.v. and the probability that the waiting time
T is longer than t = nδ is

Gδ(t) = P(T > t) = (1− pδ)n = (1− pδ)
t
δ =

( (
1− pδ

)− 1
pδ

)− pδ
δ
t

.

We assume that pδ is proportional to the duration δ, pδ = λδ. We deduce

Gδ(t) =
( (

1− λδ
)− 1

λδ

)−λt
.

Since

lim
δ↘0

(1− λδ)−
1
λδ = e,

we deduce that

lim
δ↘0

Gδ(t) = e−λt.

The quantity G(t) = e−λt the survival function of an exponentially distributed
random variable with parameter λ. ut

To describe the next examples of continuous random variables we need to
survey a few facts of classical analysis.
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Definition 2.70 (Gamma and Beta functions). The Gamma function is the
function

Γ : (0,∞)→ R, Γ(x) =

∫ ∞
0

tx−1e−tdt . (2.45)

The Beta function is the function of two positive variables

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0. ut

In the sequel we will need to know a few basic facts about the Gamma and
Beta functions. For proofs we refer to [12, Chap. 1].

Proposition 2.71. The following hold.

(i) Γ(1) = 1.

(ii) Γ(x+ 1) = xΓ(x), ∀x > 0.

(iii) For any n = 1, 2, . . . we have

Γ(n) = (n− 1)!. (2.46)

(iv) Γ(1/2) =
√
π .

(v) For any x, y > 0 we have Euler’s formula∫ 1

0
sx−1(1− s)y−1ds =

Γ(x)Γ(y)

Γ(x+ y)
= B(x, y) . (2.47)

ut

The equality (iv) above reads

√
π = Γ(1/2) =

∫ ∞
0

e−tt−1/2dt

(t = x2, t−1/2 = x−1 dt = 2xdx)

= 2

∫ ∞
0

e−x
2
dx =

∫ 0

−∞
e−x

2
dx+

∫ ∞
0

e−x
2
dx =

∫ ∞
−∞

e−x
2
dx.

If we make the change in variables x = s√
2

so that x2 = s2

2 and dx = 1√
2
ds, then

we deduce
√
π =

1√
2

∫ ∞
−∞

e−
x2

2 dx.

From this we obtain the fundamental equality

1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1 . (2.48)
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Example 2.72 (The normal distributions). A continuous random variable X is
said to be normally distributed or Gaussian with parameters (µ, σ2) if its pdf is

γµ,σ(y) =
1

σ
√

2π
e−

(y−µ)2

2σ2 .

The equality (2.48) shows that∫ ∞
−∞

γµ,σ(x)dx = 1,

so that γµ,σ is indeed a probability density. This distribution plays a fun-
damental role in probability and we will have more to say about it.

Figure 2.11. The graph of γ0,σ for σ = 1 (dotted red curve) and σ = 0.1
(continuous blue curve).

In Figure 2.11 we have depicted the graph of γ0,σ for σ = 1 and σ = 0.1.
Note that the smaller σ corresponds to the sharper peak. The graphs of γ0,σ are
called Gauss bells.

We will use the notation

X ∼ N(µ, σ2)

to indicate that X is a continuous random variable with the above probability
density. We will see later in Example 2.78 that µ is the mean of X, σ is its
standard deviation and σ2 its variance, i.e.,

X ∼ N(µ, σ2)⇒ E[X] = µ, var[X] = σ2 .

Here we verify this assertion in the special case µ = 0 and σ = 1. In this case
we say that that X standard normal or standard Gaussian, and we indicate this
X ∼ N(0, 1).
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If X ∼ N(0, 1), then the pdf of X is

γ(x) = γ0,1 =
1√
2π
e−

x2

2 .

This shows that X is s-integrable for any s ≥ 1. Moreover, for any k ∈ {1, 2, . . . },
the k-th momentum of X is

µk[X] =
1√
2π

∫
R
xke−

x2

2 dx.

Observe that when k is odd, the integral above is equal to zero because the

function f(x) = xke−
x2

2 is odd, f(−x) = −f(x). In particular,

E[X] = µ1[X] = 0.

For k even, k = 2n we have

µ2n[X] =
1√
2π

∫
R
x2ne−

x2

2 =
2√
2π

∫ ∞
0

x2ne−
x2

2 dx

(r = x2/2, x =
√

2r, dx = (2r)−1/2, x2n = (2r)n)

=
2n+1/2

√
2π

∫ ∞
0

rn−1/2e−rdr =
2n√
π

Γ(n+ 1/2).

In particular

µ2[X] =
2√
π

Γ(3/2).

Since

Γ(3/2) =
1

2
Γ(1/2) =

√
π

2
we deduce

X ∼ N(0, 1)⇒ E[X] = 0, var[X] = 1 . (2.49)

The cumulative distribution function of a standard normal variable is

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt , (2.50)

and it is typically expressed in terms of the error function

erf(x) =
2√
π

∫ x

0
e−t

2
dt =

1√
π

∫ x

−x
e−t

2
dt . (2.51)

More precisely

Φ(x) =
1

2
+

1

2
erf

(
x√
2

)
.

While there is no closed formula for computing Φ(x), the value of Φ(x) can be
very well approximated for any x. These computations are included in long tables
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frequently used by statisticians.6 We can use R to compute Φ(x). For example,
Φ(1.58) is computed using the R command

pnorm(1.58)

Example 2.73 (Gamma distributions). The Gamma distributions with param-
eters ν, λ are defined by the probability densities gν(x;λ), λ, ν > 0 given by

gν(x;λ) =

{
λν

Γ(ν)x
ν−1e−λx, x > 0,

0, x ≤ 0.
(2.52)

From the definition of the Gamma function we deduce that gν(x);λ is indeed a
probability density ∫ ∞

0
gν(x;λ)dx = 1.

Note that g1(x;λ) is the exponential distribution with parameter λ. We will use
the notation X ∼ Gamma(ν, λ) to indicate that the probability density function
of X is a Gamma distribution with parameters ν, λ. The parameter ν is some-
times referred to as the shape parameter. Figure 2.12 may explain the reason for
this terminology.

Figure 2.12. The graphs of gν(x;λ) for ν > 1 and ν < 1.

For n = 1, 2, 3, . . . the distribution Gamma(n, λ) has a simple probabilistic in-
terpretation. If the waiting time T for a certain event is exponentially distributed
with rate λ, e.g., the waiting time for a bus to arrive, then the waiting time for

6We recommend the Math is Fun site on the standard normal distribution. There you can interac-

tively find the values of Φ(x) for many x-s.
https://www.mathsisfun.com/data/standard-normal-distribution-table.html

https://www.mathsisfun.com/data/standard-normal-distribution-table.html
https://www.mathsisfun.com/data/standard-normal-distribution-table.html
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n of these events to occur independently and in succession is a Gamma(n, λ)
random variable. We will prove this later in Proposition 5.14.

The distribution gn/2(x; 1/2), where n = 1, 2, . . . , plays an important role
in statistics it also known as the chi-squared distribution with n degrees of free-
dom. One can show that if X1, . . . , Xn are independent standard normal random
variables, the the random variable

X2
1 + · · ·+X2

n

has a chi-squared distribution of degree n.

If X ∼ Gamma(ν, λ) is a Gamma distributed random variable, then X is
s-integrable for any s ≥1. Moreover, for any k ∈ {1, 2, . . . } we have

µk[X] =
λν

Γ(ν)

∫ ∞
0

xk+ν−1e−λxdx

(x = λ−1t, dx = λ−1dt, λx = t, xk+ν−1 = λ−(k+ν−1)tk+ν−1)

=
1

λkΓ(ν)

∫ ∞
0

tk+ν−1e−tdt =
Γ(k + ν)

λkΓ(ν)
.

Hence

µk[X] =
Γ(k + ν)

λkΓ(ν)
, X ∼ Gamma(ν, λ) . (2.53)

We deduce

E[X] = µ1[X] =
Γ(ν + 1)

λΓ(ν)
=
ν

λ
,

var[X] = µ2[X]− µ1[X]2 =
Γ(ν + 2)

λ2Γ(ν)
− ν2

λ2

=
k(k + 1)− k2

λ2
=

ν

λ2
.

Hence

X ∼ Gamma(ν, λ)⇒ E[X] =
ν

λ
, var[X] =

ν

λ2
.

Example 2.74 (Beta distributions). The Beta distribution with parameters
a, b > 0 is defined by the probability density function

βa,b(x) =
1

B(a, b)
×

{
xa−1(1− x)b−1, x ∈ (0, 1),

0, otherwise.

We will use the notation X ∼ Beta(a, b) to indicate that the pdf of X is a Beta
distribution with parameters a, b.

Suppose that X ∼ Beta(a, b). Then

E[X] =
1

B(a, b)

∫ 1

0
xa(1− x)b−1dx =

B(a+ 1, b)

B(a, b)
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=
Γ(a+ 1)Γ(a+ b)

Γ(a)Γ(a+ b+ 1)
=

a

a+ b
,

E[X2] =
1

B(a, b)

∫ 1

0
xa+1(1− x)b−1dx =

Γ(a+ 2)Γ(a+ b)

Γ(a)Γ(a+ b+ 2)

=
a(a+ 1)

(a+ b)(a+ b+ 1)
.

Hence

var[X] = E[X2]− E[X]2 =
a

a+ b

(
a+ 1

a+ b+ 1
− a

a+ b

)
=

a

a+ b
· (a+ 1)(a+ b)− a(a+ b+ 1)

(a+ b)(a+ b+ 1)
=

ab

(a+ b)2(a+ b+ 1)
.

We summarize the above results

E[X] =
a

a+ b
, var[X] =

ab

(a+ b)2(a+ b+ 1)
, X ∼ Beta(a, b). (2.54)

The cdf of X ∼ Beta(a, b) is

P(X ≤ x) = Ba,b(x) :=
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt, x ∈ [0, 1]. (2.55)

The function Ba,b(x) is called the incomplete Beta function7 with parameters
a, b > 0. Note that

d

dt

(
ta(1− t)b

)
= ata−1(1− t)b − bta(1− t)b−1

= ata−1(1− t)b−1 − ata(1− t)b−1 − bta(1− t)b−1

= ata−1(1− t)b−1 − (a+ b)ta(1− t)b−1.

Integrating from 0 to x we deduce

xa(1− x)b = a

∫ x

0
ta−1(1− t)b−1dt− (a+ b)

∫ x

0
ta(1− t)b−1dt

so
xa(1− x)b

aB(a, b)
= Ba,b(x)−Ba+1,b(x). (2.56)

Arguing in a similar fashion we deduce

xa(1− x)b

bB(a, b)
= Ba,b+1(x)−Ba,b(x). (2.57)

If we add the above two equalities we deduce

Ba,b+1(x)−Ba+1,b(x) =
a+ b

abB(a, b)
xa(1− x)b. (2.58)

7Other authors use the notation Ia,b(x) for the incomplete Beta function. Our notation follows A.

Rényi’s [16].
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Suppose now that a, b are natural numbers. Then

a+ b

abB(a, b)
=

(a+ b)Γ(a+ b)

aΓ(a)bΓ(b)
=

(a+ b)!

a!b!
=

(
a+ b

a

)
.

Now fix a natural number a. For any 0 < a < n we have

Ba,n−a+1(x)−Ba+1,n−a(x) =

(
n

a

)
xa(1− x)n−a.

Hence

Bk,n−k+1(x)−Bn,1(x) =

n−1∑
a=k

(
n

a

)
xa(1− x)n−a

Since
Bn,1(x) = xn

we deduce

Bk,n+1−k(x) =

n∑
a=k

(
n

a

)
xa(1− x)n−a . (2.59)

Thus, if X ∼ Bin(n, p), then

P(X ≥ k) = Bk,n+1−k(p). (2.60)

ut

Example 2.75 (The Cauchy distribution). The Cauchy distribution is defined by the probability

density

p(x) =
1

π(1 + x2)
.

In Figure 2.13 we have depicted the Cauchy density against the normal density. The Cauchy distribution

Figure 2.13. The Cauchy distribution (continuous line) vs. normal distri-
bution (dotted line).
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is not integrable since the improper integral∫
R

|x|
π(1 + x2)

dx

is divergent. ut

2.3.3. Functions of continuous random variables. If X is a continuous
random variable and g : R → R is a function, then g(X) is another random
variable. Under certain assumptions on g, the random variable g(X) is also
continuous.

Example 2.76. Suppose that g(x) = −x, and X is a continuous random variable
with probability density p(x). Then Y = g(X) = −X is also a continuous random
variable with density q(y) = p(−y). To see this we compute the cumulative
probability function of Y

FY (y) = P(Y ≤ y) = P(−X ≤ y) = P(X ≥ −y) =

∫ ∞
−y

p(x)dx.

Derivating with respect to y we get

F ′−X(y) = q(y) = p(−y). ut

Example 2.77. Suppose that g(x) = ax+b, a > 0 and X is a continuous random
variable with probability density p(x). Then Y = g(X) is also a continuous
random variable. To find its probability density q we compute its cumulative
distribution function

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P(aX ≤ y − b)
a>0
= P

(
X ≤ y − b

a

)
= FX

(
y − b
a

)
.

Derivating with respect to y we get

q(y) = F ′Y (y) =
d

dy
FX

(
y − b
a

)
=

1

a
p

(
y − b
a

)
.

Observe that the function h(y) = y−b
a is the inverse function g−1(y) and a = g′(x).

ut

Example 2.78 (Gaussian random variables). Suppose that X is a standard
normal random variable, X ∼ N(0, 1). Then for any σ > 0 and µ ∈ R the
random variable Y = σX +µ is Gaussian with parameter (µ, σ2), Y ∼ N(µ, σ2).

Indeed, the probability density of X is

p(x) =
1√
2π
e−

x2

2 .
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Using Example 2.77 with g(x) = σx+ µ we deduce that the pdf of Y is

γµ,σ(y) =
1

σ
√

2π
e−

(y−µ)2

2σ2 ,

i.e., Y ∼ N(µ, σ2). Invoking (2.38) and (2.40b) we conclude that

E[Y ] = σE[X] + µ = µ, var[Y ] = σ2 var[X] = σ2.

Conversely, it follows from Example 2.77 with g(y) = (y−µ)/σ that if Y ∼ N(µ, σ2),
then

X =
1

σ
(Y − µ) ∼ N(0, 1).

We deduce that, for any real number u we have

P
(
Y ≤ µ+ uσ

)
= P

(
1

σ
(Y − µ) ≤ µ+ uσ − µ

σ

)
= P(X ≤ u) = Φ(u), (2.61)

where we recall that Φ(x) denotes cdf of the standard normal r.v. described
explicitly in (2.50). This shows that in practice, the standard deviation σ is the
most convenient measuring stick. For example, we deduce from (2.61) that, for
any real numbers u < v we have

Y ∼ N(µ, σ2)⇒ P
(
µ+ uσ ≤ Y ≤ µ+ vσ

)
= Φ(v)− Φ(u) . (2.62)

Before the computers became ubiquitous, the values of Φ were stored in large
statistical tables. In R, the values of Φ are accessible using the command

pnorm()

Thus, Φ(0.112) is accessed using the command

pnorm(0,112)

that yields Φ(0.112) ≈ 0.5445883. ut

Example 2.79. Suppose that X ∼ N(0, σ) is a normal random variable with
mean 0 and standard deviation σ. The pdf of X is the function

γ0,σ(x) =
1

σ
√

2π
e−

s2

2σ2

depicted in Figure 2.11. In this case we have

P(|X| ≥ cσ)
(2.62)

= 2
(
1− Φ(c)

)
, Φ(x) =

1√
2π

∫ x

−∞
e−

s2

2 ds.

P(|X| ≥ σ) = 2
(

1− Φ(1)
)
≈ 0.3173,

P(|X| ≥ 2σ) ≈ 0.0455,

P(|X| ≥ 3σ) ≈ 0.0026.
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Thus, the probability of X being at least 3 standard deviations away from its
mean 0 is about 2 in 1000. Compare this with Chebyshev’s inequality prediction
that these odds are at most 1 in 9. Let us observe that

Φσ(σ) ≈ 0.84, Φσ(2σ) ≈ 0.97, Φσ(3σ) ≈ 0.99.

We can interpret this by saying that 1 standard deviation is the 84-th percentile
of X, 2 standard deviations is the 97-th percentile and 3 standard deviations is
the 99-th percentile.

In Figure 2.11 we have depicted the graphs of the Gaussian distributions γ0,σ

for two values of σ, σ = 1 and σ = 0.1. The sharper-peak-graph correspond to
the smaller standard deviation σ = 0.1.

The sharp peak in Figure 2.11 is a manifestation of the phenomenon described
in Remark 2.54: a small standard deviation suggests that the large deviations
from the mean are highly unlikely.

ut

Example 2.80. Suppose that X is a continuous random variable with probability density p(x) and

n ∈ {1, 2, . . . }. If g(x) = xn, then Y = g(X) is also a continuous random variable. For simplicity we

discuss only the case n = 2, i.e., g(x) = x2.

Note that P(Y < 0) = 0. To find its probability density q we compute its cumulative distribution

function for y > 0

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y) = FX(
√
y)− FX(−√y).

Derivating with respect to y > 0 we get

q(y) = F ′Y (y) =
d

dy

(
FX(
√
y)− FX(−√y)

)
=

1

2
√
y

(
p(
√
y) + p(−√y)

)
, y > 0. ut

The next result is a generalization of both Example 2.76 and 2.77.

Theorem 2.81 (Method of transformation). Suppose that X is a continuous
random variable with probability density p(x), and I is an interval containing the
range of X. If g : I → R is a differentiable function such that g′(x) 6= 0, ∀x ∈ I,
then Y = g(X) is also a continuous random variable with probability density

q(y) = |h′(y)|p
(
h(y)

)
,

where h is the inverse function of g.

Proof. Since g′(x) 6= 0, ∀x ∈ I we deduce from the intermediate value property
for derivatives that g′ does not change sign on I. Thus either g′ is everywhere
positive, or everywhere negative. We assume that g′ is everywhere positive so g
is increasing. (The case of decreasing g can be dealt with in a similar fashion.)
We compute the cumulative distribution function of Y ,

FY (y) = P(Y ≤ y) = P(g(X) ≤ y).
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Since g is increasing we deduce that g(X) ≤ y if and only if X ≤ g−1(y) = h(y).
Thus

FY (y) = P
(
X ≤ h(y)

)
= FX

(
h(y)

)
.

The result is obtained derivating with respact to y the above equality. ut

Example 2.82 (Simulating exponential random variables). Modern computers
have ways of simulating uniformly distributed random variables by using so called
random number generators. Using this random number generator one can then
simulate many other random variables. We explain the general principle in the
special case of the exponential variable with parameter λ > 0.

Fix a uniformly distributed random variable X ∼ Unif(0, 1). Thus the prob-
ability density of X is

p(x) =

{
1, x ∈ [0, 1],

0, x 6∈ [0, 1].

We seek a function g such that Y = g(X) is exponentially distributed Y ∼ Exp(λ).
The function g has to be an increasing function g : (0, 1)→ (0,∞) such that

(i) limx→0 g(x) = 0, limx→1 g(x) =∞.

(ii) If h(y) is the inverse of g, then

h′(y) = h′(y)p(h(y)) = λe−λy = F ′Y (y), ∀y ∈ (0,∞).

We deduce from (ii) that h(y) = FY (y) + c for some constant c. Condition
(i) implies h(0) = 0 so c = −FY (0). On the other hand, since Y ∼ Exp(λ) we
have

FY (y) =

∫ y

0
λe−λtdt = 1− e−λy

so FY (0) = 0

h(y) = FY (y) = 1− e−λy.
The function g(x) is the inverse of h(y) and can be found by solving for y the
equation

x = h(y) = 1− e−λy.
We deduce

e−λy = 1− x⇒ g(x) = y = − 1

λ
ln(1− x).

Thus, if the random quantityX is uniformly distributed on [0, 1], then the random
quantity Y = − 1

λ ln(1−X) is exponentially distributed with parameter λ. ut

Remark 2.83 (Quantiles/Percentiles). Suppose that X is a random variable
(discrete or continuous) with cumulative distribution function FX . Recall that
for any number p ∈ [0, 1] we defined the p-quantile of X denoted by QX(p), to
be smallest number x0 such that

P(X ≤ x0) ≥ p.
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Thus x0 is the p-quantile of X if

P(X ≤ x0) ≥ p, P(X ≤ x) < p, ∀x < x0.

If X is a continuous random variable with probability density p(x), then the
p-quantile is the smallest number x0 such that

p =

∫ x0

−∞
p(s)ds.

If moreover, FX is an invertible function, and then QX(p) = F−1
X (p).

One should think of the p-quantile as a function QX : [0, 1] → R. One can
show that if U ∼ Unif(0, 1), then the random variable QX(U) has the same
cumulative distribution function as X. We have seen this principle at work in
Example 2.82.

ut

2.4. Exercises

Exercise 2.1. The discrete random variable X has cdf F that is such that

F (x) =


0, x < 1,

F (x) = 1
3 , 1 ≤ x < 3,

F (x) = 1, x ≥ 3.

Find (a) F (2), (b) P(X > 1), (c) P(X = 2), and (d) P(X = 3).

Exercise 2.2. Roll two dice and find the pmf of X if X is (a) the smallest
number and (b) the difference between the largest and the smallest numbers.

Exercise 2.3. The random variable X has pmf p(k) = c/2k, k = 0, 1, . . . Find(a)
the constant c, (b) P(X > 0), and (c) the probability that X is even.

Exercise 2.4. Five cards are drawn at random from a deck of cards. Let X
be the number of aces. Find the pmf of X if the cards are drawn (a) with
replacement and (b) without replacement.

Exercise 2.5. A fair coin is flipped twice. Let X be the number of heads minus
the number of tails. Find the pmf and sketch the cdf of X.

Exercise 2.6. The game of chuck-a-luck is played with three dice, rolled inde-
pendently. You bet one dollar on one of the numbers 1 through 6 and, if exactly
k of the dice show your number, you win k dollars k = 1, 2, 3 (and keep your
wagered dollar). If no die shows your number, you lose your wagered dollar.
What is your expected loss?

Exercise 2.7. The demand for a certain weekly magazine at a newsstand is
a random variable with pmf p(i) = (10 − i)/18, i = 4, 5, 6, 7. If the magazine
sells for $a and costs $2a/3 to the owner, and the unsold magazines cannot be
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returned, how many magazines should be ordered every week to maximize profit
in the long run?

Exercise 2.8. Find the expected number of different birthdays amongst four
people selected at random.

Exercise 2.9. In a game, Ann gives Bob three fair quarters to flip. Bob will
keep those which land heads and return those landing tails. However, if all three
quarters land tails then Bob must pay Ann $2. Find the expected value and
variance of Bob’s net gain.

Exercise 2.10. An urn contains 10 balls labelled 1 through 10. We draw without
replacement 3 balls and we denote by X the smallest label among the three
extracted balls. Find the pmf and the mean of X.

Exercise 2.11. A drunken man has 5 keys, one of which opens the door to his
office. He tries the keys at random, one by one and independently. Compute the
expectation and variance of the number of tries required to open the door if the
wrong keys (a) are not eliminated; (b) are eliminated.

Exercise 2.12. An object is hidden randomly in one of ten covered boxes num-
bered from 1 to 10. You search for it by randomly lifting the lids. Find the
expected number of lids you need to lift until you locate the object.

Exercise 2.13. A belt conveys tomatoes to be packed. Each tomato is defective
with probability p, independently of the others. Each is inspected with proba-
bility r; inspections are also mutually independent. If a tomato is defective and
inspected, it is rejected.

(i) Find the probability that the n-th tomato is the k-th defective tomato.

(ii) Find the probability that the n-th tomato is the k-th rejected tomato.

(iii) Given that the (n + 1)-th tomato is the first to be rejected, let X be
the number of its predecessors that were defective. Find P(X = k), the
probability that X takes the value k, and E[X].

Exercise 2.14. The random variable X has a binomial distribution with E[X] = 1
and var[X] = 0.9. Compute P(X > 0).

Exercise 2.15. Roll a die 10 times. What is the probability of getting (a) no
6s, (b) at least two 6s, and (c) at most three 6s.

Exercise 2.16. Let X be the number of 6s when a die is rolled six times, and
let Y be the number of 6s when a die is rolled 12 times. Find (a) E[X] and E[Y ]
and (b) P(X > E[X]) and P(Y > E[Y ]).

Exercise 2.17. A fair coin is flipped n times. What is the probability of getting
a total of k heads if (a) the first flip shows heads, (b) the first flip shows tails,
and (c) at least one flip shows heads?
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Exercise 2.18. A fair coin is flipped 10 times. Each time it shows heads, Ann
gets a point; otherwise Bob gets a point.

(i) What is the most likely final result?

(ii) Which is more likely: that it ends 5− 5 or that somebody wins 6− 4?

(iii) If Ann wins the first three rounds, what is the probability that she ends
up the winner?

(iv) If Ann wins the first four rounds, what is the probability that Bob
never takes the lead?

(v) What is the probability that the lead changes four times?

Exercise 2.19. A multiple-choice test consists of six questions, each with four
alternatives. At least four correct answers are required for a passing grade. What
is the probability that you pass if you (a) guess at random; (b) know the first
three answers, and guess on the rest; (c) for each question know the correct
answer with probability 1

2 , otherwise guess at random? (d) In (c) how high must
should the probability that you know an answer be to ensure that, with at least
95% certainty you will pass? (e) For (a)-(c), find the mean and variance of the
number of correct answers.

Exercise 2.20. A restaurant has 15 tables, and it is known that 70% of guests
who make reservations actually show up. To compensate for this, the restaurant
has a policy of taking more than 15 reservations, thus running a risk to become
overbooked. How many reservations can they take to limit this risk to at most
5%?

Exercise 2.21. On average, how many games of bridge are necessary before a
player is dealt three aces? (A bridge hand is 13 randomly selected cards from a
standard deck.)

Exercise 2.22. A fair coin is flipped repeatedly. What is the probability that
the fifth tail occurs before the tenth head?

Exercise 2.23. Ann rolls a fair die until she gets a 6. Bob then rolls the same
die until he rolls an even number. Find the probability that Ann rolls the die
more times than Bob.

Exercise 2.24. From a panel of prospective jurors, 12 are selected at random.
If there are 200 men and 160 women on the panel, what is the probability that
more than half of the jury selected are women?

Hint. Think hypergeometric distribution.

Exercise 2.25. Suppose X ∼ Geom(p). Find the probability that X is even.

Exercise 2.26. The number of customers X who call a certain toll-free number
in a minute has a Poisson distribution with mean λ = 2. A minute is classified
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as “idle” if there are no calls and“busy” otherwise. (a) What is the probability
that a given minute is busy? (b) Let Y be the number of calls during a busy
minute. Find the pmf of Y and E[Y ]. (c) If a minute is idle, what is the expected
number of busy minutes before the next idle minute? What assumptions are you
making?

Exercise 2.27. Insects of a certain type lay eggs on leaves such that the number
of eggs on a given leaf has a Poisson distribution with mean λ = 1. For any given
leaf, the probability is 0.1 that it will be visited by such an insect, and leaves are
visited independent of each other. (a) What is the probability that a given leaf
has no eggs? (b) If a leaf is inspected and has no eggs, what is the probability
that it has been visited by an insect? (c) If 10 leaves are inspected and none
have any eggs, what is the probability that at least one leaf has been visited by
an insect?

Exercise 2.28. They say that many are called and few are chosen. Suppose that
the number of people called is Poi(λ). Each person called is chosen independently
by flipping a fair coin: Heads you’re chosen, Tail you’re not. Show that the
number of chosen people is Poi(λ/2).

Exercise 2.29. Let X be the Poisson random variable with parameter λ. Show
that the the maximum of P(X = i) occurs at bλc, the greatest integer less than
or equal to λ.

Hint. Show that p(i) = λ
i
p(i− 1) and use this to work out when p(i) is increasing or decreasing.

Exercise 2.30. A prize is randomly placed in one of ten boxes, numbered from
1 to 10. You search for the prize by asking yes-no questions. Find the expected
number of questions until you are sure about the location of the prize, under
each of the following strategies.

(a) An enumeration strategy: you ask questions of the form“is it in box k?”.

(b) A bisection strategy: you eliminate as close to half of the remaining boxes
as possible by asking questions of the form “is it in a box numbered less than or
equal to k”?

Exercise 2.31. The probability density function of a random variable X is given
by

f(x) =

{
c√

1−x2 , −1 < x < 1

0 otherwise.

(i) Find the value of c.

(ii) Find the cumulative distribution function of X.

Hint. (i) Use Proposition 2.57.
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Exercise 2.32. Let X be a random variable with probability density function

f(x) =
1

2
e−|x|,−∞ < x <∞.

Find the expectation and variance of X.

Exercise 2.33. You bid on an object at a silent auction. You know that you
can sell it later for 100 and you estimate that the maximum bid from others
is uniform on [70, 130] (for convenience, you assume that it is continuous, thus
disregarding the possibility of two equal bids). How much should you bid to
maximize your expected profit, and what is the maximum expected profit?

Exercise 2.34. A stick measuring one yard in length is broken into two pieces
at random. Compute the expected length of the longest piece.

Exercise 2.35. Jobs arrive at a computer such that the time T between two
consecutive jobs has an exponential distribution with mean 10 seconds. Find

(i) var[T ],

(ii) P(T ≤ 5),

(iii) the probability that the next job arrives within 5 seconds given that
the last job arrived 25 seconds ago,

(iv) P(T > E[T ]).

Exercise 2.36. A large number of lightbulbs are turned on in a new office
building. A year later, 80% of them still function, and 2 years later, 30% of the
original light- bulbs still function. Does it seem likely that the lifetimes follow
an exponential distribution?

Exercise 2.37. Let X ∼ Exp(λ) and let Y = λX. Show that Y ∼ Exp(1).

Exercise 2.38. The element nobelium has a half-life of 58 min. Let X be the
lifetime of an individual nobelium atom. Find

(i) P(X > 30),

(ii) P(X ≤ 60|X > 30),

(iii) E[X] and

(iv) var[X].

Hint. Use (2.44).

Exercise 2.39. Let T ∼ Exp(λ) and let X = [T ] + 1 (“[x]” denoting the integer
part of the real number x). Show that X ∼ Geom(1− e−λ) (success probability
1 − e−λ). If T is the lifetime of a component, what could be the interpretation
of X?

Exercise 2.40. Let X have a normal distribution with mean µ = 200 and
standard deviation σ = 10. Find
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(i) P(X ≤ 220),

(ii) P(X ≤ 190),

(iii) P(X > 185),

(iv) P(X > 205),

(v) P(190 < X < 210),

(vi) P(180 ≤ X ≤ 210).

Hint. Use (2.62).

Exercise 2.41. Two species of fish have weights that follow normal distributions.
Species A has mean 20 and standard deviation 2; species B has mean 40 and
standard deviation 8. Which is more extreme: a 24 pound A-fish or a 48 pound
B-fish?

Exercise 2.42. Let X be an exponentially distributed random variable,

X ∼ Exp(3).

Find the probability density function of Y = lnX.

Exercise 2.43. Suppose X is a normal random variable, X ∼ N(µ, σ2) Show
that for any c, b ∈ R, c 6= 0, the random variable cX + b is normal,

cX + b ∼ N(cµ+ b, c2σ2).

Exercise 2.44. Suppose that X ∼ N(0, 1). Show that X2 ∼ Gamma(1/2, 1/2).

Exercise 2.45. Let X ∼ Unif(−1, 1). Find the probability density function of
the random variable Y = X2.

Exercise 2.46. Let X ∼ Exp(1). Define

Y =

{
X, X ≤ 1

1/X X > 1.

Find the probability density function of Y .

Exercise 2.47. Suppose that X ∼ N(0, 1). Prove that for any x > 0 we have

x

x2 + 1
e−

x2

2 ≤ P(X > x ) ≤ 1

x
e−

x2

2 .

Exercise 2.48. For n ≥ 1 let Xn be the continuous random variable with prob-
ability density function

f(x) =

{
cn
xn+1 , x ≥ cn
0 otherwise.

The Xn-s are the Pareto random variables and are used in the study of income
distributions.
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(i) Calculate cn, n ≥ 1.

(ii) Find E[Xn], n ≥ 1.

(iii) Determine the density function of Zn = lnXn, n ≥ 1.

(iv) For what values of m does E
[
Xm+1
n

]
exist?

Hint. (i) Use Proposition 2.57.

Exercise 2.49. Prove the claims in Corollary 2.63.





Chapter 3

Multivariate discrete
distributions

3.1. Discrete random vectors

Let X,Y be random variables defined on the same probability space (S,P),
X,Y : S → R. Often we are forced to treat the pair (X,Y ) as an entity and thus
we get a random vector

(X,Y ) : S → R2.

In this section we investigate the case when both X and Y are discrete random
variables.

Suppose that the range of X is X and the range of Y is Y. Then the range
of (X,Y ) is contained in the Cartesian product X × Y and the statistics of the
random vector (X,Y ) are determined by the joint probability mass function (joint
pmf). This is the function

p : X × Y→ [0, 1], p(x, y) = P(X = x, Y = y).

Observe that ∑
(x,y)∈X ×Y

p(x, y) = 1. (3.1)

The probability mass function of X (denoted pX) and the probability mass func-
tion of Y (denoted by pY ) are commonly referred to as the marginal probability
mass functions or the marginals of the discrete random vector (X,Y ).

Example 3.1. Suppose that X and Y are discrete random variables with ranges
X and respectively Y. Consider their pmf’s

pX : X → [0, 1], pY : Y→ [0, 1].

109
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The random variables X,Y are independent (Definition 2.7) if and only if

P(X = x, Y = y) = P(X = x)P(Y = y).

Thus, the discrete random variables X,Y are independent if and only if, the joint
pmf pX,Y of the random vector (X,Y ) is the product of the pmf’s of X and Y

pX,Y (x, y) = pX(x)pY (y). ut

Example 3.2. Suppose that we draw 2 cards out of a regular deck of 52. We
denote by X the number of Hearts drawn and by Y the number of Queens. In
this case X = Y = {0, 1, 2}. Denote by p(x, y) = P(X = x, Y = y) the joint
probability mass function of (X,Y ).

There are 13 Hearts and 4 Queens, and exactly one of the Queens is the
Queen of Hearts. This will count both as a Heart and as a Queen. All together,
there are

• 16 cards that are Hearts or Queens,

• 36 cards that are neither Hearts, nor Queens,

• 12 Hearts that are not Queens, and

• 3 Queens that are not Hearts.

In particular, in the pair of drawn cards we cannot have two Queens and two
Hearts so

p(2, 2) = 0.

We set

N =

(
52

2

)
= 26 · 51 = 1326.

Then, using (F/P ) we deduce

p(0, 0) =

(
36
2

)
N

=
630

N
.

p(0, 1) =
36 · 3
N

=
108

N
, p(0, 2) =

(
3
2

)
N

=
3

N
,

p(1, 0) =
12 · 36

N
=

432

N
, p(2, 0) =

(
12
2

)
N

=
66

N
,

p(2, 1) =
12

N
, p(1, 2) =

3

N
,

p(1, 1) =
12 · 3 + 1 · 36

N
=

72

N
.

A simple computation shows that

630 + 108 + 3 + 432 + 66 + 12 + 3 + 72 = 1326 = N

so the above probabilities add up to 1 as in (3.1) showing that we have exhausted
all the possibilities.
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y=Queens

2 3
N

3
N 0

1 108
N

72
N

12
N

0 630
N

432
N

66
N

p(x, y) 0 1 2 x=Hearts

Table 3.1. Describing a joint pmf by a rectangular array

It is convenient to organize the above results in the probability Table 3.2.
Adding the elements on each column of this table we deduce

p(0, 0) + p(0, 1) + p(0, 2) =
630 + 108 + 3

N
=

741

1326
.

On the other hand, P(X = 0) is the probability that when we draw a pair of
cards we get no Heart. Since there are 39 non-Heart cards we deduce

P(X = 0) =

(
39
2

)
N

=
39 · 19

1326
=

741

1326
.

Thus,

P(X = 0) = p(0, 0) + p(0, 1) + p(0, 2).

We deduce in a similar fashion that

P(X = 1) = p(1, 0) + p(1, 1) + p(1, 2), P(X = 2) = p(2, 0) + p(2, 1) + p(2, 2),

P(Y = 0) = p(0, 0) + p(1, 0) + p(2, 0), P(Y = 1) = p(0, 1) + p(1, 1) + p(2, 1),

P(Y = 2) = p(0, 2) + p(1, 2) + p(2, 2).

Hence, if we add the elements in the same column of the table we obtain the pmf
of X, and if we add the elements in the same row of the table we obtain the pmf
of Y . ut

The last observations in Example 3.2 are manifestations of the following gen-
eral fact.

Proposition 3.3 (Marginals). Suppose that X,Y are two discrete random vari-
able, with ranges X and respectively Y and probability mass distributions pX and
respectively pY . If p(x, y) is the joint pmf of the random vector (X,Y ), then

pX(x) =
∑
y∈Y

p(x, y), pY (y) =
∑
x∈X

p(x, y). (3.2)

ut
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The equality (3.2) is another way of writing the obvious equalities

P(X = x) =
∑
y∈Y

P(X = x, Y = y), P(Y = y) =
∑
x∈X

P(X = x, Y = y).

The first sum corresponds to the summation over columns in Table 3.2, while the
second sum corresponds to the summation over rows in Table 3.2.

Definition 3.4. (a) The range of a discrete random vector (X,Y ) consists of
the pairs of real numbers (x, y) such that

P(X = x, Y = y) 6= 0.

In other words, the range R of (X,Y ) is the set of all possible values of the pair
of random variables (X,Y ). The joint pmf of (X,Y ) is thus uniquely determined
by its restriction to the range.

(b) A discrete random vector (X,Y ) with range R is said to be uniformly dis-
tributed if the restriction to R of the joint pmf is a constant function. ut

Remark 3.5. The range R of a discrete random vector (X,Y ) can be visualized
as a collection of points in the plane. The joint pmf of (X,Y ) assigns a positive
number to each point in this collection. You can think of the number assigned
to a point as the weight of that point. The sum of the weights of all the points
in the range is equal to 1.

If the the random vector (X,Y ) is uniformly distributed, this means that
each point in the range is equally likely to be sampled. In particular, we deduce
that, in this case, the range R consists of a finite number n of points and the
probability of each point in R is 1

n .

The range of X is the projection of the collection R on the x-axis, and the
range of Y is the projection of R on the y-axis. The pmf pX of X is obtained as
follows: pX(x0) is the sum of the weights of the points in the collection R that
project to the point x0 on the x-axis.

The range of the random vector (X,Y ) in Example 3.2 consists of 8 points
depicted in red in Figure 3.1. Their coordinates are

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1).

If X,Y are discrete random variables with ranges X and respectively Y, then
the range of of (X,Y ) is contained in X ×Y. Example 3.2 (see Figure 3.1) shows
that the range of (X,Y ) need not be equal to X × Y. ut

Example 3.6. Suppose that a chicken lays a random number of eggs N , where
N ∼ Poi(λ). A given egg hatches with probability p. Denote by X the number of
hatched eggs and by Y the number of eggs that did not hatch so that X+Y = N .
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X

Y

(X,Y)

0

0

1

1

2

2

Figure 3.1. The range of the discrete random vector in Example 3.2.

We want to compute the joint pmf of (X,Y ). The law of total probability implies

P(X = i, Y = j) =
∞∑
n=0

P(X = i, Y = j|N = n)P(N = n)

= P(X = i, Y = j|N = i+ j)P(N = i+ j).

Observing that

P(X = i, Y = j|N = i+ j) = P(X = i|N = i+ j) =

(
i+ j

i

)
piqj , q = 1− p.

we deduce

P(X = i, Y = j)

(
i+ j

i

)
piqje−λ

λj+j

(i+ j)!
= e−λ

(λp)i(λq)j

i!j!

(e−λ = e−λpe−λq)

= e−λp
(λp)i

i!
e−λq

(λq)j

j!
.

We can now compute the pmf’s of X and Y using the equality (3.2). We have

P(X = i) =

∞∑
j=0

e−λp
(λp)i

i!
e−λq

(λq)j

j!
= e−λp

(λp)i

i!

∞∑
j=0

e−λq
(λq)j

j!︸ ︷︷ ︸
=1

= e−λp
(λp)i

i!
,
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P(Y = j) =

∞∑
i=0

e−λp
(λp)i

i!
e−λq

(λq)j

j!
= e−λq

(λq)j

j!

∞∑
i=0

e−λp
(λp)i

i!︸ ︷︷ ︸
=1

= e−λq
(λq)j

j!
.

In particular, we deduce X ∼ Poi(λp), Y ∼ Poi(λq) and X ⊥⊥ Y . ut

Example 3.7. Phone calls arrive to a call center such that the number of phone
calls in a minute has a Poisson distribution with mean 4, i.e., λ = 4. Conditional
on the total number of callers, a caller is female with probability 0.5. In a given
minute, let X be the number of female callers, Y the total number of male callers
callers and N the total number of callers

N = X + Y ∼ Poi(4).

Set λ = 4, p = 0.5, q = 1− p = 0.5. Arguing exactly as in Example 3.6 above we
deduce

P(X = i, Y = j) = e−λp
(λp)i

i!
e−λq

(λq)j

j!

and

X ∼ Poi(pλ) = Poi(2), Y ∼ Poi(2), X ⊥⊥ Y

ut

Theorem 3.8 (The law of the subconscious statistician). Suppose that X,Y are
two discrete random variables, with ranges X and respectively Y . If p(x, y) is the
joint pmf of the random vector (X,Y ) and g(x, y) is a function of two variables
defined on a region containing X ×Y, then the expectation of the random variable
g(X,Y ) is

E
[
g(X,Y )

]
=

∑
x∈X ,y∈Y

g(x, y)p(x, y) .

ut

Corollary 3.9 (Linearity of expectation). (a) Suppose that X,Y are two discrete
random variables. Then

E[X + Y ] = E[X] + E[Y ]. (3.3)

(b) Suppose that X1, . . . , Xn are discrete random variables and c1, . . . , cn are real
constants. Then

E
[
c1X1 + · · ·+ cnXn

]
= c1E[X1] + · · ·+ cnE[Xn] . (3.4)
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Proof. (a) Suppose that the ranges of X,Y are X and respectively Y and the
joint pmf of (X,Y ) is p(x, y). Applying the law of subconscious statistician to
the function g(x, y) = x+ y we deduce

E[X + Y ] =
∑

x∈X , y∈Y
(x+ y)p(x, y) =

∑
x∈X , y∈Y

xp(x, y) +
∑

x∈X , y∈Y
yp(x, y)

=
∑
x∈X

x

∑
y∈Y

p(x, y)


︸ ︷︷ ︸

pX(x)

+
∑
y∈Y

y

(∑
x∈X

p(x, y)

)
︸ ︷︷ ︸

pY (y)

=
∑
x∈X

xpX(x) +
∑
y∈Y

ypY (y) = E[X] + E[Y ].

(b) The equality (3.4) follows inductively from (3.3). We skip the proof. ut

The remarkable feature of (3.4) is that the random variables X1, . . . , Xn need
not be independent ! Let us illustrate the versatility of (3.4) on some simple
examples.

Example 3.10. Suppose that 20 of birds labelled 1, . . . , 20 are sitting on a circle
facing its center. At a given moment, each bird turns randomly and with equal
probability to the left or right to see who is his neighbor. We denote by N the
number of birds not seen by either of their neighbors. We want to compute the
expectation of N . For k = 1, . . . , 20 we denote by Ak the event “the k-bird is
not seen by either of its neighbors”. We denote by IAk the indicator of Ak, i.e.,
the random variable that is equal to 1 if Ak has occurred and 0 otherwise; see
Example 2.16. Note that

E[IAk ] = P(Ak) = 0.5 · 0.5 = 0.25,

and

N = IA1 + · · ·+ IA20 .

Hence

E[N ] = E[IA1 ] + · · ·+ E[IA20 ] = 20 · P(A1) = 5. ut

Example 3.11 (The matching problem revisited). Consider again the matching
problem discussed first in Example 1.27. Given the n drunken sailors picking
randomly their hats, we denote by Nn the number of matches, i.e., the number
of sailors that end up picking their own hat. We want to compute the expectation
of Nn.

As in Example 1.49, for k = 1, . . . , n, we denote by Hk the event “sailor k
pick his own hat”. In equation (1.14) of Example 1.49 we have shown that

P(Hk) =
1

n
, ∀k = 1, . . . , n.
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We denote by IHk the indicator of Hk, i.e., the random variable that has value
1 if Hk occurs, and value 0 otherwise. We see that IHk is a Bernoulli random
variable with winning probability 1

n so

E
[
IHk

]
= P(Hk) =

1

n
, ∀k = 1, . . . , n.

Note that

Nn = IH1 + · · ·+ IHn ,

and the linearity of expectation property (3.4) implies

E
[
Nn

]
= E

[
IH1

]
+ · · ·+ E

[
IHn

]
=

1

n
+ · · ·+ 1

n︸ ︷︷ ︸
n times

= 1.

One can show1 that, as n goes to infinity, the random variable Nn approaches a
Poisson random variable with mean 1. More precisely, we have

lim
n→∞

P(Nn = k) =
e−1

k!
. ut

Definition 3.12 (Covariance and correlation). Suppose that X, Y are discrete
random variables with ranges X and respectively Y. Let p(x, y) be the joint
pmf of the random vector (X,Y ). We assume additionally that X and Y are
2-integrable, µX is the mean of X and µY .

(i) The covariance of X,Y is

cov[X,Y ] = E
[

(X − µX)(Y − µY )
]

= E
[
XY

]
− µY E[X]− µXE[Y ] + µXµY

= E[XY ]− µXµY = E[XY ]− E[X]E[Y ].

(ii) The correlation coefficient of X,Y is the number

ρ[X,Y ] =
cov[X,Y ]√
var[X]var[Y ]

.

(iii) The discrete random variables X,Y are called uncorrelated if

ρ[X,Y ] = 0 = cov[X,Y ]. ut

Proposition 3.13. Suppose that X,Y are discrete random variables and a, b are
real numbers. Then

var[aX + bY ] = a2 var[X] + b2 var[Y ] + 2ab cov[X,Y ]. (3.5)

Proof. Let µX , µY denote the means of X and respectively Y . Using (3.4) we
deduce that the mean µ of aX + bY is

µ = E[aX + bY ] = aE[X] + bE[Y ] = aµX + bµY .

1See http://www.randomservices.org/random/urn/Matching.html

http://www.randomservices.org/random/urn/Matching.html
http://www.randomservices.org/random/urn/Matching.html


3.1. Discrete random vectors 117

Then

(aX + bY )− µ = aX + bY − (aµX + bµY ) = a(X − µX) + b(Y − µY )

var[aX + bY ] = E
[

(aX + bY − µ)2
]
.

We have

(aX + bY − µ)2 =
(
a(X − µX) + b(Y − µY )

)2
= a2(X − µX)2 + b2(Y − µY )2 + 2ab(X − µX)(Y − µY ).

Hence

var[aX + bY ] = E
[
a2(X − µX)2 + b2(Y − µY )2 + 2ab(X − µX)(Y − µY )

]
(3.4)
= a2E

[
(X − µX)2

]
+ b2E

[
(Y − µY )2

]
+ 2abE

[
(X − µX)(Y − µY )

]
= a2 var[X] + b2 var[Y ] + 2ab cov[X,Y ].

ut

From (3.5) we obtain immediately the following useful result.

Corollary 3.14. If X and Y are uncorrelated discrete random variables, then

var[X + Y ] = var[X] + var[Y ]. ut

Example 3.15. Suppose that (S,P) is a probability space and A1, A2 ⊂ S are
two events with probabilities

P(Ai) = pi, i = 1, 2.

As usual we set qi = 1− pi, i = 1, 2. The indicator functions

IA1 , IA2 : S → R, IAi(s) =

{
1, s ∈ Ai,
0, s ∈ S \Ai,

, i = 1, 2,

are Bernoulli random variables, IAi ∼ Ber(pi). Observing that IA1IA2 = IA1∩A2

and

E[IA1 ] = p1, E[IA2 ] = p2,

we deduce that

cov[IA1 , IA2 ] = E
[
IA1IA2

]
− E[IA1 ]E[IA2 ]

= E[IA1∩A2 ]− p1p2 = P(A1 ∩A2)− P(A1)P(A2).

Thus, the random variables IA1 and IA2 are uncorrelated if and only if the events
A1 and A2 are independent. ut
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Proposition 3.16. Suppose that the discrete random variables X and Y are
independent. Then, for any functions f and g the random variables f(X) and
g(Y ) are independent and

E[f(X)g(Y )] = E[f(X)] · E[g(Y )] . (3.6)

In particular, if the independent random variables X and Y are uncorrelated

cov[X,Y ] = 0,

and
var[X + Y ] = var[X] + var[Y ] . (3.7)

Proof. Denote by pX and respectively pY the pmf’s of X and Y . Since these
random variables are indepedent, the joint pmf of the random vector (X,Y ) is

p(x, y) = pX)x)pY (y).

Using the law of the subconscious statistician we deduce

E[f(X)g(Y )] =
∑

x∈X , y∈Y
f(x)g(y)p(x, y) =

∑
x∈X , y∈Y

f(x)g(y)pX(x)pY (y)

=

(∑
x∈X

f(x)pX(x)

)∑
y∈Y

g(y)pY (y)

 = E[f(X)] · E[g(Y )].

In the special case

f(X) = X − µX , g(Y ) = Y − µY ,
where µX and µY are the expectations of X and respectively Y , then

E[f(X)]E[g(Y )] = 0

and
cov[X,Y ] = E[XY ]− E[X] · E[Y ] = 0.

Hence X and Y are uncorrelated. The equality (3.7) now follows from (3.5). ut

Arguing inductively we deduce the following useful result.

Corollary 3.17. If the discrete random variables X1, . . . , Xn are independent,
then

var[X1 + · · ·+Xn] = var[X1] + · · ·+ var[Xn] . (3.8)

ut

Example 3.18. We have seen that two discrete independent random variables
X,Y are not correlated, i.e., E[XY ] = E[X]E[Y ]. However there exists uncorrelated
random variables that are dependent. Here is such an example.

Consider the discrete random variables X,Y with joint pmf p(x, y) described
by the table below
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y

1 1
20

2
20

1
20

0 2
20

8
20

2
20

-1 1
20

2
20

1
20

p(x, y) -1 0 1 x

Observe that

P(X = −1) = P(Y = −1) =
1

20
+

2

20
+

1

20
=

4

20
=

1

5
= P(X = 1) = P(Y = 1).

P(X = 0) = P(Y = 0) =
2

20
+

8

20
+

2

20
.

We have
E[X] = (−1) · P(X = 1) + 1 · P(X = 1) = 0,

and, similarly, E[Y ] = 0. We deduce

cov[X,Y ] = E[XY ]− E[X]E[Y ] = E[XY ]

= 1 ·
(
P(X = −1, Y = −1) + P(X = 1, Y = 1)

)
+(−1) ·

(
P(X = −1, Y = 1) + P(X = 1, Y = −1)

)
= 0.

Thus, the random variables X,Y are uncorrelated. On the other hand

P(X = 1, Y = 1) =
1

20
6= P(X = 1) · P(Y = 1) =

1

25
.

Hence, the random variables X, Y are dependent. ut

Remark 3.19 (Predictors/Estimators). If cov[X,Y ] > 0 we say that the ran-
dom variables are positively correlated. If cov[X,Y ] < 0, then the random vari-
ables are said to be negatively correlated. Negative correlation suggests that when
one of the random variables has large values, the other has small values. Positive
correlation suggest that the two random variables tend to have large and small
values at the same time. This can be argued as follows.

Suppose that we are interested in a random variable Y , but we can only have
information about a random variable X. In statistics, a function g(X) of X is
referred to as a predictor or estimator of Y based on X. The mean square error
of a predictor is the quantity

E
[

(Y − g(X) )2
]
.

This measures how far is the predicted value g(X) from the actual value Y .

A predictor g(X) is called linear if it has the form g(X) = mX + b, where
m, b ∈ R. A best linear predictor is a linear predictor that produces the smallest
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mean square error among all the linear predictors. The linear regression formula
states that the best linear predictor of Y based on X is

LY (X) := µY +
ρσY
σX

(
X − µX

)
, (3.9)

where µX , µY are the means of X respectively Y , σX , σY are the standard de-
viations of X and Y and ρ is the correlation coefficient of X and Y . Loosely
speaking, LY (X) is the best linear approximation of Y given X.

Note that if ρ > 0, i.e., the random variables X and Y are positively correlated
then LY (X) is an increasing function ofX. Analogously, if ρ < 0, i.e., the random
variables X and Y are negatively correlated then LY (X) is a decreasing function
of X. ut

Example 3.20. Suppose that X ∼ Bin(n, p). As we have remarked earlier, X
is the sum of n independent Bernoulli variables with probability of success p

X = X1 + · · ·+Xn, Xk ∼ Ber(p), ∀k = 1, . . . , n.

Hence

E[X] = E[X1] + · · ·+ E[Xn] = p+ · · ·+ p︸ ︷︷ ︸
n times

= np.

This provides another confirmation of the first half the equality (2.24) obtained
by more laborious means.

Also, due to the independence of the random variables X1, . . . , Xn, we have

var[X] = var[X1] + · · ·+ var[Xn] = nvar[X1] = np(1− p).

This confirms the second half of (2.24). ut

Example 3.21 (The coupon collector problem). The coupon collector’s problem
arises from the following scenario. Suppose that each box of cereal contains one of
n different coupons. Once you obtain one of every type of coupon, you can send
in for a prize. Assuming that the coupon in each box is chosen independently
and uniformly at random from the n possibilities and that you do not collaborate
with others to collect coupons, how many boxes of cereal must you buy before
you obtain at least one of every type of coupon?

Let X denote the number of boxes bought until at least one of every coupon
is obtained. We want to determine E[X]. For i = 1, . . . , n− 1 denote by Xi the
number of boxes you bought while you had exactly i coupons. The first box you
bought contained one coupon. Then you bought X1 boxes containing the coupon
you already had. After 1 + X1 boxes you have two coupons. Next you bought
X2 boxes containing one of the two coupons you already had etc. Hence

X = 1 +X1 + · · ·+Xn−1.
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Let us observe first that for i = 1, · · · , n− 1 we have Xi ∼ Geom(pi), pi = n−i
n ,

qi = 1− pi = i
n . Observe next that the random variables Xi are independent.

Indeed, at the moment you have i coupons, a success occurs when you buy
one of the remaining n− i coupons. The probability of buying one such coupon
is thus n−i

n . Think of buying a box at this time as a Bernoulli trial with success

probability n−i
n . The number Xi is then equal to the number of trials until you

register the first success. In particular,

E[Xi] =
1

pi
=

n

n− i
, var[Xi] =

i
n

(n−i)2
n2

=
ni

(n− i)2

From the linearity of expectation we deduce

E[X] = 1 + E[X1] + E[X2] + · · ·+ E[Xn−1] =
n

n
+

n

n− 1
+

n

n− 2
+ · · ·+ n

1

= n

(
1 +

1

2
+ · · ·+ 1

n− 1
+

1

n

)
︸ ︷︷ ︸

=:Hn

.

Also

var[X] = var[X1] + · · ·+ var[Xn−1]

=

n−1∑
i=1

ni

(n− i)2
= n

(
n− 1)

12
+

(n− 2)

22
+ · · ·+ n− (n− 1)

(n− 1)2

)

= n2

(
1

12
+

1

22
+ · · ·+ 1

(n− 1)2

)
− n

(1

1
+ · · ·+ 1

n− 1

)

= n2

(
1

12
+

1

22
+ · · ·+ 1

(n− 1)2
+

1

n2

)
− n

(1

1
+ · · ·+ 1

n− 1
+

1

n

)

= n2

(
1

12
+

1

22
+ · · ·+ 1

(n− 1)2
+

1

n2

)
− nHn.

One can show that there exists a mysterious constant2 γ ≈ 0.577 such that

lim
n→∞

(Hn − log n) = γ.

Thus the expected number of boxes needed to collect all the n coupons is about
n log n+ nγ.

On the other hand, a famous result of Euler states that

1

12
+

1

22
+ · · ·+ 1

n2
+ · · · = π2

6
.

2The constant γ is called the Euler-Mascheroni constant and γ = 0.5772 . . . . For more details see
the Wikipedia page https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant
https://en.wikipedia.org/wiki/Euler-Mascheroni_constant
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This shows that

lim
n→∞

var[Xn]

n2
=
π2

6
− lim
n→∞

Hn

n
=
π2

6
.

We can use the coupon collector problem to solve another birthday problem: how
many people should you expect to meet until you know a person born in each
day of the year. The answer is 365 ·H365. Using the R command

sum(365/(1:365))

we deduce

365 ·H365 ≈ 2364.646. ut

Remark 3.22. The coupon collector problem has many important uses in computer sciences and much
more is known. It turns out that the odds that the number of boxes is a lot bigger than the expectation

n logn are very small for large n. More precisely, for any c > 0 we have [14, Thm.3.8]

lim
n→∞

P[X > n logn+ cn] = p(c) = 1− e−e
−c
.

For example, when c = 20 we have p(c) ≈ 2 · 10−9.

Example 3.23 (Balls-in-bins). This problem has origins in theoretical computer
science. We have m balls that we randomly distribute among N bins, each ball
being equally likely to be placed in any of the N bins. We seek to understand
the random number Xm of nonempty bins. More precisely we want to compute
the mean and the variance of this random variable.

Here are a few equivalent descriptions of this problem. Suppose that m people
located on the ground floor of a tall building enter an elevator. We know that
there are N stories above the ground level and each passenger is equally likely
to get out at any of N stories above. We tacitly assume that at each stop no
person gets in but at least one person gets out of the elevator. In this case Xm

is the number of stops until everyone gets out.

Equivalently, suppose that Santa comes to a kindergarden attended by N
kids. Santa carries m gifts in his bags and distributes all of them randomly
among the kids so that each kid is equally likely to receive any of the m gifts.
During this process it is possible that some kids will receive more than one gift,
while some will receive none. We will refer to the kids that have received a gift
as “lucky” and to the remaining kids as “unlucky”. Hence Xm can be identified
with the number of lucky kids.

When N = 365, we can think of the bins as the days of the year, and then
Xm is the number of different birthdays in a random group of m people: each
of these m persons was “parachuted” randomly by the delivery stork in a bin
labeled by his/her birthday. In Exercise 2.8 you were asked to compute E[X4].
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For k = 1, . . . , N , we denote by Bk the event that the k-th bin is nonempty
after all the m-balls were randomly distributed. Denote by IBk the indicator of
Bk. Then

Xm = IB1 + · · ·+ IBN .

Hence

E[Xm] =

N∑
k=1

E[IBk ] = P(B1) + · · ·+ P(BN ).

All the above probabilities are equal and we denote by p their common value.
Hence

E[Xm] = Np.

Observe that Bc
1 is the event that the first bin is empty after all the m balls were

distributed. The probability that one of the balls is placed in a bin other than
B1 is N−1

N . Hence

P(Bc
1) =

(
N − 1

N

)m
, p = 1− P(Bc) = 1−

(
N − 1

N

)m
.

In particular, we deduce

E[Xm] = N

(
1−

(
N − 1

N

)m)
. (3.10)

Next observe that

var[Xm] = E[X2
m]− E[Xm]2.

We have

X2
m =

(
IB1 + · · ·+ IBN

)2

= I2
B1

+ · · ·+ I2
BN

+ 2
∑
j<k

IBjIBk = IB1 + · · ·+ IBN + 2
∑
j<k

IBj∩Bk .

Hence

E[X2
m] = E

[
IB1

]
+ · · ·+ E

[
IBN

]
+ 2

∑
j<k

E
[
IBj∩Bk

]
= NE

[
IB1

]
+ 2

(
N

2

)
E[IB1∩B2

]
= NE

[
IB1

]
+N(N − 1)E[IB1∩B2

]
,

since all the events Bj ∩Bk have the same probability. We set

r := P(B1 ∩B2).

The inclusion-exclusion principle shows that

r = P(B1 ∩B2) = P(B1) + P(B2)− P(B1 ∪B2) = 2p− P(B1 ∪B2).

Now observe that

P(B1 ∪B2) = 1− P
( (
B1 ∪B2

)c )
= 1− P(Bc

1 ∩Bc
2

)
.
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The probability P(Bc
1∩Bc

2

)
that both bin 1 and 2 are empty after all the m balls

were distributed is

P(Bc
1 ∩Bc

2

)
=

(
N − 2

N

)m
.

Hence

r = 2p− 1−
(
N − 2

N

)m
.

so

E[X2
m] = Np+N(N1)r

and

var[Xm] = Np+N(N1)r − (Np)2 . ut

3.2. Conditioning

Suppose that X and Y are discrete random variables with ranges X and respec-
tively Y. For x ∈X , we define the conditional pmf of Y given that X = x to be
the function

pY |X=x(−) : Y→ [0, 1], pY |X=x(y) := P(Y = y|X = x).

If p(x, y) = P(X = x, Y = y) is the joint pmf of (X,Y ), then

pY |X=x(y) =
p(x, y)

pX(x)
, (3.11)

where pX is the pmf of X. Note that∑
y∈Y

pY |X=x(y) =
1

pX(x)

∑
y∈Y

p(x, y)
(3.2)
= 1.

Thus, the conditional pmf pY |X=x(y) is the pmf of a discrete random variable
with range contained in Y. We denote this random variable by Y |X = x. The
expectation of the conditioned random variable (Y |X = x) is the number

E[Y |X = x] =
∑
y

ypY |X=x(y)
(3.11)

=
1

pX(x)

∑
y∈Y

yp(x, y) .

We will refer to it as the conditional expectation of Y given that X = x. From
the above we deduce the following consequence

Corollary 3.24. The discrete random variables X and Y are independent if and
only if

pY |X=x(y) = pY (y), ∀x ∈X , y ∈ Y.

Moreover, if X and Y are independent, then E[Y |X = x] = E[Y ].
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Proof.

pY |X=x(y) = pY (y)⇐⇒p(x, y)

pX(x)
= pY (y)⇐⇒p(x, y) = pX(x)pY (y).

If X and Y are independent, then

E[Y |X = x] =
∑
y∈Y

ypY |X=x(y) =
∑
y∈Y

ypY (y) = E[Y ].

ut

Example 3.25. Let us look again at the situation analyzed in Example 3.7,
where N is the total number of callers, X the number of female callers and Y
is the number of male callers at a call center. As observes in Example 3.7, Y is
independent of X and X,Y ∼ Poi(2). Thus

P(X = i, Y = j) = P(X = i)P(Y = j).

The conditional pmf of N given X = i is

pN |X=j(i+ j) = P(N = i+ j|X = j)

=
P(X = i, Y = j)

P(X = j)
= P(Y = j) = e−2 2j

j!
.

Thus, given that the number of female callers is i, the total number of callers k
is equal to i plus an independent random number (j) of male callers, distributed
as Poi(2). ut

Example 3.26. Suppose that X ∼ Bin(m, p) and Y ∼ Bin(n, p) are independent
binomial random variables with the same probability of success p. We want to
compute the conditional pmf of X given that X + Y = r, i.e., the function

P(X = j|X + Y = r).

Note that we have

P(X = j|X + Y = r) =
P(X = j, Y = r − j)

P(X + Y = r)
.

Observing that X + Y ∼ Bin(m+ n, p) we deduce

P(X = j|X + Y = r) =

(
m
j

)
pjqm−j

(
n
r−j
)
pr−jqn−r+j(

n+m
r

)
prqn+m−r =

(
m
j

)(
n
r−j
)(

n+m
r

) .

Thus the conditional distribution of X given that X +Y = r is HGeom(m,n, r).
In particular, the statistic of (X|X + Y = r) is independent of the success prob-
ability p. ut
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The linearity property of expectation, i.e., the equality (3.4), has a conditional
counterpart. More precisely, given discrete random variables X,Y1, . . . , Yn and
constants c1, . . . , cn, we have

E
[
c1Y1 + · · ·+ cnYn|X = x

]
= c1E[Y1|X = x] + · · ·+ cnE[Yn|X = x] . (3.12)

Definition 3.27. We denote by E[Y |X] the random variable that takes the value
E[Y |X = x] when X = x. We will refer to its as the conditional expectation of
Y given X. ut

The random variable E[Y |X] is a function of X and the law of subconscious
statistician shows that its expectation is

E
[
E[Y |X]

]
=
∑
x∈X

E[Y |X = x]pX(x)

=
∑
x∈X

E
[
Y |X = x

]
·

(∑
y

ypY |X(y|x)

)
pX(x)

=
∑

x∈X , y∈Y
y pY |X(y|x)pX(x)︸ ︷︷ ︸

p(x,y)

=
∑

x∈X , y∈Y
yp(x, y)

=
∑
y∈Y

y
∑
x∈X

p(x, y)
(3.2)
=
∑
y∈Y

ypY (y) = E[Y ].

We have thus shown that

E[Y ] =
∑
x∈X

E
[
Y |X = x

]
pX(x) . (3.13)

Note that the above formula makes no reference to the joint pmf of (X,Y ); all we
need to know is the conditional pmf pY |X=x(y). The above equalities generalize
the law of total probability, Theorem 1.46.

Example 3.28. An urn contains 999 balls labelled 1, . . . , 999. Draw at random
a ball from the urn and let L denote its label. Next, roll a die L times and record
the number of times N that you get a 6. We want to compute the expectation
of N , i.e., the expected number of 6’s we get.

Set p := 1
6 and q := 5

6 . Note that if we condition on L we have

(N |L = `) ∼ Bin(`, p)

so

E[N |L = `] = p` =
`

6
.

Using (3.13) we deduce

E[N ] = E[N |L = 1]P(L = 1) + · · ·+ E[N |L = 999]P(L = 999)
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=
1

6 · 999
+

2

6 · 999
+ · · ·+ 999

6 · 999
=

1000·999
2

6 · 999
=

500

6
≈ 83.33. ut

Remark 3.29. The conditional expectation of Y given X is a very subtle and
fundamental concept with many uses. It is essentially the best information about
Y given the knowledge of X. As indicated above, the conditional expectation
E[Y |X] is a function of X

E[Y |X] = g0(X)

Using the language of predictors or estimators in Remark 3.19 we can say that
E[Y |X] is a predictor of Y given X. It turns out that g0(X) = E[Y |X] is the
best predictor in the sense that it has the smallest mean square error among all
predictors, i.e., for any other predictor g(X) we have

E
[

(Y − g0(X) )2
]
≤ E

[
(Y − g(X) )2

]
. ut

Example 3.30. Suppose that Y is a discrete random variable on the sample
space S with pmf pY , and B is an event with probability p = P(B) > 0.

The indicator function IB is a random variable with range {0, 1}. The condi-
tional expectation E[Y |IB = 1] is denoted E[Y |B] and it is called the conditional
expectation of Y given B. We define the conditional pmf pY |B by the equality

pY |B(y) := P
(
Y = y|B

)
.

We have

E[Y |B] =
∑
y

yP[Y = y|B] =
∑
y

ypY |B(y). (3.14)

ut

We have the following generalization of the law of total probability (1.13).

Proposition 3.31. Suppose that the events A1, . . . , An ⊂ S partition of the
sample space S., i.e., their union is S and they are mutually disjoint. Suppose
next that Y : S → R is a discrete random variable with range Y.

E
[
Y
]

= E[Y |A1]P(A1) + · · ·+ E[Y |An]P(An). (3.15)

Proof. Consider the random variable

X = IA1 + 2IA2 + · · ·+ nIAn .

Note that Ak = {X = k}. The equality (3.15) becomes

E
[
Y
]

= E[Y |X = 1]P(X = 1) + · · ·+ E[Y |X = n]P(X = n).

This is clearly a special case of (3.13). ut
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Example 3.32 (Coin patterns). A coin pattern is an ordered string of symbols

p1, p2, . . . , pk ∈ {H,T}, H = Heads, T = Tails.

For example, HH and HT are patterns.

Fix a pattern p = (p1, . . . , pk). We flip a fair coin until we notice for the first
time the pattern p appearing in successive flips. We denote by Wp the number of
flips (or waiting time) until we first observe the pattern p. We want to compute
the expectation of Wp in two special cases p = HT and p = HH.

To compute the expectations EHT := E[WHT ] and EHH := E[WHH ] we
condition on the face Fk that shows up the k-th flip. We have

EHT = E
[
WHT |F1 = T

]
P(F1 = T ) + E

[
EHT |F1 = H

]︸ ︷︷ ︸
=:EHT |H

P(F1 = H)

=
1

2

(
E[WHT |F1 = T ] + EHT |H

)
.

Note that

E
[
WHT |F1 = T

]
= E[WHT ] + 1 = EHT + 1,

because, if the first flip is not H, then it is as if we have to start the game all
over again, having wasted one flip. Thus

EHT =
1

2

(
EHT + 1 + EHT |H

)
⇒ EHT = 1 + EHT |H . (3.16)

On the other hand

EHT |H = E
[
WHT |F1 = H

]
= E

[
WHT |F1 = H,F2 = T

]︸ ︷︷ ︸
=2

P(F2 = T )

+E
[
WHT |F1 = H,F2 = H

]︸ ︷︷ ︸
=EHT |H+1

P(F2 = H) = 1 +
1

2

(
EHT |H + 1).

Hence

EHT |H = 3, EHT = 4 .

Similarly

EHH = E
[
WHH |F1 = T

]
P(F1 = T ) + E

[
WHH |F1 = H

]︸ ︷︷ ︸
=:EHH|H

P(F1 = H)

=
1

2

(
EHH + 1 + EHH|H

)
⇒ EHH = EHH|H + 1.

EHH|H = E
[
WHH |F1 = F2 = H

]︸ ︷︷ ︸
=2

P(F2 = H)

+E
[
WHH |F1 = H,F2 = T

]︸ ︷︷ ︸
=HHH+2

P(F2 = T )
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= 1 +
1

2
(EHH + 2) =

1

2
EHH + 2.

Hence

EHH =
1

2

(
EHH|H + 2

)
+ 1⇒ EHH = 6 .

The above computations lead to a rather surprising conclusion: although each
face of a fair coin is equally likely to occur, the pattern HH is less frequent
than the pattern HT since on average it takes more flips to observe HH than to
observe HT . ut

Remark 3.33. There exists a very beautiful formula that describes the expected
waiting time of any pattern of heads and tails.

Suppose that p = (p1, . . . , pn) is and H-and-T pattern. We will refer to n as
the length of the pattern. E.g. p0 = HHTHT , is a pattern of length 5.

The right/left-truncation of a pattern p is the pattern R(p) (respectively L(p)
obtained from p by by removing its rightmost (respectively leftmost) entry

L(p) = (p2, . . . , pn), R(p) = (p1, . . . , pn−1).

E.g.

L(HHTHT ) = HTHT, R(HHTHT ) = HHTH.

For any natural number k we denote by Lk(p) the pattern obtained from p after
k left-truncations. We define Rk(p) is an analogous way. We set

εk = εk(p) =

{
1, Rk(p) = Lk(p),

0, Rk(p) 6= Lk(p).

Then, the expected time T (p) to first observe the pattern p of length n is

τ(p) = 2n + ε1(p)2n−1 + ε2(p)2n−2 + · · ·+ εn−1(p)2. (3.17)

For example, when p = HH then

L(HH) = R(HH), ε1 = 1

and thus

τ(HH) = 22 + 2 = 6,

which agrees with our computations. When p = HTH, then

L(p) = TH, R(p) = HT, ε1 = 0,

L2(p) = H, R2(p) = H, ε2 = 1,

so the expected time to observe the pattern HTH is

τ(HTH) = 23 + 2 = 10. (3.18)

One of the most elegant proofs of (3.17) is due to S.-Y.R. Li [13] and uses a very
clever betting strategy. For a rather elementary description of this strategy we
refer to the nice exposition in [8, p.428].
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The numbers τ(p) make their appearance in the Penney-ante game describe
so eloquently by Martin Gardner in [6].

Here is a simple R code that can be used to compute the expected waiting
time τ(p) to observe a pattern p.

#patt is the pattern defined as a vector

tau<-function(patt){

n<-length(patt)

m<-n-1

t<-2^n

for (i in 1:m){

j<-n-i

k<-i+1

t<-t+ any(patt[1:j]==patt[k:n])*2^(n-i)

}

t

}

For example, to compute the waiting time for the pattern HTH use the
command

x<-c(1,0,1)

tau(x)

In Example 7.19 we describe the R code that can be used to simulate this
random experiment. ut

Example 3.34 (Gambler’s ruin revisited). Consider again the situation in Ex-
ample 1.53. Recall that Ann plays a sequence of two-player game of chance with
Bob. She starts with a fortune a, Bob-s fortune is N − a. Ann’s winning prob-
ability is p and Bob’s is q = 1− p. Every time Ann wins, she gets a dollar from
Bob and every time she losses, she gives Bob a dollar. The sequence of games
ends when either player is out of money. Here we consider only the special case
of a fair game, p = q = 1

2 .

Let Ta denote the number of of games Ann and Bob play until one of them
is ruined, assuming that Ann’s fortune is a. Clearly T0 = TN = 0. We set
ta := E[Ta], we denote by X the random variable which is equal to 1 if “Ann
wins her first game”, and it is equal to −1 if “Ann loses her first game”. Observe
that

P(X = 1) = P(X = −1) =
1

2
.

For 0 < a < N we have

ta = E[Ta] = E[Ta|X = 1]P(X = 1) + E[Ta|X = 1]P(X = −1).
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Now observe that

E[Ta|X = 1] = 1 + E[Ta+1], E[Ta|X = −1] = 1 + E[Ta−1],

so that

ta =
1

2

(
ta+1 + 1 + ta−1 + 1

)
= 1 +

1

2

(
ta+1 + ta−1

)
.

We deduce

ta+1 − ta = ta − ta−1 − 2, ∀1 < a < N.

Thus

t2 − t1 = t1 − t0 − 2 = t1 − 2, t3 − t2 = t2 − t1 − 2 = t1 − 4,

ta − ta−1 = t1 − 2(a− 1), ∀a = 1, . . . , N.

Observe that

0 = tN − t0 = (t1 − t0) + (t2 − t0) + · · ·+ (tN − TN−1)

= t1 + (t1 − 2) + (t1 − 4) + · · ·+
(
t1 − 2(N − 1)

)︸ ︷︷ ︸
N terms

= Nt1 − 2
(
1 + 2 + · · ·+ (N − 1)

)
= Nt1 −N(N − 1).

This proves that

t1 = N − 1

and we deduce

ta = ta − t0 = (t1 − t0) + (t2 − t1) + · · ·+ (ta − ta−1)

= t1 + (t1 − 2) + · · ·+
(
t1 − 2(a− 1)

)︸ ︷︷ ︸
a terms

= at1 − a(a− 1) = a(N − 1)− a(a− 1) = a(N − a).

Thus

E[Ta] = a(N − a). ut

Example 3.35 (Balls-in-bins). We consider again the balls-in-bins problem investigated in Example
3.23. One formulation of that problem involved Santa randomly distributing m gifts to N kids. We

denote by Xm the number of lucky kids, i.e., kids that have received at least one gift. We want to
present a computation of E[Xn] using the conditioning technique. Set xm := E[Xm]. We will argue
inductively.

Clearly x0 = 0 and x1 = 1. We next attempt to compute Xm+1 by conditioning on Xm, m ≥ 1.
We have

xm+1 = E[Xm+1] =
∑
k>0

E
[
Xm+1|Xm = k

]
P(Xm = k).

Now observe that

E[Xm+1|Xm = k] = E
[
Xm|Xm = k

]
+ E

[
Xm+1 −Xm|Xm = k

]
= k + E

[
Xm+1 −Xm|Xm = k

]
.

To compute E
[
Xm+1 −Xm|Xm = k

]
we argue as follows.
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We know that Santa had already distributed m gifts to k kids. At this moment there are k lucky
kids and (N − k) unlucky ones. The probability that the (m + 1)-th gift will go to one of the k lucky

kids is k
N

, and the probability that this gift will go to one of the (N − k) unlucky kids is N−k
N

. Thus

E
[
Xm+1 −Xm|Xm = k

]
= 0

k

N
+ 1

N − k
N

= 1−
k

N
.

Hence

E
[
Xm|Xm = k

]
= k + 1−

k

N
= 1 + k

(
1−

1

N

)
.

For simplicity we set

r := 1−
1

N

so that

E
[
Xm|Xm = k

]
= 1 + kr

and

xm+1 =
∑
k>0

(1 + kr)P(Xm = k) =
∑
k>0

P(Xm = k)

︸ ︷︷ ︸
=1

+r
∑
k>0

kP(Xm = k)

︸ ︷︷ ︸
=E[Xm]

.

Hence we deduce that for any m > 0 we have

xm+1 = 1 + rxm. (3.19)

Recalling that x1 = 1 we deduce that x2 = 1 + r. Using this information again in (3.19) we deduce

x3 = 1 + rx2 = 1 + r(1 + r) = 1 + r + r2.

Arguing inductively we deduce

xm = 1 + r + · · ·+ rm−1 =
1− rm

1− r
.

Using the equality r = 1− 1
N

we deduce 1− r = 1
n

xm = N(1− rm) = N

(
1−

(
1−

1

N

)m )
=
Nm − (N − 1)m

Nm−1
. ut

3.3. Multi-dimensional discrete random vectors

The discussion in the previous section has an obvious higher dimensional coun-
terpart.

Definition 3.36. Suppose that X1, . . . , Xn are discrete random variables with
ranges

X1, . . . ,Xn

and pmf-s p1, . . . , pn. The joint pmf of the n-dimensional random vector (X1, . . . , Xn)
is the function

p : X1 × · · · ×Xn → [0, 1],

defined by

p(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn). ut
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Proposition 3.37. The discrete random variables X1, . . . , Xn with ranges X1, . . . ,Xn

and pmf-s p1, . . . , pn are independent if and only if the joint pmf p(x1, . . . , xn) of
the the discrete random vectors (X1, . . . , Xn) satisfies the equality

p(x1, . . . , xn) = p1(x1) · · · pn(xn), ∀(x1, . . . , xn) ∈X1,× · · · ×Xn. ut

Corollary 3.38. Suppose that random variables X1, . . . , Xn are independent.
Then the following hold.

(i) For any 1 ≤ k ≤ n− 1, and any functions

f(x1, . . . , xk), g(xk+1, . . . , xn),

the random variables f(X1, . . . , Xk) and g(Xk+1, . . . , Xn) are indepen-
dent.

(ii) For any functions f1(x1), . . . , fn(xn) the random variables

f1(X1), . . . , fn(Xn)

are independent.

ut

Proposition 3.39 (The law of the subconscious statistician). Suppose that
X1, . . . , Xn are discrete random variables with ranges X1, . . . ,Xn and joint pmf
p(x1, . . . , xn).

(i) If f : X1 × · · · ×Xn → R is a function, then

E
[
f(X1, . . . , Xn) ] =

∑
(x1,...,xn)∈X1×···×Xn

f(x1, . . . , xn)p(x1, . . . , xn).

(ii) If the random variables X1, . . . , Xn are independent, then for any func-
tions fk : Xk → R, k = 1, . . . , n, the random variables

f1(X1), . . . , fn(Xn)

are independent and we have

E

[
n∏
k=1

f(Xk)

]
=

n∏
k=1

E f(Xk) ]. (3.20)

ut

3.4. Exercises

Exercise 3.1. Let (X,Y ) be uniform on the four points (0, 0), (1, 0), (1, 1), (2, 1).

(i) Find the marginal pmfs of X and Y .

(ii) For which joint pmf of (X,Y ) are X and Y uniform on their respective
ranges?
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Exercise 3.2. Is it true in general that p(x, y) ≤ pX(x) for all x, y?

Exercise 3.3. Consider a family with three children. Let X be the number of
daughters and Y the number of sons. Find the joint pmf of (X,Y ).

Exercise 3.4. Suppose you roll a die until you get a 6 and record the number
N of rolls it took. Then flip a coin N times. Denote by X the number of heads
and by Y the number of tails.

(i) Find the joint pmf of (X,Y ).

(ii) Find the marginal distributions pX of X and pY of Y .

(iii) Are the random variables X,Y independent?

Hint. For (ii) you need to use the fact that for any x ∈ (−1, 1) we have(
1

1− x

)k+1

=
1

k!

dk

dxk

(
1

1− x

)
=

1

k!

dk

dxk

(
1 + x+ x2 + · · ·

)
=
(k + 0

k

)
x0 +

(k + 1

k

)
x1 +

(k + 2

k

)
x2 + · · ·

(3.21)

Exercise 3.5 (The two-envelope paradox). One envelope contains b dollars the
other 2b dollars. The amount b > 0 is unknown. A player selects an envelope at
random and she opens it. Let X be the amount she observed in this envelope, and
Y the amount in the, yet unopened, envelope. Adopt the strategy of switching
to the unopened envelope with probability

p(x) =
e−x

e−x + ex
=

1

1 + e2x
.

(For example, if the player observes that in the envelope she chose there are $10,
then she’ll switch envelope with probability p(10).) Denote by Z the amount the
player receives by adopting this random switch strategy.

(i) Show that

E[X] = E[Y ] =
3b

2
.

(ii) Show that

E
[
Y

X

]
=

5

4
(> 1).

(iii) Show that E[Z] > E[X].

Remark. Note the surprising contradictory conclusions. Part (i) shows that, on average, if the player

does not switch she will make the same amount of money as if she switched automatically upon opening

the envelope she picked. Part (ii) shows that, on average, the ratio between the amount of money in the

the unopened envelope to the amount of money in the open envelope is > 1. Part (iii) shows that if she

adopts the random switching strategy then, on average, she will make more money than by adopting

the no-switch strategy or the automatic switch strategy!!!
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Exercise 3.6. A system consists of four components which function indepen-
dently with probabilities 0.9, 0.8, 0.6 and respectively 0.6. Let X denote the
number of components that work.

(i) Find E[X].

(ii) Find var[X].

(iii) Find P(X > 0).

(iv) Find P[X = 1].

Exercise 3.7. Suppose that n man-woman couples go to a meeting. The indi-
viduals (men and women) are randomly placed at a round table.

(i) For k = 1, 2, . . . , n find the probability the k-th woman sits near her
partner.

(ii) Denote by N the number of couples that have neighboring seats. Find
E[N ].

Hint. For (ii) use the linearity of the expectation (3.4).

Exercise 3.8. Suppose that n birds are arranged in a circle, n ≥ 3. At a given
moment each bird turns at random to the left or right, with equal probabilities
and pecks the corresponding neighboring bird. Find the expected number of
unpecked birds.

Exercise 3.9. (a) Suppose you are performing the following random experiment:
you flip a fair coin until you get a head. Record the number F of flips it took,
and then roll a fair die F times and record the number N of 6-s you obtain. Find
the expectation E[N ] of N .

(b) Suppose you perform another experiment: you roll a fair die until you get a
6. Record the number R of rolls, and then flip a fair coin R times, and record
the number N of heads you get. Find the expectation E[N ] of N .

Hint. Use (3.13).

Exercise 3.10. Suppose that a player gambles according to the following strat-
egy at a game of coin tossing: he always bets “tail”; if “head” occurs he doubles
his stake in the next coin toss. He plays until “tail” occurs for the first time.
What is his expected gain?

Exercise 3.11. Let X and Y be independent and have the same geometric
distribution with success probability p. Find the conditional distribution of X
given X + Y = n. Explain intuitively.

Exercise 3.12. Suppose that N1 and N2 are independent and Poisson dis-
tributed with parameters λ1 and respectively λ2. Let N := N1 +N2.

(i) Show that N ∼ Poi(λ1 + λ2).
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(ii) Show that N1|N = n ∼ Bin
(
n, λ1

λ1+λ2

)
.

Hint (i) At some point you will need to invoke Newton’s binomial formula (1.6).

Exercise 3.13. Flip a fair coin repeatedly and wait for the first occurrence of 3
consecutive heads, HHH. Find the expected number of flips until this occurs.

Hint. Imitate the strategy in Example 3.32.

Exercise 3.14. Draw three cards without replacement from a deck of cards. Let
H be the number of hearts and S the number of spades drawn. Find ρ(H,S).

Exercise 3.15. Let A and B be two events. The degree of dependence between
A and B can then be measured by the correlation between their indicators IA
and IB. Suppose P(A) = P(B) = 1

2 . Express the correlation coefficient ρ(IA, IB)
in terms of P(A|B).

Exercise 3.16. Two fair dice are rolled. Find the joint probability mass function
of X and Y when

(i) X is the largest value obtained on any die and Y is the sum of the
values;

(ii) X is the value on the first die and Y is the larger of the two values;

(iii) X is the smallest and Y is the largest value obtained on the dice.

Exercise 3.17. Suppose that 2 balls are successive chosen without replacement
from an urn consisting of 5 white and 8 red balls. Let Xi equal 1 if the i-th ball
selected is white, and let it equal 0 otherwise. Find the joint probability mass
function of (X1, X2).

Exercise 3.18. Repeat Exercise 3.17 when the ball selected is replaced in the
urn before the next selection.

Exercise 3.19. Suppose we draw (without replacement) two tickets from a hat
that contains tickets numbered 1, 2, 3, 4. Let X be the first number drawn and
Y be the second. Find the joint distribution of X and Y .

Exercise 3.20. Consider a sequence of independent Bernoulli trials, each of
which is a success with probability p. Let X1 be the number of failures preceding
the first success, and let X2 be the number of failures between the first two
successes. Find the joint probability mass function of X1 and X2.

Exercise 3.21. A company consists of m = 24 men and w = 30 women. Each
of the employee is to be randomly promoted with probability 1/3 independently
of the other employees.

(i) Find the expected number of women that will be promoted given that
the total number of employees promoted was 15.

(ii) Find the expected number of women that will be promoted.



3.4. Exercises 137

Exercise 3.22. A electronics store owner figures that 45% of the customers
entering his store will purchase computers, 15% percent will purchase a smart
TV set, and 40% will just be browsing. If 5 customers enter his store on a given
day, what is the probability that he will sell exactly 2 computers and 1 smart
TV set on that day?

Exercise 3.23. The joint probability mass function of (X,Y ) is given by

p(1, 1) =
1

8
, p(1, 2) =

1

4
, p(2, 1) =

1

8
, p(2, 2) =

1

2
.

(i) Compute the conditional mass function of X given Y = i, i = 1, 2.

(ii) Are X and Y independent?

Exercise 3.24. Choose a numberX at random from the set of numbers {1, 2, 3, 4, 5}.
Now choose a number at random from the subset of numbers ≤ X, that is, from
{1, . . . , X}. Call this second number Y .

(i) Find the joint mass function of (X,Y ).

(ii) Find the marginal pdf of Y .

(iii) Are X and Y independent? Why?

Exercise 3.25. Two dice are rolled. Let X and Y denote, respectively, the
largest and smallest values obtained. Compute the conditional mass function of
Y given X = i, for i = 1, 2, . . . , 6. Are X and Y independent? Why?

Exercise 3.26. A fair die is successively rolled. Let X and Y denote, respec-
tively, the number of rolls necessary to obtain a 6 and a 5. Find

(i) E[X].

(ii) E[X|Y = 1].

(iii) E[X|Y = 5].

Exercise 3.27. Urn 1 contains 5 white and 6 black balls, while urn 2 contains
8 white and 10 black balls. Two balls are randomly selected from urn 1 and are
put into urn 2. If 3 balls are then randomly selected from urn 2, compute the
expected number of white balls in the trio.

Hint. Denote by N1 the number of white balls drawn from the first urn and by N2 the number of white

balls drawn from the 2 urn, after we have added the balls drawn form the first. We have

E[N2] =
2∑
k=0

E[N2|N1 = j]P(N1 = j).

Exercise 3.28. (a) A monkey has a bag with four apples, three bananas, and
two pears. He eats fruit at random until he takes a fruit of a kind he has eaten
already. He throws that away and the bag with the rest. What is the expected
the number of fruit eaten? (b) Suppose that the bag contain n of each m types
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of fruits, m ≤ n. Compute the expected number of fruits the monkey eats if he
follows the same procedure as above.

Exercise 3.29. The number of people who enter an elevator on the ground floor
is a Poisson random variable with mean λ. If there are N floors above the ground
floor, and if each person is equally likely to get off at any one of the N floors,
independently of where the others get off, compute the expected number of stops
that the elevator will make before discharging all of its passengers.

Hint. Condition on the number M of people that enter the elevator, M ∼ Poi(λ) and then use the

result in the balls-in-bins problem, Example 3.23.

Exercise 3.30. A coin having probability p of coming up Heads is continually
flipped until both heads and tails have appeared.

(i) Find the expected number of flips.

(ii) Find the probability that the last flip lands on heads.

Exercise 3.31. A biased coin having probability p of coming up Heads is flipped
n ≥ 2 times. Flip this coin 101 times. Let Cn denote the number of changes
in the string of flips, i.e., flips whose outcome is different of the outcome of the
previous flip.

(i) Find E[C2].

(ii) Find E[C3].

(iii) Find E[Cn].

Exercise 3.32. A group of 20 people consisting of 10 men and 10 women is
randomly arranged into 10 pairs of 2 each.

(i) Compute the expectation and variance of the number of pairs that
consist of a man and a woman.

(ii) Now suppose the 20 people consist of 10 married couples. Compute the
mean and variance of the number of married couples that are paired
together.

Exercise 3.33. The number of accidents that a person has in a given year is
a Poisson random variable with mean Λ. However, suppose that the value of Λ
changes from person to person, being equal to 2 for 60 percent of the population
and 3 for the other 40 percent. If a person is chosen at random, what is the
probability that he will have

(i) 0 accidents;

(ii) exactly 3 accidents in a certain year?

Exercise 3.34. A company puts five different types of prizes in their cereal
boxes, one in each box and in equal proportions. How many boxes should you
expect to buy until you collect all five prizes?
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Exercise 3.35 (D. Bernoulli). An urn R contains n red balls and an urn B
contains n black balls. At each stage a ball is selected at random from each urn
and then they are swapped. Show that the mean number of red balls in urn R
at stage k is 1

2

(
1 + (1− 2/n)k

)
.

Exercise 3.36 (G. Polya). An urn U contain r0 red balls and g0 red balls. At
each stage a ball is selected at random from the urn, we observe its color, we
return it to the urn and then we add another ball of the same color. We denote
by bn the total number of balls in U at stage n, by Rn the number of red balls
and by Gn the number of green balls at stage n. Finally, we denote by Cn the
“concentration” of red balls at stage n,

Cn =
Rn
bn

=
Rn

Rn +Gn
.

(i) Show that

E
[
Cn+1|Rn = i

]
=

i

bn
.

(ii) Show that

E[Cn] =
r0

r0 + g0
, ∀n ∈ N.





Chapter 4

Multivariate
continuous
distributions

4.1. Two-dimensional continuous random
vectors

Suppose that X,Y are two random variables defined on the same sample space
S. We say that X,Y are jointly continuous if there exists a two-variable function
p : R2 → R such that, for any real numbers x, y, we have

P(X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
p(s, t)dsdt.

One can show that the above condition is equivalent with a stronger requirement:
for any subset B ⊂ R2 we have

P
(

(X,Y ) ∈ B
)

=

∫
B
p(x, y)dxdy .

The function p is called the joint probability density (joint pdf) of the random
variables X,Y . In this case we also say that the pair (X,Y ) is a continuous
random vector or point.

The joint cumulative distribution function (joint cdf) of the random vector
(X,Y ) is the function

FX,Y : R2 → [0, 1], F (x, y) = P(X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
p(s, t)dsdt.

141
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The pdf p has a simple interpretation: the quantity p(x, y)dxdy is equal to the
probability that the random point (X,Y ) is located in the infinitesimal rectangle
[x, x+ dx]× [y, y + dy], i.e.,

p(x, y)dxdy = P
(
X ∈ [x, x+ dx], Y ∈ [y + dy]

)
.

Proposition 4.1. Suppose that X,Y are jointly continuous random variables
with joint pdf p(x, y) and joint cdf F . Then X and Y are continuous random
variables. Their pdf-s pX and respectively pY are called the marginal pdf-s or
the marginals of p and are given by

pX(x) =

∫
R
p(x, y)dy, pY (y) =

∫
R
p(x, y)dx . (4.1)

Moreover

p(x, y) =
∂2

∂x∂y
FX,Y (x, y) . (4.2)

ut

Let us observe that a function f : R2 → R is the joint pdf of a continuous
random vector (X,Y ), if and only if

f(x, y) ≥ 0, ∀x, y ∈ R, (4.3a)∫
R2

f(x, y)dxdy = 1. (4.3b)

When we describe a function f(x, y) with the properties (4.3a, 4.3b), we are
implicitly describing a continuous random vector, though we may not mention
this explicitly.

Example 4.2 (Independent random variables). Recall (see Definition 2.7) that
the random variables X,Y are independent if and only if for any A,B ⊂ R we
have

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

If the random variables X,Y are continuous with pdf-s pX and respectively pY ,
then they are independent if and only if the random vector (X,Y ) is continuous
and its joint pdf p(x, y) is the product of its marginals, i.e., it satisfies the equality

p(x, y) = pX(x)pY (y), ∀x, y ∈ R.

We want to compute the cdf and pdf of their sum S = X + Y .

P(S ≤ s) = P(X + Y ≤ s) =

∫
x+y≤s

pX(x)pY (y)dxdy

=

∫
R

(∫ s−x

−∞
pY (y)dy

)
pX(x)dx
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=

∫
R
P(Y ≤ s− x)pX(x)dx.

If we derivate with respect to s the last equality we deduce

pX+Y (s) =

∫
R
pY (s− x)pX(x)dx . (4.4)

ut

Example 4.3 (Uniform distribution on a planar region). Suppose that D ⊂ R2

is a planar region with finite area. The uniform distribution on D is described
by the density

p(x, y) =
1

area(D)
ID(x, y),

where ID the indicator function of D,

ID : R2 → R, ID =

{
1, (x, y) ∈ D,
0, (x, y) 6∈ D.

Thus, the probability that a random planar point with this distribution belongs
to a region A ⊂ D is equal to the fraction of the area of D occupied by A. The
specific location of A in D or the shape of A play no role in this case.

For illustration suppose that D is the unit disk in the plane

D :=
{

(x, y) ∈ R2; x2 + y2 ≤ 1
}
.

Then area(D) = π so
1

π
ID(x, y)

is the joint pdf of a random vector (X,Y ), the random vector uniformly dis-
tributed in D. The marginals of this random vector are computed using (4.1).
For |x| > 1 we have pX(x) = 0, while for |x| ≤ 1 we have

pX(x) =
1

π

∫
R
ID(x, y)dy =

1

π

∫
|y|≤
√

1−x2
dy =

2

π

√
1− x2.

Similarly,

pY (y) =
2

π
×

{
0, |y| > 1,√

1− y2, |y| ≤ 1.
ut

Example 4.4 (Buffon needle problem, 1777). A needle of length L < 1 is placed
at random on a plane ruled by parallel lines at unit distance apart. What is the
probability p = p(L) that the needle intersects one of these lines?

Think of the ruling lines as horizontal, one of them being the x axis. To
decide the whether the needle intersects one of the lines we need to know two
parameters.
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y

q

needle of length L

midpoint of needle

Figure 4.1. The plane is ruled by (red) horizontal lines, 1 unit apart and we
randomly drop a needle of length L < 1.

• The signed distance y between the midpoint of the needle and the
closest line, measured vertically. Thus y ∈ [−1/2, 1/2]. (The distance
y is negative when the center of the needle is below the closest line.)

• The angle θ ∈ [−π/2, π/2] the needle makes with the vertical axis.

We interpret the randomness of the location of the needle as stating that the
distance y is independent of the angle θ and they are uniformly distributed in
their respective ranges. Thus (y, θ) is uniformly distributed in the rectangle

R =
{

(y, θ) ∈ R2; −1

2
≤ y ≤ 1

2
, −π

2
≤ θ ≤ π

2

}
.

The joint pdf of the random vector (signed distance, angle) is

f(y, θ) =
1

Area (R)
IR(y, θ) =

1

π
IR(y, θ),

where IR is the indicator function of R.

The length of the projection of the needle on the vertical axis is L cos θ. We
deduce that the needle intersects the closest line if and only of |y| ≤ 1

2L cos θ.
Thus the intersection probability is

p(L) =
1

π

∫∫
|y|≤L

2
cos θ

IR(y, θ)dydθ =
1

π

∫ π
2

−π
2

(∫ L
2

cos θ

−L
2

cos θ
dy

)
dθ

=
L

π

∫ π
2

−π
2

cos θdθ =
2L

π
.
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Using this formula we deduce

π =
2L

p(L)
.

If we can compute p(L) by some means, then we can also compute π. This
raises the real possibility of computing π by performing random experiments, for
example, by tossing a needle very large number of times N . Denote by fN the
number of times the needle crosses a line. The Law of Large Numbers Theorem
6.1 shows that if N is large then

fN
N
≈ p(L) =

2L

π
⇒ π ≈ 2LN

fN
.

Unfortunately we need to toss the needle more than one million times to get the
first two decimals of π. We refer to Example 7.17 for an R-code that simulates
the Buffon problem. ut

Theorem 4.5 (Law of the subconscious statistician). If (X,Y ) is a continuous
random vector with joint pdf p(x, y) and f(x, y) is a function of two variables,
then

E
[
f(X,Y )

]
=

∫∫
R2

f(x, y)p(x, y)dxdy . ut

Corollary 4.6 (Linearity of expectation). If (X,Y ) is a continuous random
vector then

E[X + Y ] = E[X] + E[Y ].

Proof. Denote by p(x, y) the joint pdf of (X,Y ) and by pX , pY the pdf-s of X
and respectively Y . Then

E[X + Y ] =

∫∫
R2

(x+ y)p(x, y)dxdy =

∫∫
R2

xp(x, y)dxdy +

∫∫
R2

yp(x, y)dxdy

Observe that∫∫
R2

xp(x, y)dxdy =

∫
R

(∫
R
p(x, y)dy

)
︸ ︷︷ ︸

pX(x)

xdx =

∫
R
xpX(x)dx = E[X].

The equality ∫∫
R2

yp(x, y)dxdy = E[Y ]

is proved in a similar fashion. ut

Corollary 4.7. If the continuous random variables are independent, then for
any functions f(x) and g(y) we have

E
[
f(X)g(Y )

]
= E

[
f(X)

]
E
[
g(Y )

]
.
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Proof. Denote by pX , pY the pdf-s of X and respectively Y . Then

E
[
f(X)g(Y )

]
=

∫∫
R2

f(x)g(y)pX(x)pY (y)dxdy

(use Fubini theorem)

=

(∫
R
f(x)pX(x)dx

)(∫
R
g(y)pY (y)dy

)
= E

[
f(X)

]
E
[
g(Y )

]
.

ut

Example 4.8. Suppose that T0 and T1 are two independent exponential random
variables with parameters λ0 and respectively λ1 so that

P(T0 ≥ t) = e−λ0t, P(T1 ≥ t) = eλ1t. (4.5)

For concreteness, think that T0 and T1 are the lifetimes of two laptops, L0 and
L1. Denote by T the first moment one of these laptops dies, i.e.,

T = min(T0, T1).

Let N be the indicator random variable

N =

{
0, T = T0,

1, T = T1.

Thus, the first laptop to die is LN . Let us observe that T is also an exponential
variable with parameter λ0 + λ1. Indeed

P(T ≥ t) = P(T0 ≥ t, T1 ≥ t)

(T0 and T1 are independent)

= P(T0 ≥ t)P(T1 ≥ t)
(4.5)
= e−(λ0+λ1)t.

Next we compute the probability that the laptop L0 dies first, i.e., P(N = 0).
We have

P(N = 0, T ≥ t) = P(T1 > T0 ≥ t) =

∫∫
t≤x0<x1

λ0e
−λ0x0λ1e

−λ1x1dx0dx1

= λ0λ1

∫ ∞
t

(∫ ∞
x0

e−λ1x1dx1

)
e−λ0x0dx0

= λ0

∫ ∞
t

e−(λ0+λ1)x0dx0 =
λ0

λ0 + λ1
e−(λ0+λ1)t

=
λ0

λ0 + λ1
P(T ≥ t).

Similarly

P(N = 1, T ≥ t) =
λ1

λ0 + λ1
P(T ≥ t).
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We deduce

P(N = 0) = P(N = 0, T > 0) =
λ0

λ0 + λ1
, P(N = 1) =

λ1

λ0 + λ1
.

Note we have proved something more, namely

P(N = 0, T ≥ t) = P(N = 0)P(T ≥ t),
P(N = 1, T ≥ t) = P(N = 1)P(T ≥ t).

In other words, the random variables N and T are independent !!! Let us explain
why this is surprising.

Suppose that the two laptops have rather different expected life times, e.g.,

E[T0] = 1, E[T1] = 20.

Suppose that we observe that one of them dies after say 0.5 units of time, i.e.
T ∈ [0.5, 0.5+dt]. One might be tempted to conclude that N = 0, i.e., the laptop
that died first is the laptop L0 since it has a shorter expected lifespan. This is
however an illegitimate inference. Indeed, since T and N are independent, we
cannot draw any conclusion about N from any information about T . ut

Definition 4.9. Suppose that (X,Y ) is a continuous random vector. Denote
by µX , µY the mean of X and respectively Y . The covariance of (X,Y ) is the
number

cov[X,Y ] = E
[

(X − µX)(Y − µY )
]
.

The correlation coefficient of (X,Y ) is the number

ρ[X,Y ] =
cov[X,Y ]√

var[X] · var[Y ]
. ut

If p(x, y) is the joint pdf of the continuous random vector (X,Y ) in the above
definition, then

cov[X,Y ] =

∫∫
R2

(x− µX)(y − µY )p(x, y)dxdy

=

∫∫
R2

xyp(x, y)dxdy − µXµY = E[XY ]− µXµY .

Corollary 4.10. If the continuous random variables X and Y are independent,
then cov[X,Y ] = 0 and

var[X + Y ] = var[X] + var[Y ] .

Proof. Denote by µX , µY the mean of X and respectively Y . We have

cov(X,Y ) = E[XY ]− µXµY = E[X]E[Y ]− µXµY = 0.
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Observe that the mean of X+Y is µX +µY . If we denote by pX and respectively
pY the pdf of X and respectively Y , then the jopint pdf of (X,Y ) is pX(x)pY (y)
and we have

var[X + Y ] = E
[

(X + Y − µX − µY )2
]

=

∫∫
R2

(
x+ y − µX − µY

)2
pX(x)pY (y)dxdy

=

∫∫
R2

(x− µX)2pX(x)pY (y)dxdy +

∫∫
R2

(y − µY )2pX(x)pY (y)dxdy

+2

∫∫
R2

(x− µX)(y − µY )pX(x)pY (y)dxdy

= var[X] + var[Y ] + 2 cov[X,Y ] = var[X] + var[Y ].

ut

Example 4.11 (Bivariate normal distribution). Let σx, σy, µx, µy, ρ be real con-
stant such that σx, σy > 0 and ρ ∈ (−1, 1). Define

Q(x, y) =
1

1− ρ2

((
x− µx
σx

)2

− 2ρ

(
x− µx
σx

)(
y − µy
σy

)
+

(
y − µy
σy

)2
)

A continuous random vector (X,Y ) with joint pdf

p(x, y) =
1

2πσxσy
√

1− ρ2
e−

1
2
Q(x,y) (4.6)

is called normally distributed. The pdf (4.6) is called bivariate normal.

A rather long and tedious computation1 shows that

X ∼ N(µx, σx), Y ∼ N(µy, σy), ρ[X,Y ] = ρ. (4.7)

For this reason, two random variables X,Y with joint pdf (4.6) are said to be
jointly normal. ut

Example 4.12 (Transformation of random vectors). Suppose that (X,Y ) is a continuous random vector
with joint pdf pX,Y (x, y), i.e.,

P
(
X ∈ [x+ dx], Y ∈ [y, y + dy]

)
= pX,Y (x, y)dxdy.

Suppose that we are given an injective transformation R2 → R2

(x, y) 7→ (u, v )

where u = f(x, y) and v = g(x, y) are functions such that the Jacobian

J(x, y) = det

[
f ′x f ′y
g′x g′y

]
is not zero. To compute the joint pdf of the random vector (U, V ) = (u(X,Y ), v(X,Y )) proceed as

follows.

1There is a “cleaner” way of proving (4.7) but it relies on more sophisticated linear algebra.
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(i) Solve for x and y the equations u = f(x, y), v = g(x, y). The solutions x, y can be viewed
as functions of u, v, x = x(u, v), y = y(u, v).

(ii) Compute the Jacobian

J(u, v) = det

[
x′u x′v
y′u y′v .

]
.

(iii) Using the change of variables formula in double integrals we deduce that the joint pdf of

the random vector (U, V ) = (u(X,Y ), v(X,Y )) satisfies

pU,V (u, v) = pX,Y (x(u), y(u)) · |J(u, v)| = pX,Y (x, y) · |J(x, y)|−1 .

Suppose that X and Y positive random variables and p(x, y) is the joint pdf of (X,Y ). We want

to compute the joint pdf of the vector (U, V ) = (X,Y/X).

We have f(x, y) = x, g(x, y) = y/x. Solving for x, y the equation u = x, v = y/x we deduce x = u,

y = xv = uv and

J(u, v) = det

[
x′u x′v
y′u y′v .

]
= det

[
1 0
v u

]
= u.

Thus

pU,V (u, v) = f(x, y)|u| = f(u, uv)|u|. ut

4.2. Conditioning

Suppose that Y is a continuous random variable with cdf FY and pdf pY .

Definition 4.13. Let B an event with positive probability. The random variable
Y |B, referred to as Y conditioned on B, is the random variable with cdf

FY |B(y) = P
(
Y ≤ y|B

)
=

P(B ∩ (FY ≤ y) )

P(B)
.

If Y |B happens to be continuous, then we denote by pY |B is pdf and by E[Y |B]
its expectation. We will refer to E[Y |B] as the conditional expectation of Y given
B. ut

Example 4.14. Suppose that Y is independent of the event B i.e., the random
variables Y and IB are independent. Then

FY |B(y) = FY (y) and E[Y |B] = E[Y ]. ut
Example 4.15. Suppose that B is the event B = {Y ≥ 2}.

FY |B(y) = P[Y ≤ y|Y ≥ 2] =

{
0, y < 2
FY (y)−FY (2)

1−FY (2) , y ≥ 2.

In this case we have

pY |B(y) =
1

1− FY (2)
×

{
0, y < 2

pY (y), y ≥ 2,

E
[
Y |Y ≥ 2

]
=

1

1− FY (2)

∫ ∞
2

pY (y)dy. ut
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Example 4.16. Suppose that the random vector (X,Y ) is uniformly distributed
in the region R between the parabola 6x(1− x) and the x-axis; see Figure 4.2,

Figure 4.2. The region R between the parabolla y = 6x(1− x) and the x-axis.

Observing that

area (R) =

∫ 1

0
6x(1− x)dx = 1

we deduce that the joint pdf of (X,Y )

p(x, y) =

{
1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 6x(1− x),

0, otherwise.

Consider the event

B = {Y > X}.

We want to compute

E[X|B] = E[X|Y > X].

We have

FX|B(x) =
P({X ≤ x} ∩B)

P(B)

To perform this computation we observe that B correspond to the region between
the line y = x and the parabola y = 6x(1 − x); see Figure 4.2. To find where
these two curves intersect we need to solve the equation

x = 6x(1− x)⇐⇒6x2 − 5x = 0⇐⇒x = 0,
5

6
.
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Thus if (x, y) ∈ B, then 0 ≤ x ≤ 5
6 . We have

P(B) =

∫ 5
6

0

(
6x(1− x)− x)dx =

∫ 5
6

0
(5x− 6x2)dx =

125

216
.

P({X ≤ x} ∩B) =

∫ x

0

(∫ 6t(1−t)

t
dy

)
dt =

∫ x

0
(5t− 6t2)dt

Hence

pX|B(x) =
d

dx
FX|B(x) =

1

P(B)
(5x− 6x2), ]; 0 ≤ x ≤ 5

6
.

We conclude

E[X|Y > X] =
216

125

∫ 5
6

0
x(5x− 6x2)dx =

5

12
.

ut

We have the following continuous counterpart of Proposition 3.31 that gen-
eralizes the law of total probability.

Proposition 4.17. Suppose that the events A1, . . . , An ⊂ S partition the sample
space S, i.e., their union is S and they are mutually disjoint. Suppose next that
Y : S → R is a continuous random variable. Then

E
[
Y
]

= E[Y |A1]P(A1) + · · ·+ E[Y |An]P(An). (4.8)

ut

Suppose that X is another random variable. We would like to condition
Y on the event X = x. The above discussion applies only in the case when
P(X = x) 6= 0. However, if X is continuous, this positivity condition fails.
Fortunately, there are things that we can do when (X,Y ) is jointly continuous
with joint pdf p(x, y) and marginals pX(x) and respectively pY (y).

Definition 4.18. The conditional pdf of Y given that X = x is

pY |X=x(y) :=

{
p(x,y)
pX(x) , pX(x) 6= 0,

0, pX(x) = 0.
(4.9)

ut

Intuitively, but less rigorously we have

pY |X=x(y)dy = P
(
Y ∈ [y, y + dy]

∣∣X ∈ [x, x+ dx]
)
dx

=
P(Y ∈ [y, y + dy], X ∈ [x, x+ dx])

P(X ∈ [x, x+ dx])
=
p(x, y)dxdy

pX(x)dx
.
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Observe that∫
R
pY |X=x(y)dy =

∫
R

p(x, y)

pX(x)
dy =

1

pX(x)

∫
R
p(x, y)dy = 1,

so the function y 7→ pY |X=x(y) is the pdf of a continuous random variable. We
denote this random variable Y |X = x and we will refer to it as Y conditioned on
X = x. Its expectation is

E
[
Y |X = x

]
=

∫
R
ypY |X=x(y)dy .

We will refer to the number E
[
Y |X = x

]
as the conditional expectation of Y

given that X = x.

More generally, for any function f : R → R, the conditional expectation of
f(Y ) given that X = x is the number

E[ f(Y )|X = x] :=

∫
R
f(y)pY |X=x(y) dy .

The next result is an immediate consequence of (4.9) and it is a continuous version
of the law of total probability, Theorem 1.46.

Proposition 4.19. For any y ∈ R we have

pY (y) =

∫
R
pY |X=x(y)pX(x)dx.

Moreover, for any function f we have

E[ f(Y ) ] =

∫
R
f(y)pY (y)dy =

∫
R

(∫
R
f(y)pY |X=x(y) dy

)
pX(x)dx. (4.10)

In particular, for any B ⊂ R we have

P(Y ∈ B) = E[IB(y)] =

∫
R

(∫
B
pY |X=x(y)dy

)
pX(x)dx, (4.11)

where we recall that IB is the indicator function

IB(y) =

{
1, y ∈ B,
0, y 6∈ B.

ut

The equality (4.10) can be rewritten in the more compact form.

E
[
f(Y )

]
=

∫
R
E
[
f(Y )|X = x

]
pX(x)dx . (4.12)

We denote by E[f(Y )|X] the random variable that takes the value E[ f(Y )|X = x]
when X = x. As in the discrete case, the random variable E[Y |X] is called the



4.2. Conditioning 153

conditional expectation of Y given X. We can rewrite (4.12) in the even more
compact form

E
[
f(Y )

]
= E

[
E[f(Y )|X]

]
.

Moreover, one can show that

E[X + Y |Z] = E[X|Z] + E[Y |Z] (4.13)

Example 4.20. Consider the random point (X,Y ) uniformly distributed in the
triangle (see Figure 4.3)

T =
{

(x, y) ∈ R2; x, y ≥ 0, x+ y ≤ 1
}
.

The area of this triangle is 1
2 and thus the joint pdf of (X,Y ) is

Figure 4.3. The triangle T .

p(x, y) =

{
2, (x, y) ∈ T,
0, otherwise.

The (marginal) density of X is

pX(x) =

∫
R
p(x, y)dy =

{∫ 1−x
0 2dy, x ∈ [0, 1],

0, otherwise,
= 2(1− x)I[0,1](x).

We deduce that

pY |X=x(y) =
p(x, y)

pX(x)
∼ Unif(0, 1− x)

Then

E[Y |X = x ] = E
[

Unif(0, 1− x)
]

=
1− x

2
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and

E[Y |X] =
1

2
(1−X). ut

Example 4.21. Suppose that (X,Y ) is uniformly distributed in the unit disk.
Then p is the uniform distribution on the unit disk as in Example 4.3

p(x, y) =
1

π
×

{
1, x2 + y2 ≤ 1,

0, x2 + y2 > 1.

Then the conditional pdf of Y given X = x0 is the uniform distribution on the
vertical line obtained by intersection the unit disk with the vertical line x = x0,
i.e.,

pY |X=x0 ∼ Unif
(
−
√

1− x2
0,
√

1− x2
0

)
,

for |x0| < 1.

Denote by R the distance from the point (X,Y ) to the origin and by Θ the
angle it forms with the x-axis. More precisely

X = R cos Θ, Y = R sin Θ, 0 ≤ Θ ≤ 2π, R ≥ 0.

Let F (r, θ) denote the joint cdf of (R,Θ),

F (r, θ) = P(R ≤ r,Θ ≤ θ) =
1

π
area

(
Sr,θ

)
where Sr,θ denotes the sector swept by a radius of length r origin rotating an
angle θ about the origin. We have

area (Sr,θ) =
r2θ

2
, F (r, θ) =

r2θ

2π
.

The joint pdf of (R,Θ) is

p(r, θ) =
∂2

∂r∂θ
F (r, θ) =

r

π
.

In particular,

pΘ(θ) =

∫ 1

0
p(r, θ)dr =

1

π

∫ 1

0
rdr =

1

2π

so that Θ ∼ Unif(0, 2π). Note that

pR|Θ=θ0(r) =
p(r, θ0)

pΘ(θ0)
= 2r, r ∈ [0, 1], E[R|Θ = θ0] =

∫ 1

0
2r2dr =

2

3
.

Thus, given that the random point (X,Y ) is located on a given ray, the distance
to the origin is not uniformly distributed on (0, 1): the point is more likely to be
closer to the boundary of the disk than to its center. ut
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Example 4.22. Suppose that X,Y are two independent identically distributed
random variables with common pdf p(x). We set Z = X + Y . We want to
compute E[X|Z = z] and E[X|Z]. We deduce from (4.13) that

E[X|Z] + E[Y |Z] = E[X + Y |Z] = E[Z|Z] = Z.

Since X,Y are identically distributed, independent and Z = X+Y is symmetric
in X and Y we expect that E[X|Z] = E[Y |Z] so we suspect that

E[X|Z] = E[Y |Z] =
1

2
Z.

Let us verify this “suspicion”. Denote by ρ(x, y) the joint pdf of (X,Y ) so that

ρ(x, y) = p(x)p(y).

If F (x, z) denotes the joint cdf of (X,Z), then

F (x, z) = P(X ≤ x, Z ≤ z) = P(X ≤ x,X + Y ≤ z)
(use Fubini)

=

∫ x

−∞
P(Y ≤ z − s)pX(s)ds =

∫ x

−∞
FY (z − s)p(s)ds.

If p(x, z) denotes the joint pdf of (X,Z), then

ρ(x, z) =
∂

∂z

(
∂

∂x
F (x, z)

)
=

∂

∂z
FY (z − x)p(x) = p(z − x)p(x).

Hence

pZ(z) =

∫
R
p(z − x)p(x)dx.

Thus

pX|Z=z(x) =
p(z − x)p(x)

pZ(z)
,

E[X|Z = z] =
1

pZ(z)

∫
R
xp(z − x)p(x)dx.

We have ∫
R
xp(z − x)p(x)dx

x=t+z/2
=

∫
R

(
t+

z

2

)
p(z/2− t)p(z/2 + t)dt

=

∫
R
tp(z/2− t)p(z/2 + t)dt︸ ︷︷ ︸

I1

+
z

2

∫
R
p(z/2− t)p(z/2 + t)dt︸ ︷︷ ︸

I2

.

Note that I1 = 0 because the integrand f(t) = tp(z/2− t)p(z/2 + t) is odd in the
variable t

f(−t) = −f(t).

On the other hand, if we make the change in variables t = x− z/2 we deduce

I2 =

∫
R
p(z − x)p(x)dx =

∫
R
pZ(z)dz = 1.



156 4. Multivariate continuous distributions

Hence

E[X|Z = z] =
z

2
, E[X|Z] =

1

2
Z.

Let us now consider the special case when X,Y are independent exponential
random variables with the same parameter λ so p(X) = λe−λx.Thus

ρ(x, z) = λ2e−λz ×

{
1, 0 < x ≤ z,
0, x > z ≥ 0,

pZ(x) = λ2

∫ z

0
e−λzdx = zλ2e−λz.

pX|Z=z =
1

z
×

{
1, 0 < x ≤ z,
0, 0 < z < z.

.

This shows that pX|Z=z(x) ∼ Unif(0, z). ut

Example 4.23 (Gaussian regression formula). Consider again the normal random vector (X,Y ) in
Example 4.11. In this case, E[Y |X] is a linear function of X, more precisely

E[Y |X] = µY +
ρσY

σX

(
X − µX

)
.

This shows that if X,Y are jointly normal, the best predictor E[Y |X] of Y based on X coincides with
the best linear predictor described in (3.9).

For example, if X,Y are independent Gaussian variables, X,Y ∼ N(0, σ2) and Z = X + Y , then
(X,Z) is jointly Gaussian. Then µZ = µX = 0,

σZ =
√
var[X + Y ] =

√
var[X] + var[Y ] =

√
2σ,

cov[X,Z] = E[X,X + Y ] = E[X2] = σ2, ρ = ρ(X,Y ) =
1
√

2
, E[X|Z] =

1

2
Z.

ut

4.3. Multi-dimensional continuous random
vectors

Definition 4.24. Suppose that X1, . . . , Xn are n random variables. We say
that the random vector (X1, . . . , Xn) is continuous if there exists a function of n
variables p(x1, . . . , xn) such that, for any B ⊂ Rn we have

P
(

(X1, . . . , Xn) ∈ B
)

=

∫
B
p(x1, . . . , xn)dx1 · · · dxn.

The function p is called the joint pdf of the random vector. In this case, the
components X1, . . . , Xn are themselves continuous random variables and their
pdf-s are called the marginals of the joint pdf p. ut
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Theorem 4.25 (Law of the subconscious statistician). Suppose that

(X1, . . . , Xn)

is a continuous n-dimensional random vector with joint pdf p(x1, . . . , xn). Then
for any function of n variables f(x1, . . . , xn) we have

E
[
f(X1, . . . , Xn)

]
=

∫
Rn
f(x1, . . . , xn)p(x1, . . . , xn)dx1 · · · dxn . ut

The above result has the following very useful consequence.

Corollary 4.26. Suppose that

(X1, . . . , Xn)

is a continuous n-dimensional random vector. Then

E
[
c1X1 + · · ·+ cnXn

]
= c1E[X1] + · · ·+ cnE[Xn] , (4.14)

for any real constants c1, . . . , cn

Recall (see Definition 2.7) that the random variables X1, . . . , Xn are called
independent if, for any sets A1, . . . , An ⊂ R, we have

P(X1 ∈ A1, . . . Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An).

Proposition 4.27. (a) The continuous random variables X1, . . . , Xn with pdf-s
pX1 , . . . , pXn are independent if and only if the random vector (X1, . . . , Xn) is
continuous and its joint pdf p(x1, . . . , xn) satisfies the equality

p(x1, . . . , xn) = pX1(x1)pX2(x2) · · · pXn(xn).

(b) If the continuous random variables X1, . . . , Xn are independent, then

var[X1 + · · ·+Xn] = var[X1] + · · ·+ var[Xn] , (4.15)

and, for any functions f1(x1), . . . , fn(xn), the random variables

f1(X1), . . . , fn(Xn)

are independent and

E
[
f1(X1) · · · fn(Xn)

]
= E

[
f1(X1)

]
· · ·E

[
fn(Xn)

]
. ut

Example 4.28. You are selling your car and receive independent consecutive
bids, one bid per unit of time. The bidders do not know each other’s bids and
for each bid you need to decide immediately whether or not to take it. If you
decline, you cannot accept the offer later. You have to decide on two strategies.

Strategy 1. Reject the first bid and then accept the next bid that is greater
than the first bid.
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Strategy 2. Reject the first bid and then accept the first bid that is greater
than the immediately preceding one.

How long can you expect to wait in each case ? Assume that the bids
X1, X2, . . . , Xn, . . . , are iid continuous random variables. Denote by F (x) the
common cdf of the variables Xi and by f(x) their common pdf so that

F (x) =

∫ x

0
f(s)ds.

Denote by N the moment you accept the bid. In both cases we have N ≥ 2 and
thus

P(N > 0) = P(N > 1) = 1

According to (2.22) we have

E[N ] = P(N > 0) + P(N > 1) + P(N > 2) + · · · .
Strategy 1. In this case, for n ≥ 2, we have

P(N > n) = P(X2, . . . , Xn < X1) =

∫ ∞
0

P(X2, . . . , Xn < x1)f(x1)dx1

=

∫ ∞
0

f(x1)dx1

∫
0≤x1,...,xn≤x1

f(x2) · · · f(xn)dx2 · · · dxn

=

∫ x1

0
F (x1)n−1f(x1)dx1 =

1

n
F (x1)n

∣∣∣∣∣
x1=∞

x=0

=
1

n
.

Hence, using the first strategy we have

E[N ] = 1 + 1 +
1

2
+

1

3
+ · · · =∞.

Let us compute the expected value of the bid XN in the special case when the bids are uniformly

distributed on [0, 1]

f(x) =

{
1, x ∈ [0, 1]

0, otherwise.

We set

En := {N = n} = {0 ≤ x2, . . . , xn−1 ≤ x1 ≤ xn}, pn := P(En).

We deduce

E[XN ] =
∞∑
n=2

E[Xn|En]P(En).

We have

E[XN |En] =
1

P(En)

∫
En

xndx1 · · · dxn

=
1

pn

∫ ∞
0

∫ xn

0

∫
xj∈[0,x1]
j=2,...,n

dx2 · · · dxn−1

 dx1

xndxn

=
1

pn

∫ ∞
0

dxn

(∫ xn

0
xn−2
1 dx1

)
xndxn
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=
1

(n− 1)pn

∫ 1

0
xnndxn =

1

(n+ 1)(n− 1)pn
.

Hence

P(Xn|En)P(En) =
1

(n+ 1)(n− 1)
. =

1

2

(
1

n− 1
−

1

n+ 1

)
,

E[XN ] =
1

2

∑
n≥2

(
1

n− 1
−

1

n+ 1

)
=

5

6
≈ 0.833.

Strategy 2. If n ≥ 1, then N > n if and only if you have rejected the first n
bids, i.e.,

X1 > · · · > Xn−1 > Xn.

The probability of this event is∫ ∞
0

f(x1)dx1

∫ x1

0
f(x2)dx2 · · ·

∫ xn−2

0
f(xn1)dxn−1

∫ xn−1

0
f(xn)dxn.

For any t > 0 and n ≥ 1 we set

Pn(t) :=

=

∫ t

0
f(x1)dx1

∫ x1

0
f(x2)dx2 · · ·

∫ xn−2

0
f(xn−1)dxn−1

∫ xn−1

0
f(xn)dxn

so that

P(N > n) = lim
t→∞

Pn(t).

Note that

P1(t) =

∫ t

0
f(x1)dx1 = F (t),

P2(t) =

∫ t

0
f(x1)dx1

∫ x1

0
f(x2)dx2 =

∫ t

0
f(x1)F (x1)dx1 =

1

2
F (t)2,

since f(x) = F ′(x). Next observe that

P3(t) =

∫ t

0
f(x1)P2(xn−1)dx1 =

1

2

∫ t

0
f(x1)F (x1)2dx1 =

1

3!
F (t)3.

Arguing inductively we deduce

Pn(t) =
1

n!
F (t)n ⇒ P(N > n) =

1

n!
, ∀n ≥ 1.

We deduce

E[N ] = 1 + 1 +
1

2!
+

1

3!
+ · · · = e.

Let us compute the expected value of the bid XN in the special case when the bids are uniformly
distributed on [0, 1]. We set

Sn := {N = n} = {x1 ≥ x2 ≥ · · · ≥ xn−1 ≤ xn}, an := P(Sn).

We deduce

E[XN ] =

∞∑
n=2

E[Xn|Sn]P(Sn).
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We have

E[XN |Sn] =
1

qn

∫
Sn

xndx1 · · · dxn

=
1

qn

∫
1≥x1≥···≥xn−1≥0

(∫ 1

xn−1

xndxn

)
dx1 · · · dxn−1

( we set x0 := 1)

=
1

qn

∫ 1

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−2

0

1

2
(1− x2n−1)dxn−1

=
1

2qn

∫ 1

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−2

0
dxn−1

−
1

2qn

∫ 1

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−2

0
x2n−1dxn−1

=
1

2qn

(
1

(n− 1)!
−

2!

(n+ 1)!

)
.

Thus

E[XN ] =
1

2

∑
n≥2

1

(n− 1)!
−
∑
n≥2

1

(n+ 1)!
=

1

2
(e− 1)− (e− 2− 1/2) = 2−

e

2
≈ 0.640.

Thus using the first strategy we have to wait for a very long time to accept
a bid but the expected bid in this case is bigger than the expected bid using
the second strategy when we have to a considerably shorter period of time to
accept a bid. To add to the difficulty of making a decision note that, using the
first strategy, the probability that the wait is > 100 bids is quantifiably small
P(N > 100) = 1

N . ut

Example 4.29 (Gaussian random vectors). A continuous random vector (X1, . . . , Xn) is Gaussian if

there exist a symmetric, positive definite n× n matrix C = (cij)1≤,i,j≤n and a vector

µ = (µ1, . . . , µn) ∈ Rn

such that the joint pdf has the form

p(x) =
1

√
det 2πC

e−
1
2
QC(x−µ),

where x = (x1, . . . , xn),

QC(y) =
〈
C−1y,y

〉
, ∀y ∈ Rn,

〈−,−〉 inner product in Rn. The matrix C has a simple statistical interpretation, more precisely

cij = cov[Xi, Xj ], ∀i, j.

The component Xi is a normal variable, Xi ∼ N(µi, cii). ut

Example 4.30 (Linear transformations of random vectors). Suppose that X = (X1, . . . , Xn) is a

continuous random vectors with joind pdf p(x1, . . . , xn) and A : Rn → Rn is an invertible linear
transformation x 7→ y = Ax,

x = (x1, . . . , xn), y = (y1, . . . , yn),

y1 = a11x1 + · · ·+ a1nxn,

y2 = a21x1 + · · ·+ a2nxn,

...

yn = an1x1 + · · ·+ annyn.
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Then the random vector Y = AX described by

Y1 = a11X1 + · · ·+ a1nYn,

Y2 = a21X1 + · · ·+ a2nXn,

...

Yn = an1X1 + · · ·+ annXn,

is a continuous random vector with joint pdf q(y) described by

q(y) =
1

|detA|
p(x) =

1

| detA|
p(A−1y), y = Ax. ut

4.4. Order statistics

Suppose that X1, . . . , Xn are independent continuous random variables. Because
these variables are continuous the probability that Xi = Xj for some i 6= j is
zero. So, almost surely, there is an unambiguous way to reorder these variables
in increasing order

X(1) ≤ X(2) ≤ · · · ≤ X(n).

Thus, X(1) is the smallest and X(n) is the largest of the variables X1, . . . , Xn.
The random veector (X(1), . . . , X(n)) is called the order statistics of the random
vector (X1, . . . , Xn). Although the variables X1, . . . , Xn are independent, the
variables X(1), . . . , X(n) are obviously not.

Suppose additionally that the random variables X1, . . . , Xn are identically
distributed, f(x) is their common pdf and F (x) is their common cdf. The joint
pdf of the random vector

(
X(1), . . . , X(n)

)
is

p(x1, . . . , xn) = n!×

{
f(x1) · · · f(xn), if x1 ≤ x2 ≤ · · · ≤ xn,
0, otherwise.

To understand this formula, note that given x1 < · · · < xn, then

(X(1), . . . , X(n)) = (x1, . . . , xn)

if and only of there exists a permutation φ of 1, . . . , n such that

X1 = xφ(1), . . . , Xn = xφ(n).

There are n! such permutations φ and each of the n! possibilities(
xφ(1), . . . , xφ(n)

)
is equally likely to occur because the random variables X1, . . . , Xn are identically
distributed.

Denote by F(j)(x) the cdf of X(j),

F(j)(x) = P
(
X(j) ≤ x

)
.
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To compute F(j)(x) we consider the independent events

A1 = {X1 ≤ x}, A2 = {X2 ≤ x}, . . . , An = {Xn ≤ x}.

The indicator functions IAk are independent Bernoulli random variables with
success probability F (x). Hence,

Y = IA1 + · · ·+ IAn ∼ Bin(n, p), p = F (x).

Note that X(j) ≤ x if and only if at least j of the variables X1, . . . , Xn are ≤ x
or, equivalently, Y ≥ j. Hence

F(j)(x) =

n∑
k=j

(
n

k

)
F (x)k

(
1− F (x)

)n−k
. (4.16)

From the equality (2.59) we deduce

F(j)(x) = Bj,n+1−j
(
F (x)

)
, (4.17)

where Ba,b(x) denotes the incomplete Beta function defined in (2.55). In partic-
ular,

F(1)(x) = 1−
(

1− F (x)
)n
, F(n)(x) = F (x)n . (4.18)

Example 4.31. Suppose that X1, . . . , Xn are independent random variables uni-
formly distributed on [0, 1]. In this case F (x) = x so

F(j)(x) = Bj,n+1−j(x)

Thus, X(j) ∼ Beta(j, n+ 1− j). In particular

E[X(j)] =
j

n+ 1
, ∀j = 1, . . . , n.

More generally if, X1, . . . , Xn ∼ Unif(0, L) then

1

L
X(j) ∼ Beta(j, n+ 1− j), E[X(j)] =

j

n+ 1
L.

ut

Example 4.32. Suppose that X1, . . . , Xn are independent exponential random
variables with the same rate λ. In this case

1− F (x) = e−λx

and

FX(1)
(x) = 1− (e−λx)n = 1− e−nλx

so that X(1) ∼ Exp(nλ). Suppose for example that an institution purchases n
laptops, where n is assumed to be large (say 1000) and the liftemes of the com-
puters are independent exponential random variables with the same parameter
λ, say λ = 1. Then each of them is expected to last E[ Exp(1) ] = 1 unit of time.
X(1) is the waiting time until the first the laptop breaks. This is an exponential
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random variable with rate n = 1000. The expected time when the first laptop
will break is then

E[X(1)] =
1

1000
.

This is very small! On the other hand the probability that the first computer
to die will do so after the expected time is rather large e−1. This indicates
that, although each laptop is expected to last one unit of time, we expect the
first laptop to die in a rather short period of time. However, since the standard
deviation is of the same size as the mean, large deviations from the mean are
probable. ut

Example 4.33 (Half-life revisited). An institution has purchased a large number
N of computers. For simplicity we assume that N is even, N = 2n. The lifetimes
of the N computers are i.i.d. exponential random variables T1, . . . , TN ∼ Exp(λ).
Consider the order statistics of this collection,

T(1) ≤ T(2) ≤ · · · ≤ T(N).

Thus T(1) is the waiting time until the first computer dies, and T(n) = T(N/2)

is the waiting time until half the computers die. In (2.44) of Example 2.68 we
defined the half-life of Exp(λ) to be

h(λ) =
ln 2

λ

Then

lim
N→∞

E
[
T(N/2)

]
= h(λ). (4.19)

We describe below two proofs of (4.19). We denote by F (t) the common cdf of T1, . . . , TN ,

F (t) = 1− e−λt.

Denote by Fn(t) the cdf of T(n). We deduce from (4.16) that

Fn(t) =
2n∑
k=n

(2n

k

)
(1− e−λt)ke−(2n−k)λt.

Note that

P(T(n) > t) = 1− Fn(t).

From the equality

1 =
(

(1− e−λt) + e−λt
)2n

=

2n∑
k=0

(2n

k

)
(1− e−λt)ke−(2n−k)λt

we deduce

1− Fn(t) =

n−1∑
k=0

(2n

k

)
(1− e−λt)ke−(2n−k)λt.

From Propostion 2.61 we deduce

E[T(n] =

∫ ∞
0

P(T(n) > t)dt =

n−1∑
k=0

(2n

k

)∫ ∞
0

(1− e−λt)ke−(2n−k)λt.
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We now make the change in variables x = e−λt so t = − 1
λ

lnx and we deduce

E[T(n)] =

n−1∑
k=0

(2n

k

) 1

λ

∫ 1

0
(1− x)kx2n−k

dx

x

=
1

λ

n−1∑
k=0

(2n

k

)∫ 1

0
(1− x)kx2n−k−1dx

(2.47)
=

1

λ

n−1∑
k=0

(2n

k

)Γ(k + 1)Γ(2n− k)

Γ(2n+ 1)

(2.46)
=

1

λ

n−1∑
k=0

(2n

k

) (2n− k − 1)!k!

(2n)!
=

1

λ

n−1∑
k=0

(2n)!

k!(2n− k)!

(2n− k − 1)!k!

(2n)!

=
1

λ

n−1∑
k=0

1

(2n− k)
=

1

λ

(
1

2n
+

1

2n− 1
+ · · ·+

1

n+ 1

)
.

Using Riemann sums one can show that

lim
n→∞

(
1

2n
+

1

2n− 1
+ · · ·+

1

n+ 1

)
=

∫ 2

1

1

x
dx = ln 2.

Hence as N = 2n→∞ we have

lim
N→∞

E[T(N/2)] =
ln 2

λ
,

Recall that This proves (4.19),

We present below an alternate approach to the computation of E[T(n)]. The joint pdf of the random
vector

T = (T(1), . . . , T2N))

p(t1, . . . , tN ) = N !×
{
λNeλ(t1+···+tN ), if t1 ≤ t2 ≤ · · · ≤ tN ,
0, otherwise.

Form the new random vector Y = (Y1, Y2, . . . , YN ) defined by

Y1 = NT(1), Y2 = (N − 1)
(
T(2) − T(1)

)
, · · ·

Yk+1 = (N − k)
(
T(k+1) − T(k)

)
, · · · , YN =

(
T(N) − T(N−1)

)
The random vector Y is obtained from the random vector T via the linear transformation Y = AT

described by

y1 = Nt1

y2 = −(N − 1)t1 + (N − 1)t2

y3 = −(N − 3)t2 + (N − 1)t3

The matrix describing A is lower triangular and has determinant detA = N !. Thus A is invertible. Its
inverse is found by observing that

T(k+1) − Tk =
1

N − k
Yk

so that

t1 =
1

N
y1, t1 =

1

N
y1 +

1

N − 1
y2, · · ·

tk+1 =
1

N − k
yk+1 + · · ·+

1

N
y1, k = 0, 1, . . . , N − 1.

We observe next that

t1 + · · ·+ tN =
1

N
y1 +

(
1

N
y1 +

1

N − 1
y2

)
+

(
1

N
y1 +

1

N − 1
y2 +

1

N − 2
y3

)
+ · · ·

= y1 + y1 + · · ·+ yN .

Since t1 ≤ t2 ≤ · · · ≤ tN if and only if y1, y2, . . . , yN ≥ 0 we deduce from Example 4.30 that Y is a
continuous random vector and its joint pdf is

q(y1, . . . , yN ) = λn

{
e−λ(y1+···+yN ), y1, . . . , yN ≥ 0,

0, otherwise
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=

{(
λe−λy1

)
· · ·
(
λe−λyN

)
, y1, . . . , yN ≥ 0,

0, otherwise

This shows that the components of Y1, . . . , YN are independent random variables,

Yk ∼ Exp(λ), ∀k = 1, . . . , N.

Hence

E
[
T(k+1) − T(k)

]
=

1

N − k
E[Yk] =

1

λ(N − k)
.

Recalling that N = 2n, we deduce

E
[
T(n)

]
= E

[
[T(1)] + E

[
T(2) − T(1)

]
+ E

[
T(n) − T(n−1)

]
=

1

λ

(
1

2n
+

1

2n− 1
+ · · ·+

1

n+ 1

)
.

ut

4.5. Exercises

Exercise 4.1. The joint probability density function of X and Y is given by

f(x, y) =

{
c(y2 − x2)e−y, |x| ≤ y,
0, otherwise.

(i) Find c.

(ii) Find the marginal densities of X and Y .

(iii) Find E[X].

Exercise 4.2. Let X and Y be nonnegative, independent continuous random
variables.

(i) Show that

P(X < Y ) =

∫ ∞
0

FX(y)pY (y)dy.

where pX(x) and pY (y) are the pdf-s of X and respectively Y ?

(ii) What does this become if X ∼ Exp(λ1) and Y ∼ Exp(λ2)?

Exercise 4.3. (a) Suppose that X1, X2 are two independent Gamma distributed
random variables X1 ∼ Gamma(ν1, λ), X2 ∼ Gamma(ν2, λ). Show that

X1 +X2 ∼ Gamma(ν1 + ν2, λ).

(b) Suppose that X1, X2, . . . , Xn ∼ Exp(λ) are independent identically dis-
tributed exponential variables. Show that X1 + · · ·+Xn ∼ Gamma(n, λ).

Hint. (a) Use (4.4) and Proposition 2.71. (b) Use (a) and argue by induction.

Exercise 4.4. Let X have a uniform distribution on (0, 1), and given that X = x,
let the conditional distribution of Y be uniform on (0, 1/x).

(i) Find the joint pdf f(x, y) and sketch the region where it is positive.
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(ii) Find fY (y), the marginal pdf of Y , and sketch its graph.

(iii) Compute P(X > Y ).

Exercise 4.5. Adam and Billy Bob have agreed to meet at 12:30. Assume
that their arrival times are independent random variables, Adam’s uniformly
distributed between 12:30 and 1:00 and Billy Bob’s uniformly distributed between
12:30 and 1:15.

(i) Compute the probability that Billy Bob arrives first.

(ii) Compute the probability that the one who arrives first must wait more
than 10 min.

Exercise 4.6. Consider the quadratic equation x2 +Bx+C = 0 where B and C
are independent and have uniform distributions on [−n, n]. Find the probability
that the equation has real roots. What happens as n→∞?

Exercise 4.7. Let X and Y be independent and ∼ Exp(1). Find

E
[
e−(X+Y )/2

]
.

Exercise 4.8. Water flows in and out of a dam such that the daily inflow is
uniform on [0, 2] (megaliters) and the daily outflow is uniform on [0, 1], indepen-
dent of the inflow. Each day the surplus water (if there is any) is collected for
an irrigation project. Compute the expected amount of surplus water in a given
day.

Exercise 4.9. Let X and Y be independent and ∼ Unif[0, 1]. Find (a) E[XY ],
(b) E[X/Y ], (c) E[ ln(XY ) ], and (d) E

[
|Y −X|

]
.

Exercise 4.10. Let X1, X2, . . . , Xn be i.i.d. random variables with mean µ and
variance σ2, let Sn = X1 + · · ·+Xn, and let X̃ = Sn/n (called the sample mean).

Find E
[
X̃
]

and var
[
X̃
]
.

Exercise 4.11. Let X and Y be nonnegative and have joint pdf f and let
Z = Y/X.

(i) Express the joint pdf of (X,Z) in terms of f .

(ii) If X and Y are independent Exp(1), find the joint pdf of (X,Z) and
the marginal pdf of Z.

Hint. Have a look at Example 4.12.

Exercise 4.12. Let X be a continuous random variable with pdf p and let b be
a real number. Show that

E
[
X|X > b

]
=

∫∞
b xp(x)dx

P(X > b)
.
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Exercise 4.13. A saleswoman working for a company sells goods worthX×$1000
per week, where X is Unif[0, 2]. Of this, she must pay the company back up to
$800 and gets to keep the rest. Compute her expected profit

(i) in a given week, and

(ii) in a week when she makes a profit.

Hint. Use Exercise 4.12.

Exercise 4.14. Let U and V be independent and Unif[0, 1] and let

X = min(U, V ), Y := max(U, V ).

Find cov[X,Y ] and comment on its sign.

Exercise 4.15. Let X and Y be independent and uniform on [0, 1]. Let A be
the area and C the circumference of a rectangle with sides X and Y . Find the
correlation coefficient of A and C.

Exercise 4.16. Let

f(x, y) =

{
24xy, x, y ≥ 0, x+ y ≤ 1,

0, otherwise.

(i) Show that f(x, y) is the joint pdf of a continuous random vector (X,Y ).

(ii) Find the marginal pdf of X.

(iii) Find E[X] and E[Y ].

(iv) Find E[Y |X = x], x ∈ (0, 1).

Exercise 4.17. Suppose that the continuous random variables X,Y have a joint
distribution ρ(x, y) satisfying the symmetry condition ρ(x, y) = ρ(y, x). Set
Z := X + Y and denote by pX , pY .pZ the pdf-s of X,Y and respectively Z.

(i) Show that pX = pY .

(ii) Show that

pZ(z) =

∫
R
ρ(z − x, z)dx.

(iii) Show that

E[X|Z = z] =
z

2
.

Exercise 4.18. Pick a point uniformly random inside the unit disk in the plane
centered at the origin; see Example 4.3. Denote by R the distance to the origin
from this random point. Compute the pdf, the mean and the variance of the
random variable R. ut

Exercise 4.19. Three points X1, X2, X3 are selected uniformly and indepen-
dently at random in the interval [0, 1]. What is the probability that X2 lies
between X1 and X3?
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Exercise 4.20. Let U,X, S be three random variables such that U,X are inde-
pendent and U ∼ Unif(0, 1). Denote by pX(x) the pdf of X and by pS(s) the
pdf of S. Suppose that there exists a positive constant a such that

0 ≤ pS(x) ≤ apX(x), ∀x ∈ R.

Prove that

P
(
X ≤ x

∣∣aUpX(X) ≤ pS(X)
)

=

∫ x

−∞
pS(s)ds.

Exercise 4.21. The joint density function of (X,Y ) is given by

f(x, y) =
1

y
e−(y+x/y), x > 0, y > 0.

Find E[X], E[Y ], E[X2|Y = y], and show that cov[X,Y ] = 1.

Exercise 4.22. Let X and Y have joint density function

f(x, y) = e−x(y+1), x > 0, 0 < y < e− 1.

(i) Find and describe the conditional distribution of X given Y = y.

(ii) Find E[X|Y = y] and E[X|Y ].

(iii) Find E[X].

Exercise 4.23. Let X ∼ Unif(0, 1). Suppose that Y is a random variable such
that Y |X = x ∼ Unif(0, x).

(i) Find the joint pdf of (X,Y ).

(ii) Find P(Y < 1/4) by conditioning on X.

(iii) Find P(Y < 1/4) by using the marginal density of Y .

Exercise 4.24. Let X1, . . . , Xn be independent exponential random variables
having a common parameter λ. Determine the distribution of the random vari-
able Y = min(X1, . . . , Xn).

Hint. Note that P(Y > y) = P(X1 > y, . . . , Xn > y).

Exercise 4.25 (A, Rényi, [16]). Suppose that there are 9 barbers working in a
hair salon. One hair cut takes 10 min. At a given moment t a new customer enters
the salon and observes that all the 9 barbers are busy and 3 more customers
are waiting. The 9 busy barbers will complete their jobs at moments of time
T1, . . . , Tn ∈ [t, t+ 10]. Assuming that T1, . . . , T9 are independent and uniformly
distributed in [t, t+ 10] find the expected waiting time until his turn comes.

Exercise 4.26. Let X1, . . . , Xn be independent and identically distributed ran-
dom variables having cumulative distribution function F and density f . The
quantity

M =
1

2

[
X(1) +X(n)

]
,
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defined to be the average of the smallest and largest values in X1, . . . , Xn, is called
the midrange of the sequence. Show that its cumulative distribution function is

FM (m) = n

∫ m

−∞

[
F (2m− x)− F (x)

]n−1
f(x)dx.

Exercise 4.27. Two points X and Y are chosen uniformly random and inde-
pendently from the segment [0, 1]. Given ` ∈ (0, 1), what is the probability that
|X − Y | < `?

Exercise* 4.28. The weights of n items are X1, . . . , Xn, assumed independent
Unif(0, 1). Mary and John each have a bin (or suitcase) which can carry total
weight 1. Mary likes to pack in her bin only the heaviest item. John likes to pack
the items in order 1, 2, . . . , n, packing each item if it can fit in the space remaining.
Denote by WM the weight of Mary’s suitcase and by WJ the weight of John’s
suitcase. Find the pdf-s of WM and WJ and then compute the expectations of
these random variables.
Hint. You need to know that, for any c > 0 and any positive integer k we have∫

x1,...,xk≥0
x1+···+xk≤c

=
ck

k!
.





Chapter 5

Generating functions

5.1. The probability generating function

Recall (see Definition 2.26) that if X is a discrete random variable with range X
contained in N0 =

{
0, 1, 2, . . .

}
and

pn = P(X = n), n = 0, 1, 2, , . . .

then its probability generating function (pgf) is

GX(s) = p0 + p1s+ p2s
2 + · · · , s ∈ [0, 1].

According to (2.30), we have

GX(s) = E
[
sX
]
.

Note that if X1, . . . , Xn are discrete random variables with ranges contained in
N0, then the range of the sum X1, . . . , Xn is also contained in N0. Moreover

sX1+···+Xn = sX1 · · · sXn .

If additionally the variables X1, . . . , Xn are independent, then (3.20) implies that

E
[
sX1+···+Xn ] = E

[
sX1 · · · sXn

]
= E

[
sX1

]
· · ·E

[
sXn

]
.

We have thus proved the following result.

Proposition 5.1. If the discrete random variables X1, . . . , Xn are independent
and their ranges are contained in N0, then

GX1+···+Xn(s) =
n∏
k=1

GXk(s). (5.1)

ut

171
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Example 5.2. (a) Suppose that X1, . . . , Xn are independent Bernoulli variables
with the same success probability p. We set q = 1− p and

X := X1 + · · ·+Xn.

Thus X is the number of successes in a string of n independent Bernoulli trials
with success probability p, i.e., X ∼ Bin(n, p). Since

GXk(s) = p+ qs, ∀k = 1, . . . , n,

we deduce from (5.1) that

GBin(n,p) = GX(s) = (p+ qs)n.

This is in perfect agreement with our earlier computation (2.13).

(b) Suppose that X1, . . . , Xk are independent geometrically distributed random
variables Xi ∼ Geom(p), ∀i = 1, . . . , p. The sum Tk = X1 + · · · + Xk is the the
number independent of Bernoulli trials with success probability p until we get
the k successes, i.e., Tk ∼ NegBin(k, p). As usual, set q = 1− p. From (2.14) we
deduce

GXi(s) =
qs

1− ps
, ∀i = 1, . . . , k.

We deduce from deduce from (5.1) that

GNegBin(k,p)(s) =

(
qs

1− ps

)k
.

This is in perfect agreement with (2.15).

(c) Suppose X1, . . . , Xn are independent Poisson random variables,

Xk ∼ Poi(λk), k = 1, . . . , n.

From (2.17) we deduce that

GXk(s) = GPoi(λk)(s) = eλk(s−1), k = 1, . . . , n.

We deduce from deduce from (5.1) that

GX1+···+Xn(s) =

n∏
k=1

eλk(s−1) = e(λ1+···+λn)(s−1) = GPoi(λ1+···+λn)(s).

Hence, the sum of independent Poisson variables is also a Poisson variable. ut

Theorem 5.3 (Wald’s formula). Suppose that X1, X2, . . . are independent iden-
tically distributed (iid) discrete random variables with ranges contained in N0.
Denote by GX(s) their common pgf. Let N be another discrete random variable
independent of the the Xi, with range contained in N0 and with pfg GN (s). Then
the pgf of

SN = X1 + · · ·+XN
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is

GSN (s) = GN
(
GX(s)

)
. (5.2)

Moreover, if

µ = E[Xi], σ2 = var[Xi],

then

E[SN ] = E[N ]µ, var[SN ] = E[N ]σ2 + var[N ]µ2. (5.3)

Proof. For any n ∈ N0 we set pn = P(N = n). Note that

GN (s) =
∞∑
n=0

pns
n

and for any n ∈ N0 we have

GSn(s) = GX(s)n.

Using (3.13) we deduce that

GSN (s) = E
[
sSN

]
=

∞∑
n=0

E
[
sSN |N = n

]
P(N = n) =

∞∑
n=0

pnE
[
sSn |N = n

]
.

Since N is independent of the Sn for any n we deduce from Corollary 3.24 that

E
[
sSn |N = n

]
= E[sSn ] = GSn(s).

Hence

GSN (s) =
∞∑
n=0

pnGSn(s) =
∞∑
n=0

pnGX(s)n = GN
(
GX(s)

)
.

To prove (5.3) we use Proposition 2.40. We have

E[SN ] = G′SN (1) = G′N (GX(1))G′X(1) = G′N (1) ·G′X(1) = E[N ]µ.

Next,

G′′SN (s) = G′′N (GX(s))G′X(s)2 +G′N (GX(s))G′′X(1),

so

G′′SN (1) = G′′N (1)G′X(1)2 +G′N (1)G′′X(1) = G′′N (1)µ2 + E[N ]G′′X(1).

We deduce from (2.23d) that

var[SN ] = G′′SN (1) +G′SN (1)−G′SN (1)2

= G′′N (1)µ2 + E[N ]G′′X(1) + E[N ]µ− E[N ]2µ2

=
(
var[N ] + E[N ]2 − E[N ]

)
µ2 + E[N ](σ2 + µ2 − µ) + E[N ]µ− E[N ]2µ2

= E[N ]σ2 + var[N ]µ2.

ut

Here is a simple application of Wald’s formula.
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Example 5.4. Suppose that customers arrive at a rural convenience store such
that the number of customers in a not so busy hour has a Poisson distribution
with mean 5. Each customer buys a number of lottery tickets, independent of
other customers, and this number has a Poisson distribution with mean 2.

Denote by N the number of customers arriving in one hour so N ∼ Poi(5).
Denote by Ti the number of lottery tickets bought by the customer i, so that
Ti ∼ Poi(2), ∀i. The total number of tickets sold in one hour is

T = T1 + · · ·+ TN

so that

GT (s) = GN (Poi(2)) = e5(GPoi(2)(s)−1)e5(e2(s−1)−1).

We have

P[T = 0] = GT (0) = e−5(1+e−2) ≈ 0.0034.

Next

E[T ] = E[N ]E[Xi] = 10,

var[N ] = 5, var[Xi] = 2, var[T ] = 5var[X] + 5 · E[X]2 = 30. ut

Example 5.5 (Branching processes). The branching processes or the Galston-
Watson processs was first introduced in 1873 by Francis Galton and was con-
cerned with the extinction of family names in the British peerage. It was first
successfully attacked in 1874 in a joint work of Galton with the Reverend Henry
Watson. It since found many applications in physical and biological sciences. We
follow closely the presentation in [7, Sec.5.4].

Suppose that a population of bacteria evolves in generations. We denote by
Zn the number of members of the n-th generation. This is a random quantity.
Each bacteria in the n-th generation gives birth to new family of members of
the next generation, the (n + 1)-th generation; see Figure 5.1. The number of
members of this new family is the random variable Zn+1.

0

1

2

Figure 5.1. The growth of of a population of bacteria from one generation to another

We make the following assumptions.
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(i) Z0 = 1

(ii) The family sizes of each bacteria are independent random variables.

(iii) The family sizes of each bacteria have the same pmf as a fixed random
variable B with values in {0, 1, 2, . . . }. We denote by pB the pmf of B
and by GB(s) its pgf

GB(s) = p0 + p1s+ p2s
2 + · · · , pn := P(B = n), n = 0, 1, 2, . . . .

We set

µ := E[B] = G′B(1).

We want to understand the behavior of Zn as n → ∞ and in particular we
want to study if the population can become extinct. The extinction event E
happens if Zn = 0 for some n. Thus

E =
⋃
n≥0

{Zn = 0}.

Note that if Zn = 0 then 0 = Zn+1 = Zn+2 = · · · so that

{Z0 = 0} ⊂ {Z1 = 0} ⊂ · · · ⊂ {Zn = 0} ⊂ · · ·

so that

P(E) = lim
n→∞

P(Zn = 0).

Denote by Gn the pgf of Zn. If βn,1, . . . , βn,Zn are the bacteria of the n-th
generation, then for any i = 1, . . . , Zn, the bacterium βn,i gives birth to a number
Bn,i bacteria of the next generation. According to our assumptions, the random
variables Bn,1, . . . , Bn,Zn are independent with the same pmf pB. Thus

Zn+1 = Bn,1 + · · ·+Bn,Zn .

From Wald’s formula (5.2) we deduce

Gn+1(s) = GZn+1(s) = GB
(
GZn(s)

)
= GB

(
Gn(s)

)
.

We deduce

E[Zn+1] = G′n+1(1) = G′B
(
Gn(1

)
G′n(1) = G′B(1)G′n(1) = µE[Zn].

Since E[Z0] = 1 we conclude

E[Zn] = µn.

We deduce that if µ < 1, then

lim
n→∞

E[Zn] = 0.

From Markov’s inequality (2.31) we deduce

P(Zn > 0) = P(Zn ≥ 1) ≤ E[Zn] = µn → 0 as n→∞.

Hence

1 ≥ P(Zn = 0) = 1− P(Zn > 0) ≥ 1− µn → 1 as n→∞
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so

P(E) = 1.

This should not be too surprising: if the expected number of offsprings of a
single bacterium is < 1, then in the long run this species of bacteria will become
extinct. One can then expect that if µ > 1, then the species will not become
extinct. Indeed, the expected size of the n-th generation grows exponentially

E[Zn] = µn →∞ as n→∞.

However, the probability that Zn = 0 could be nonnegligible. We set

ρn := P(Zn = 0) = Gn(0). (5.4)

Note that

ρn = P(Zn = 0) ≤ P(Zn+1 = 0) = ρn+1,

so that the sequence (ρn) is increasing. It is also bounded above by 1 so it is
convergent. We want to show that if p0 = P(B = 0) > 0 and µ = E[B] > 1,
then the sequence converges to a number ρ ∈ (0, 1). Clearly ρ = P(E). In other
words, the extinction probability is nonzero but strictly smaller than 1 so the
probability that the species will survive in perpetuity is also positive. To prove
this we need the following technical result.

Lemma 5.6. If p0 = GB(0) > 0 and µ = G′B(1) > 1, then the equation

x = gB(x)

has a unique solution ρ in the interval (0, 1).

We will not give a formal proof of this fact. Instead we will provide the
geometric intution behind it.

The solutions of the equation x = gB(x) correspond to the intersections of
the graph pf GB with the diagonal line y = x; see Figure 5.2. The intersection of
the graph of GB with the y axis is the point (0, GB(0)) = (0, p0) which is above
the diagonal. The slope of the line y = x is 1. Since µ = G′B(1) > 1 and GB(x)
is convex, i.e., G′′B(x) ≥ 0, we deduce that near the corner (1, 1) the graph of GB
is below the diagonal; see Figure 5.2. Thus the graph of GB starts above the
diagonal and eventually it reaches points below the diagonal. The intermediate
value theorem then implies that the graph of GB must cross the diagonal.

We can now prove the claimed facts concerning the probabilities

ρn := P(Zn = 0) = Gn(0).

Note that since 0 < ρ and GB is increasing we have

p0 = GB(0) < GB(ρ) = ρ,

ρ2 = GB(ρ1) < GB(ρ) = ρ.
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Figure 5.2. The equation x = GB(x) has a unique solution ρ.

Continuing in this fashion we deduce ρn < ρ < 1, for any n. Hence the sequence
(ρn) is increasing and bounded above by ρ so it is convergent. We denote by ρ∞
its limit. Note that ρ∞ ≤ ρ < 1. Letting n→∞ in the equality

ρn+1 = GB(ρn)

we deduce

ρ∞ = GB(ρ∞), ρ∞ ∈ [0, 1).

Lemma 5.6 then implies that ρ∞ = ρ.

For example suppose that

P(B = 0) =
1

4
, P(B = 1) =

3

8
, P(B = 2) =

3

8
, P(B > 2) = 0.

Then

GB(x) =
2 + 3x+ 3x2

8
.

We have

p0 =
1

4
µ = E[B] =

9

8
> 1.

The equation GB(x) = x is equivalent to the quadratic equation

3x2 + 3x+ 2 = 8x,

i.e.

3x2 − 5x+ 2 = 0.

Its roots are

x± =
5± 1

6
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and we deduce ρ = x− = 2
3 . ut

5.2. Moment generating function

Definition 5.7 (Moment generating function). Let X be a random variable
(could be either discrete, or continuous) which is s-integrable for any s > 1. The
moment generating function (or mgf) of X is the function

MX(t) =

∞∑
k=0

µk[X]

k!
tk, (5.5)

where µk(X) is the k-th moment of X, µk[X] = E
[
Xk
]
. ut

Remark 5.8. Even if all the the moments of X exist, it is not clear that the
series in the right-hand side of (5.5) is convergent for some t 6= 0. In the sequel,
when talking about the mgf of a random variable, we will implicitly assume that
the series is convergent for some t0 6= 0. The theory of power series then implies
that it is convergent for any t such that |t| ≤ |t0|. ut

Proposition 5.9. Let X be a random variable. Then

MX(t) = E
[
etX

]
. (5.6)

Proof. We have

MX(t) =
∞∑
k=0

E
[
Xk
] tk
k!

(3.4)
= E

[ ∞∑
k=0

(tX)k

k!

]
= E

[
etX
]
.

ut

The importance of the moment generating function comes from the fact that
it completely determines the statistics of a random variable. More precisely we
have the following nontrivial result.

Theorem 5.10. Suppose that X and Y are two random variables. If

MX(t) = MY (t)

for all t in an open interval containing 0, then X ∼ Y , i.e., X and Y are
identically distributed, i.e.,

P(X ≤ c) = P(Y ≤ c) for any c ∈ R. ut

Proposition 5.11. (a) Suppose that X is a random variable with mgf MX(t).
Then

µk[X] = E
[
Xk
]

= M
(k)
X (0).

(b) If X1, . . . , Xn are independent random variables, then

MX1+···+Xn(t) = MX1(t) · · ·MXn(t). (5.7a)
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Proof. (a) Follows by differentiating the equality

MX(t) =

∞∑
k=0

E
[
Xk
] tk
k!
.

(b) Observe that the random variables etX1 , . . . , etXn are independent and

et(X1+···+Xn) = etX1 · · · etXn .

Now conclude by invoking (3.20). ut

Example 5.12. (a) Suppose that X ∼ Ber(p). The law of subconscious statis-
tician implies

MBer(p)(t) = E
[
etX

]
= q + pet.

(b) Suppose that X ∼ Bin(n, p). Then X is a sum of n independent identically
distributed random variables X1, . . . , Xn ∼ Ber(p). We deduce

MBin(n,p)(t) = (q + pet)n .

(c) Suppose that X ∼ Geom(p). As usual, set q = 1−p. The law of subconscious
statistician implies

E
[
etX

]
=

∞∑
n=1

etnqn−1p = pet
∞∑
n=0

e(n−1)tqn−1 = pet
∞∑
k=0

(
qet
)k

=
pet

1− qet
.

Hence

MGeom(p) =
pet

1− qet
.

(d) Suppose thatX ∼ NegBin(k, p). ThenX is a sum of k independent identically
distributed random variables X1, . . . , Xn ∼ Geom(p). We deduce

MNegBin(k,p) =

(
pet

1− qet

)k
.

(e) Suppose that X ∼ Poi(λ). Then

E
[
etX

]
= e−λ

∞∑
n=0

etn
λn

n!
= e−λeλe

t
= eλ(et−1).

Hence

MPoi(λ)(t) = eλ(et−1) . ut

Example 5.13. (a) Suppose that X ∼ Unif(a, b). Then

MX(t) = E
[
etX

]
=

1

b− a

∫ b

a
etxdx =

etb − eta

tb− ta
.
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(b) Suppose that X ∼ Exp(λ). Then

MX(t) = E
[
etX

]
= λ

∫ ∞
0

etx−λxdx =
λ

λ− t
Thus

X ∼ Exp(λ)⇒MX(t) =
λ

λ− t
.

(c) Suppose that X ∼ N(0, 1)

MX(t) = E
[
etX

]
=

1√
2π

∫
R
etx−

x2

2 dx

=
et

2/2

√
2π

∫
R
e−t

2/2+tx−x
2

2 dx =
et

2/2

√
2π

∫
R
e−

(x−t)2
2 dx = e

t2

2 .

Suppose that Y ∼ N(µ, σ2). We can write Y = σX + µ, X ∼ N(0, 1). Then

MY (t) = E
[
etY
]

= E
[
et(σX+µ)

]
= E

[
etµetσX

]
= etµE

[
etσX

]
= etµMX(σt) = etµ · eσ2t2/2 = e

σ2

2
t2+µt.

Thus

Y ∼ N(µ, σ2)⇒MY (t) = e
σ2

2
t2+µt .

(d) If X ∼ Gamma(ν, λ), then

MX(t) =
λν

Γ(ν)

∫ ∞
0

xν−1e−λxetxdx =
λν

Γ(ν)

∫ ∞
0

xν−1e−(λ−t)xdx

(y = (λ− t)x, dx = 1
(λ−t)dy)

=
λν

Γ(ν)(λ− t)ν

∫ ∞
0

yν−1e−ydy =

(
λ

λ− t

)ν
.

Thus

X ∼ Gamma(ν, λ)⇒MX(t) =

(
λ

λ− t

)ν
. ut

From Example 5.13(b),(d) we deduce the following useful resuly.

Proposition 5.14. Suppose that X1, . . . , Xn are i.i.d. exponential random vari-
ables

X1, . . . , Xn ∼ Exp(λ).

Then

X1 + · · ·+Xn ∼ Gamma(n, λ).
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Proof. We have

MX1+···+Xn(t) =

(
λ

λ− t

)n
.

Thus X1 + · · ·+Xn has the same mfg as a Gamma(n, λ)-variable. We can now
conclude by invoking Theorem 5.10. ut

Example 5.15 (Poisson processes). Suppose that we have a have a stream of
events occurring in succession at random times S1 ≤ S2 ≤ S3 ≤ · · · such that
the waiting times between two successive occurrences

T1 = S1, T2 = S2 − S1, . . . , Tn = Sn − Sn−1, . . .

are i.i.d. exponential random variables Tn ∼ Exp(λ), n = 1, 2, . . . .

It may help to think of the sequence (Tn) as waiting times for a bus to arrive:
once the n-th bus has left the station, the waiting time for the next bus to arrive
is an exponential random variable Tn+1 independent of the preceding waiting
times. From this point of view, Sn is the arrival time of the n-th bus.

For t > 0 we denote by N(t) the number of buses that have arrived at the
station during the time interval [0, t]. This is a discrete random variable with
range {0, 1, 2, 3, . . . }. To find its pmf we need to compute the probabilities

P(N(t) = n), n = 0, 1, 2, . . . .

We have

P(N(t) = 0) = P(T1 > t) = e−λt = the survival function of Exp(λ).

If n > 0, then N(t) = n if and only if the n-th buss arrived sometime during
the interval [0, t], i.e., Sn ≤ t, but the (n+ 1)-th bus has not arrived in this time
interval. We deduce

P(N(t) = n) = P
(
{Sn ≤ t} \ {Sn+1 ≤ t}

)
= P(Sn ≤ t)− P(Sn+1 ≤ t).

If we denote by Fn(t) the cdf of Sn, then we can rewrite the above equality in
the form

P(N(t) = n) = Fn(t)− Fn+1(t).

Using Proposition 5.14 we deduce Sn+1 ∼ Gamma(n+ 1, λ) so that,

Fn+1(t) =
λn+1

Γ(n+ 1)

∫ t

0
sνe−λsds =

λn+1

n!

∫ t

0
sne−λsds.

For n > 0, we integrate by parts to obtain

Fn+1(t) = −
(
λn

n!
sne−λs

)∣∣∣∣∣
s=t

s=0

+
λn

(n− 1)!

∫ t

0
sn−1e−λsds

= −(tλ)n

n!
e−λt + Fn(t).
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Hence

P(N(t) = n) = Fn(t)− Fn+1(t) =
(tλ)n

n!
e−λt, n > 0.

This shows that N(t) is a Poisson random variable, N(t) ∼ Poi(tλ).

The collection of random variables{
N(t), t ≥ 0

}
,

is called the Poisson process with intensity λ. ut

5.3. Concentration inequalities

Suppose that X is a discrete random variable with mean µ = 0 and mgf MX(t). For any t ≥ 0 define

φt : R → R, φt(x) = etx. The function φt is positive and increasing and Markov’s inequality (2.31)
implies that for any c > 0 we have

P(X > c) = P
(
φt(X) > φt(c)

)
≤

1

φt(c)
E
[
φt(X)

]
= e−tcMX(t), ∀t ≥ 0.

Next, observe that the inequality X < −c is equivalent with −X > c and we deduce

P(X < −c) = P(−X > c) ≤
1

φt(c)
E
[
φt(−X)

]
= e−tcM−X(t), ∀t ≥ 0.

We obtain in the fashion the Chernoff bounds

P(X > c) ≤ inf
t≥0

e−tcMX(t), ∀c > 0, (5.8a)

P(X < −c) ≤ inf
t≥0

e−tcM−X(t) = inf
t≥0

e−tcMX(−t), ∀c > 0. (5.8b)

Example 5.16. Let us see what Chernoff’s bounds tell us about running a casino. Suppose that the

casino runs a game of chance such that at the end of one game the casino wins $1 with probability p,

and looses $1 with probability q = 1− p. We assume that the game is biased in favor of the casino, i.e.
p > 1

2
. This situation defines a discrete random variable Y , the profit per game, with range {−1, 1} and

pmf P(Y = −1) = 1− p, P(Y = −1) = p. The expected profit per game is

µ = E[Y ] = p− q = 2p− 1 > 0,

and the mfg of Y is

MY (t) = pet + qe−t.

Note that

p =
1 + µ

2
, q =

1− µ
2

.

If the casino runs n independent such games during a year then it generates a sequence of independent

discrete random variable Y1, . . . , Yn, all distributed like Y . The total profit for the year is

Zn = Y1 + · · ·+ Yn,

and the expected profit during the one year is E[Zn] = nµ.

We want to estimate the total profit for a year is less than the fraction r of the expected profit,
i.e., the probability

P
(
Zn < rnµ

)
.

We set

X = Y − µ, Xk = Yk − µ, Sn = X1 + · · ·+Xn = Zn − nµ.
Note that

E[Xk] = E[Sn] = 0, MXk (t) = MX(t) = e−µtMY (t),

P
(
Zn < rnµ

)
= P

(
Sn < −(1− r)nµ

)
.
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To estimate the last probability we will use the Chernoff estimate (5.8b) with

X = Sn, c = (1− r)nµ.

We have

MSn (t) = MX1 (t) · · ·MXn (t) =
(
MX(t)

)n
=
(
e−tµMY (t)

)n
= e−nµt

(
pet + qe−t

)n
,

MSn (−t) = enµt
(
pe−t + qe−

)n
,

e−ctMSn (−t) = erµt
(
pe−t + qet

)n
=
(
erµt

(
pe−t + qe−t

) )n
.

To find the minimum of e−ctMSn (t) for t ≥ 0 its suffices to find the minimum of

f(t) = erµt
(
pe−t + qet),

for t ≥ 0. Observe that

f(t) = pe−at + qebt, a = 1− rµ > 0, b = 1 + rµ > 0, p =
1 + µ

2
, q =

1− µ
2

.

This shows that f is convex. Moreover if t0 is a critical point of f(t), then t0 is a global minimum point

of f and it satisfies

0 = f ′(t0) = −ape−at0 + bqebt0 .

We deduce that

ap = bqe(a+b)t0 = bqe2t0 ⇒ et0 := L =

√
ap

bq
.

Note that
ap

bq
=

(1 + µ)(1− rµ)

(1− µ)(1 + rµ)
> 1

Then

f(t0) = Lrµ
( p
L

+ qL
)

=: ρ(p, r)

Note that since f(t0) ≤ f(0) = 1, we have ρ(p, r) < 1. We deduce from (5.8b)

P(Sn < rnµ) ≤ ρ(p, r)n . (5.9)

To see the power of this inequality we look at a special case when the probability of winning is p = 0.55

and the casino runs n = 1, 000, 000 games a year. With an expected profit of $0.1 per game one can
expect a profit $100, 000 per year.

We fix r = 0.93 and we ask what is the probability of making less than r · 100, 00 = 93, 000 dollars
per year. In this case we have

ρ = ρ(p, r) = 0.9999753 and ρ1,000,000 ≈ 1.8 · 10−11.

The inequality (5.9) leads to an amazing conclusion: this probability is smaller than 1 in 50 billion!!!

This is about six hundred times smaller than the probability that the Earth will be hit by a massive

asteroid.1

We include below the R script that lead to the above numerical conclusion.

#the pmf of Y

p=0.55 #This is the Casino’s winning probability

q=1-p

mu=2*p-1#this is expected profit per game

mu

#the number of games per year

n=1000000

#fraction r of the theoretical profit you hope to get

r=0.93

L=(1+mu)*(1-r*mu)/((1+r*mu)*(1-mu))

L=sqrt(L)

1 A crash course in probability, The Economist, Jan.29, 2015

http://www.economist.com/blogs/gulliver/2015/01/air-safety.

http://www.economist.com/blogs/gulliver/2015/01/air-safety
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L

f=function(x) { (x^(r*mu))*(p/x+q*x)}

rho=f(L)

rho

n*r*mu

"the probability of making less than"; r*n*mu; "in profit is"; rho^n



5.4. Exercises 185

5.4. Exercises

Exercise 5.1. Let X be a discrete random variable with range the positive
integers and pmf p(i) = 2

3i
, for i ≥ 0. Find the moment generating function

MX(t) and use this to calculate E[X] and var[X].

Exercise 5.2. Let X be a random variable with range {0, 1, 2} such that

E[X] = 1, E[X2] =
3

2
.

(i) Find the pgf of X.

(ii) Find E[X5].

Exercise 5.3. Let X denote the number of coin tosses until the first occasion
when successive tosses showHTH. Show that the probability generating function
of X is

GX(s) = E
[
sX
]

=
s3

8− 8s+ 2s2 − s3
.

Exercise 5.4. Let X be a continuous random variable with range [0, 1] and pdf
f(x) = 6x(1 − x) for 0 ≤ x ≤ 1. Find the moment generating function MX(t)
and use this to calculate E[X] and var[X].

Exercise 5.5. Let X1, X2, . . . , Xn be independent geometric random variables
each with the same parameter p. Find the moment generating function MY (t)
of Y = X1 + · · ·+Xn and use this to find the distribution of Y .

Exercise 5.6. Let X1, X2, . . . , Xn ∼ Gamma(ν, λ) be independent Gamma dis-
tributed random variables, each with the same parameters ν, λ > 0. Show that

X1 + · · ·+Xn ∼ Gamma(nν, λ).

Exercise 5.7. Let X, Y and Z be independent Poisson random variables with
parameters λ1, λ2 and λ3 respectively. For y = 0, 1, . . . , t calculate

P(Y = y|X + Y + Z = t).

Exercise 5.8. Suppose that X1, X2 are independent normal random variables,
X1 ∼ N(µ1, σ

2
1), X2 ∼ N(µ2, σ

2
2). Show that

X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Exercise 5.9. Let X ∼ N(1, 2) and Y ∼ N(4, 7) be independent random vari-
ables. Find the probability of the following events:

(a) X + Y > 0; (b) X − Y < 2; (c) 3X + 4Y > 20.

Exercise 5.10. College student IQ is normally distributed with mean 110 and
standard deviation 4. Find the probability that the average IQ of 10 randomly
selected students is at least 112.
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Exercise 5.11. The lifetime of car mufflers is normally distributed with mean 3
years and standard deviation 1 year. Suppose that a family buys two new cars
at the same time.

(i) What is the probability that the muffler on one car needs changing at
least 1 year before the muffler on the other car?

(ii) What is the probability that one car needs two new mufflers before the
muffler on the other car has to be replaced?

Exercise 5.12. Suppose that X1, X2, . . . are independent geometric random
variables with success probability p and N is a Poisson random variable with
mean λ independent of the Xi. Find the probability generating function of

Y = X1 + · · ·+XN .



Chapter 6

Limit theorems

Figure 6.1. Simulating 20, 000 rolls of a fair die and recording the frequency
of 5’s. The horizontal line at altitude 1/6 is the theoretically prescribed prob-
ability of getting a 5.

6.1. The law of large numbers

We have indirectly alluded to the law of large numbers early on in Example 1.5(a)
when we observe that if we roll a fair die a large number of times then we expect
that the number 5 will show up roughly one sixth of the time; see Figure 6.1.
For each n ∈ N denote by Xn the Bernoulli random variable that takes value 1
if the we get a five at the n-th roll and 0 otherwise.

187
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Note that the the random variables X1, X2, . . . are i.i.d. (independent and
identically distributed). In particular, they all have the same mean

µ = E
[
Xk

]
=

1

6
, ∀k = 1, 2, . . . .

Moreover, the sum X1 + · · ·+Xn describes the number of fives that we get after
the first n rolls of the die. The average

Xn =
1

n

(
X1 + · · ·+Xn)

represents the fraction of the first n rolls that yielded a 5 and it is usually re-
ferred to as the sample mean or the empirical mean, i.e., the average observed
experimentally. It is itself a random quantity.

The numerical experiment depicted in Figure 6.1 suggests that for n large
the empirical mean Xn is very close to the theoretical mean µ = 1

6 . The Law of
Large Numbers (or LLN) gives a precise meaning to this heuristic.

Theorem 6.1 (The Law of Large Numbers). Suppose that X1, X2, . . . is a se-
quence of i.i.d. random variables with mean µ and finite variance σ2. We denote
by Xn the empirical mean

Xn :=
1

n

(
X1 + · · ·+Xn

)
.

Then, for any ε > 0 we have

P
(
|Xn − µ| > ε

)
≤ σ2

nε2
. (6.1)

In particular

lim
n→∞

P
(
|Xn − µ| > ε

)
= 0, ∀ε > 0 . (6.2)

In other words, for any fixed small number ε > 0 the probability that the sample
mean Xn deviates from the theoretical mean by more than ε > 0 is extremely
small if n is extremely large. Thus, for large n is is extremely unlikely that Xn

differs from µ by more than ε.

Proof. Observe that

E
[
X1 + · · ·+Xn

]
= nµ→ E

[
Xn

]
= µ.

Moreover, since the variables Xi are independent we have

var
[
X1 + · · ·+Xn

]
= nvar[X1] = nσ2.

We deduce from (2.21b) and (2.40b) that

var
[
Xn

]
=

1

n2
var

[
X1 + · · ·+Xn

]
=
σ2

n
.
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Hence, the standard deviation of Xn is

σ̄n =

√
var[Xn] =

σ√
n
.

Observe that, for n very large the standard deviation σ̄n is very small so the
random variable is highly concentrated near its mean.

Fix ε > 0. From Chebyshev’s inequality (2.32b) or (2.42b) we deduce

P
(
|Xn − µ| > ε

)
≤ var[X̄n]

ε
=

σ2

nε2
→ 0 as n→∞.

ut

Definition 6.2. Let (Yn) be a sequence of random variables and µ a constant.

We say that Yn converges in probability to µ, and we write this Yn
P−→ µ if for

any ε > 0 we have

lim
n→∞

P(|Yn − µ| > ε) = 0. ut

Thus, the law of large numbers states that the sample means of a sequence
of i.i.d. random variables with finite variance converge in probability to their
common mean. It validates the vague but intuitive idea that “superposing inde-
pendent observations average out the noise”.

Remark 6.3. (a) We want to mention that finiteness of the variance is not
needed for the Law of Large Numbers to hold. The proof in this more general
case is considerably more ingenious. For details we refer to [5, X.2].

(b) The Law of Large Number as formulated above is a special case of the so
called Strong Law of Large Numbers or SLLN which states that the empirical
mean X̄n converges almost surely to the theoretical mean µ.1

The event “X̄n → µ as n→∞” can be given the set theoretic description⋂
ε>0

⋃
N≥1

⋂
n≥N

{
|X̄n − µ| < ε

}
and SLLN states that the above event has probability 1. This result is called the
Strong Law because almost sure convergence implies convergence in probability.
For its difficult proof we refer to [5, X.4].

Example 6.4 (The Monte Carlo method). Consider a function of two variables
f(x, y) defined over the square S = [0, 1] × [0, 1]. We want to describe a proba-
bilistic method of computing the double integral∫∫

S
f(x, y)dxdy.

1The precise statement of the SLLN requires more sophisticated mathematical concepts.
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Suppose that X,Y are independent random variable uniformly distributed on
[0, 1],

X,Y ∼ Unif(0, 1).

Then the random vector (X,Y ) is uniformly distributed over the square S since
its pdf is dxdy, x, y ∈ [0, 1]. Let Z denote the random variable Z := f(X,Y ).
The law of the subconscious statistician shows that

E
[
Z
]

=

∫∫
S
f(x, y)dxdy.

Suppose that X1, Y1, X2, Y2, . . . are independent random variables uniformly dis-
tributed on [0, 1]. Then the random variables

Z1 = f(X1, Y1), Z2 = f(X2, Y2),

are independent and have the same distributions as Z. The (strong) law of large
numbers shows that the empirical mean

Z̄N =
1

N

(
Z1 + Z2 + · · ·+ ZN )

converges almost surely to E
[
Z
]

as N →∞.

We can use this for practical computations as follows: choose a large number
of independent, uniformly distributed random samples

(X1, Y1), . . . , (XN , YN )

of S. Then, for N very large, with probability 1,∫∫
S
f(x, y)dxdy ≈ 1

N

N∑
k=1

f(Xk, Yk).

In Example 7.18 we explain how to implement the Monte Carlo method in R. ut

6.2. The central limit theorem

Suppose that

X1, X2, . . . , Xn, . . .

are i.i.d. random variables with mean µ, standard deviation σ and variance σ2.
The computations in the previous section show that the sum

Sn = X1 + · · ·+Xn

has mean nµ, variance nσ2 and standard deviation σ
√
n,

E[Sn] = nµ, var[Sn] = nσ2, σ[Sn] = σ
√
n.

The Central Limit Theorem (or CLT) states that, for large n, Sn is very close to
a normal random variable with the same mean nµ and variance nσ2.
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Figure 6.2. The pmf of Bin(50, 0.4) is very close to the pdf of the Gaussian
random variable Y with the same mean and variance.

This can be easily seen in Figure 6.2. This depicts the special case when the
random variables Xj are Bernoulli random variables, Xk ∼ Ber(0.4), ∀k ≥ 1.
The sum Sn is then a binomial random variable Sn ∼ Bin(n, 0.4). It has mean
0.4n and variance 0.24n .

In Figure 6.2 we have depicted the pmf of S50 (red vertical segments) and
the thick (blue) curve is the graph of the pdf of a normal random variable
Y ∼ N(0.4 · 50, 0.24 · 50). The fact that the curve follows closely the profile
of the pmf of Bin(50, 0.4) is no accident. It is a manifestation of the CLT.

To formulate the Central Limit Theorem (CLT) precisely we begin with a
few simple observation. Note that the sample mean

X̄n =
1

n
Sn

has mean µ and variance

σ̄2
n = var

[
X̄n

]
=

1

n2
var

[
Sn
]

=
σ2

n
.

It is thus highly concentrated near its mean, and as the Law of Large Numbers
shows, it converges to µ in probability and almost surely.

The rescaled random variable

Zn :=
1

σ̄n

(
X̄n − µ

)
=

1

σ
√
n

(
Sn − nµ

)
,
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has mean 0 and standard deviation 1. The CLT states that the random variables
Zn approach a standard normal random variable Y ∼ N(0, 1).

Theorem 6.5 (Central Limit Theorem). Suppose that

X1, X2, . . . , Xn, . . .

are i.i.d. random variables with mean µ, standard deviation σ and variance σ2.
Set

Sn := X1 + · · ·+Xn,

Zn :=
1

σ
√
n

(
Sn − nµ

)
=

1

σ[Sn]

(
Sn − E[Sn]

)
.

If

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt,

denotes the cdf of N(0, 1), then, for any x ∈ R, we have

lim
n→∞

P
(
Zn ≤ x) = Φ(x). ut

Remark 6.6. (a) The Central Limit Theorem shows that the normal distribution
occupies a special place in probability since the empirical means of any sequence
of i.i.d. square integrable random variables converge in probability to a normal
random variable.

(b) The central limit theorem can be substantially improved if we have additional
information on the random variables Xn. The Berry-Essen theorem shows that
if

ρ := E
[
|Xn − µ|3

]
<∞,

then ∣∣P(Zn ≤ x)− Φ(x)
∣∣ ≤ ρ

σ3
√
n
, ∀x ∈ R, n = 1, 2, . . . .

For example, if n is 1 million, n = 106, the
√
n = 103 = 1, 000 so

P
(
Zn ≤ x) ≈ Φ(x)± 0.001.

Remark 6.7 (z-score). The central limit essentially states that, for large n, the
probability that Sn belongs to a given interval is very close to the probability
that a normal random variable N(nµ, nσ2) belongs to the same interval. If we
choose this interval of the form(

nµ− aσ̂n, nµ+ bσ̂n
]
, σ̂n = σ[Sn] = σ

√
n,

then the central limit theorem implies

P
(
aσ̂n < Sn − nµ ≤ bσ̂n

)
≈ Φ(b)− Φ(a) . (6.3)

Equivalently, this means

P
(
α < Sn − nµ < β

)
≈ Φ

(
β

σ
√
n

)
− Φ

(
α

σ
√
n

)
. (6.4)
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In practice is convenient to rephrase (6.3) in terms of z-score defined as

z =
observed value− expected value

standard deviation
.

The numbers a, b in (6.3) are examples z-scores. Using the fact that E[Sn] = nµ
we deduce

P
(
nµ+ z∗

√
nσ ≤ Sn ≤ nµ+ z∗

√
nσ
)
≈ Φ(z∗)− Φ(z∗) .

The error in the above approximation is roughly the size 1√
n

. For small n this

error is rather large. E.g. for n = 100, the error could be as large as 0.1. ut

Example 6.8 (Histogram correction). Suppose that we roll a die n = 120 times.
We denote by Sn the number fives rolled. We have

Sn ∼ Bin(n, 1/6), E[Sn] =
n

6
= 20, σ[Sn] =

√
5 · 120

36
=

√
50

3
≈ 4.0824

Thus the theory tells us that we should expect E[Sn] = 20 with a standard
deviation of ≈ 4.0824.

Let us estimate what is the probability p1 that after 120 rolls the number of
fives is at most 21, i.e.,

P(Sn ≤ 21).

The z-score corresponding to 21 is

z∗ :=
21− 20

4.0824
≈ 0.2449.

The central limit theorem then states the probability p1 should be close to
Φ(0.2449). We can compute this number using the R command

pnorm(0.2449)

which yields the approximation p1 ≈ 0.5967. We can find the actual value of p1

using the R command

pbinom(21,120,1/6)

which yields the “real”2 value

p1 = 0.6520062.... (6.5)

This is quite different.

To improve the approximation we use the histogram correction trick. Instead
of finding a normal (Gaussian) approximation to P(Sn ≤ 21) we seek a normal
approximation to P(Sn ≤ 21.5). In this case the z-score is

z∗ :=
21.5− 20

4.0824
≈ 0.3674.

2The output of R is not truly the real value. It is however a very good approximation.
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We can compute Φ(0.3674) using the R command

pnorm(0.3674)

which yields the new approximation

p1 ≈ 0.6433

which is much closer to the real probability (6.5).

The histogram correction trick should be used anytime the random variable
Sn is integer valued. Thus, instead of approximating P(Sn ≤ k), where k is an in-
teger, we approximate the probability P(Sn ≤ k+0.5). While P(Sn ≤ k) = P(Sn ≤ k+0.5),
the normal approximations of the probabilities of the events {Sn ≤ k} and
{Sn ≤ k + 0.5) are different.

Similarly, instead of approximating the probability of the event {Sn ≥ k),
k integer, we approximate the probability of the event {Sn ≥ k − 0.5). For n
very very large, the histogram correction trick does not significantly improve the
normal approximation. ut

Example 6.9 (Casino business). Suppose you run a casino consisting of 50
identical and independent slot machines. A player earns $1 with probability
p = 0.45 and loses a dollar with probability q = 1 − p = 0.55. It is known that
each machine is played 200 games per day, for 365 days each year. We wan to
estimate the probability that the yearly profit3 from these machines is smaller
than $350, 000.

Denote by X the profit per game from one machine. The house’s profit is $1
when the player loses, and its “profit” is negative $−1 = 1− 2, when the player
wins.

E[X] = −1p+ (1− p) = 1− 2p = 0.1.

Note that E[X2] = 1. The standard deviation is

σ =
√

1− (1− 2p)2 =
√

0.9 ≈ 0.9949.

The number of games per year is

n = 50× 200× 365 = 3, 650, 000

so the expected profit is $365, 000 with a standard deviation
√
nσ ≈ 1900.21.

In this case the z score is

z =
350, 000− 365, 000

1900.21
≈ −7.89.

The central limit then predicts that the probability that the yearly profit is
< 350, 000 to be close to Φ(−7.89) ≈ 10−15!!!

3This is a simplified model. We exclude many costs such as utilities, employees etc. when computing
the profit.
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The above computations are organized in the R procedure below.

#p is the player’s winning probability

#g is the number of games per day per machine

#m is the number of machines

#r is ratio of expected profit

pr<-function(p,g,m,r){

x<-1-2*p

s<-sqrt(1-x^2)

n<-m*g*365

X<-n*x

S<-sqrt(n)*s

Y<-r*X

Z<-(Y-X)/S

ratio<-r*100

lik<-pnorm(Z)

cat("The probability of earning

less than ", Y, " is approximatively ",lik, ".",sep="")

}

To find the probability of earning less than $350,000 using the above function,
first compute the ratio

r =
350000

365000
≈ 0.9589

and then use the R command

pr(0.45, 200, 50, 0.9589).

The result will have the form

The expected profit is 365000. The probability of earning

less than 349998.5 is 1.490469e-15.

Suppose we tweak the machines, lowering the winning probability to p = 0.4
and seek the probability of earning less that 99% of the expected profit. We
invoke the command

pr(0.4, 200, 50, 0.99)

and the answer we get is

The expected profit is 730000. The probability of earning

less than 722700 is 4.813881e-05.

ut
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6.3. Exercises

Exercise 6.1. Fifty numbers are rounded off to the nearest integer and then
summed. If the individual round-off errors are uniformly distributed over (−.5, .5),
approximate the probability that the resultant sum differs from the exact sum
by more than 3.

Exercise 6.2. A certain component is critical to the operation of an electrical
system and must be replaced immediately upon failure. If the mean lifetime
of this type of component is 100 hours and its standard deviation is 30 hours,
how many of these components must be in stock so that the probability that the
system is in continual operation for the next 2000 hours is at least 0.95?

Exercise 6.3. Estimate the probability that the average of 150 random points
from the interval [0, 1] lies within 0.02 of the midpoint 0.5.

Exercise 6.4. An insurance company has 10, 000 automobile policyholders. The
expected yearly claim per policy- holder is $ 240, with a standard deviation of
$ 800. Approximate the probability that the total yearly claim exceeds $ 2.7
million.

Exercise 6.5. Each time that Jim charges an item to his credit card, he rounds
the amount to the nearest dollar in his records. If he has used the credit card
300 times in the last 12 months, what is the probability that his record differs
from the total expenditure by at most 10 dollars?

Exercise 6.6. Suppose that, whenever invited to a party, the probability that a
person attends with a guest is 1/3, the probability a person attends alone is 1/3,
and the probability that a person does not attend at all is 1/3. A company invites
all 300 of its employees to a Christmas party. Use the central limit theorem to
estimate the probability that at least 320 will attend.

Exercise 6.7. A fair coin is flipped repeatedly. Approximate the probability of
flipping 25 heads before 50 tails.

Exercise 6.8. On each bet, a gambler loses $1 with probability 0.7, loses $2 with
probability 0.2, or wins $10 with probability 0.1. Approximate the probability
that his cummulative winning of the gambler after his first 100 bets is negative.



Chapter 7

A very basic
introduction to R

This is not an introduction to programming in R. It mainly lists a few basic tricks
that you might find useful in dealing with simple probability problems. First,
here is how you install R on your computers

For Mac users

https://cran.r-project.org/bin/macosx/

For Windows users

https://cran.r-project.org/bin/windows/base/

Next, install R Studio (the Desktop version). This is a very convenient interface
for using R.

https://www.rstudio.com/products/RStudio/

(Install first R and then R Studio.) You can also access RStudio and R in the
cloud

https://www.rollapp.com/app/rstudio

The site

http://www.people.carleton.edu/~rdobrow/Probability/

has a repository of many simple R programs (or R scripts) that you can use as
models.

The reader familiar with the basics of programming will have no problems
learning the basics of R. This introduction is addressed to such a reader. We list
some of commands most frequently used probability and we have included several
examples so the reader learns the R-syntax of the basic operations that enter a
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program. R-Studio comes with links to various freely availableweb sources for
R-programming. A commercial source that I find very useful is “The Book of
R”, [2].

Example 7.1 (Operations with vectors). The workhorse of R is the object
called vector. An n-dimensional vector is essentially an element in Rn. An
n-dimensional vector in R can be more general in the sense that its entries need
not be just numbers.

To generate in R the vector (1, 2, 4.5) and then naming it x use the command

x<-c(1,2,4.5)

To see what the vector x is type

x

If you want to add an entry to x, say you want to generate the longer vector
(1, 2, 4.5, 7), use the command

c(x,7)

For long vectors this approach can be time consuming. This can be accel-
erated if the entries of the vector x are subject to patterns. For example, the
vector of length 22 with all entries equal to the same number, say 1.5, can be
generated using the command

rep(1.5, 22)

To generate the vector listing in increasing order all the integers between −2
and 10 (included) use the command

(-2):10

To generate the vector named x consisting of 25 equidistant numbers staring
at 1 and ending at 7 use the command

x<-seq(from=1, to=7, length.out=25)

To add all the entries of a vector x = (x1, . . . , xn) use the command

sum(x)

Suppose we want to add all the natural numbers from 50 to 200. We first
store these numbers in a vector called x

x<-50:200

The sum of all these numbers is then computed using the command

sum(x)

The result is 18, 875.
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You can sort the entries of a vector, if they are numerical. For example

> z<-c(1,4,3)

> sort(z)

[1] 1 3 4

A very convenient feature of working with vectors in R is that the basic
algebraic operations involving numbers extend, component wise. For example, if
z is the above vector, then

> z^2

[1] 1 16 9

> 2^z

[1] 2 16 8

ut

Example 7.2 (Logical operators). These are operators whose output is a TRUE
or FALSE or a vector whose entries are TRUE/FALSE.

For example, the command 2 < 5 returns TRUE. On the other hand if x is
the vector (2, 3, 7, 8), then the command x < 5 return

TRUE,TRUE, FALSE, FALSE.

In R the logicals TRUE/FALSE also have arithmetic meaning,

TRUE = 1, FALSE = 0.

The output of x < 5 is a vector whose entries are TRUE/FALSE. To see how
many of the entries of x are < 5 use the command

sum(x<5)

Above x < 5 is interpreted as a vector with 0/1-entries. When we add them
we count how many are equal to 1 or, equivalently, how many of the entries of x
are < 5.

The R language also has two very convenient logical operators any and all.
When we apply any to a vector with TRUE/FALSE entries it returns TRUE if
at least one of the entries of v are TRUE and returns FALSE otherwise. When
we apply all to a vector v with TRUE/FALSE entries it returns TRUE if all of
the entries of v are TRUE and returns FALSE otherwise. ut

Example 7.3 (Functions in R). One can define and work with functions in R.
For example, to define the function

f(q) = 1 + 6q + 10q2(1− q)4

use the command

f<-function(q) (1+4*q+10*q^2)*(1-q)^4
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To find de value of f at q = 0.73 use the command

f(0.73)

To display the values of f at all the points

0, 0.01, 0.02, 0.03, . . . , 0.15, 0.16

use the command

x<-seq(from=0, to=0.16, by=0.01)

f(x)

To plot the values of f over 100 equidistant points in the interval [2, 7] use the
command

x<-seq(from=2, to=7, length.out=100)

y<-f(x)

plot(x,y, type="l")

Here is how we define in R the indicator function of the unit disc in the plane

ID(x, y) =

{
1, x2 + y2 ≤ 1,

0, x2 + y2 > 1.

indicator<-function(x,y) if(1 >= x^2+y^2) 1 else 0

Another possible code that generates this indicator function is

indicator<-function(x,y) as.integer(x^2+y^2<= 1)

Above, the command as.integer converts TRUE/FALSE to 1/0. ut

Example 7.4 (Samples with replacement). For example, to sample with replace-
ment 7 balls from a bin containing balls labeled 1 through 23 use the R command

sample(1:23,7, replace=TRUE)

The result is a 7-dimensional vector whose entries consists of 7 numbers sampled
with replacement from the set {1, . . . , 23}. Similarly, to simulate rolling a fair
die 137 times use the command

sample(1:6,137, replace=TRUE)

Example 7.5 (Rolling a die). Let us show how to simulate rolling a die a number
n of times and then count how many times we get 6. Suppose n = 20. We indicate
this using the command

n<-20

We now roll the die n times and store the results in a vector x

x<-sample(1:6, n, replace=TRUE)
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Next we test which of the entries of x are equal to 6 and store the results of these
20 tests in a vector y

y<-x==6

The entries of y are T rue or False, depending on whether the corresponding
entry of x was equal to 6 or not. To find how many entries of y are T use the
command

sum(y)

The result is equal to the number of 6s we got during the string of 20 rolls of a
fair die. ut

Example 7.6 (Samples without replacement). To sample without replacement
7 balls from an urn containing balls labeled 1 through 23 use the R command

sample(1:23, 7)

The number of possible samples above is (27)7 and to compute it use the R
command

prod(21:27)

ut

Example 7.7 (Permutations). To sample a random permutation of 7 objects
use the R command

sample(1:7,7)

To sample 10 random permutations of 7 objects use the R command

for (i in 1:10 ) print(sample(1:7,7))

To compute 7! in R use the command

factorial(7)

ut

Example 7.8 (Combinations). Sampling random m-element subsets out of an
n-element set possible is possible in R. For example, to sample 4 random subsets
with 2 elements out of a 7-element set possible the following command

replicate(4, sort( sample(1:7, 2) ))

The sampled sets will appear as columns. To compute
(

52
5

)
in R use the command
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choose(52,5)

To compute
((
n
k

))
is is convenient to define a function

mchoose<-function(n,k) {choose(n+k-1,k)}

To compute
((

10
8

))
use the command

mchoose(10,8)

ut

Example 7.9 (Custom discrete distribution). We can produce custom discrete
random variables in R.

Suppose that we want to simulate a discrete random variable X whose values
are (in increasing order)

x1 = 0.1, x2 = 0.2, x3 = 0.3, x4 = 0.7

with probabilities

p1 = 1/3, p2 = 1/6, p3 = 1/4, p4 = 1/4.

The R-commands below describe how to compute the mean and the variance of
X and how to sample X.

X<-c(0.1,0.2,0.3,0.7) # stores the values of X in increasing order.

prob<-c(1/3,1/6,1/4,1/4) # stores the probabilities.

sum(prob) # If this is 1 prob is a pmf. Otherwise check prob.

m<-sum(X*prob) # computes the mean of X and stores in m.

v<-sum((X^2)*prob) -m^2# computes the variance of X

# and stores it in v.

m # produces the value of the mean.

v # produces the variance of X.

sample(X,15,replace=TRUE, prob) # produces 15 random

#samples of X.

cumsum(prob) # computes the values of the cdf of X at

# x_1,x_2,...

In R the symbol # indicates a comment. It is only for the programer/user
benefit. Anything following a # is not treated by R as a command. ut

Example 7.10 (Useful discrete distributions). The standard discrete distribu-
tions are implemented in R.

The distribution The R command

The binomial distribution Bin(n, p) binom(n,p)
The geometric distribution Geom(p) geom(p)

The negative binomial distribution NegBin(k, p) nbinom(k,p)
The Poisson distribution Poi(λ) pois(lambda)
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The R library however uses rather different conventions

(i) The geometric distribution in R is slightly different from the one de-
scribed in these notes. In R, the range of Geom(p) variable T is
{0, 1, . . . } and its pmf is P(T = n) = p(1 − p)n. In the present course
notes, a geometric random variable has range {1, 2 . . . } and its pmf is
P(T = n) = p(1− p)n−1; see Example 7.12.

(ii) In R the equality nbinom(k, p) = n represents the number of failures
until we register the k-th success; see Example 7.13.

The above commands by themselves mean nothing if they are not accompa-
nied by one of the prefixes

• d produces the density or pmf .

• p produces the cdf .

• r produces random samples .

• q produces quantiles .

ut

You can learn more details using R’s help function. The examples below
describe some concrete situations.

Example 7.11 (Binomial). For example, suppose that X ∼ Bin(10, 0.2), i.e., X
is the number of successes in a sequence of 10 independent Bernoulli trials with
success probability 0.2.

To find the probability P(X = 3) use the R command

dbinom(3,10,0.2)

If FX(x) = P(X ≤ x) is the cdf of X, then you can compute FX(4) using the R
command

pbinom(4,10,0.2)

To generate 253 random samples of X use the command

rbinom(253,10,0.2)

To find the 0.8-quantile of X use the R command

qbinom(0.8,10,0.2)

ut

Example 7.12 (Geometric). Suppose now that T ∼ Geom(0.2) is the waiting
time until the first success in a sequence of independent Bernoulli trials with
success probability p = 0.2.
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To find the probability P(T = 3) use the command

dgeom(3-1,0.2)

To find the probability P(T ≤ 4) use the command

pgeom(4-1,0.2)

To generate 253 random samples of T use the command

1+rgeom(253,0.2)

To find the 0.8-quantile of T use the R command

qgeom(0.8,0.2)+1

Example 7.13 (Negative Binomial). Suppose that T ∼ NegBin(8, 0.2) is the
waiting time for the first 8 successes in a string of Bernoulli trials with success
probability.

To find the probability P(T = 12) use the R command

dnbinom(12-8,8,0.2)

You can compute P(T ≤ 14) using the R command

pnbinom(14-8,8,0.2)

To generate 253 random samples of T use the command

8+rnbinom(253,8,0.2)

To find the 0.8-quantile of T use the R command

8+qnbinom(0.8,8,0.2)

ut

Example 7.14 (Poisson). Suppose that X ∼ Poi(0.2) is a Poisson random vari-
able with parameter λ = 0.2.

To find the probability P(X = 3) use the command

dpois(3,0.2)

To find the probability P(X ≤ 4) use the command

ppois(4,0.2)

To generate 253 random samples of X use the command

rpois(253,0.2)

To find the 0.8-quantile of X use the R command

qpois(0.8,0.2)

ut
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Example 7.15 (Continuous distributions in R). The continuous distributions
Unif(a, b), expλ and N(µ, σ2) can be simulated in R by invoking

unif(min=a, max=b)

exp(rate=lambda)

norm(mean=mu, sd=sigma)

where sd:=standard deviation.

To invoke the standard normal random variable one could use the shorter
command

norm

ut

As in the case of discrete distributions, we utilize these commands with the
prefixes d−, p−, q− and r− that have the same meaning as in R-Session 7.10.
Thus d− will generate the pdf, p− the cdf, r− generates a random sample, and
q− produces quantiles.

Example 7.16. Here are some concrete examples. To find the probability den-
sity of exp3 at x = 1.7 use the command

dexp(1.7, 3)

To find the probability density of N(µ = 5, σ2 = 7) at x = 2.6 use the command

dnorm(2.6,5, sqrt(7))

To produce 1000 samples from Unif(3, 13) use the command

runif(1000,3,13)

ut

Example 7.17 (Buffon’s needle problem). The R program below uses the Buffon
needle problem to find an approximation of π

L<-0.7 # L is the length of the needle. It is <1.

N<-1000000 # N is the number of times we throw the needle.

f<-0

#the next loop simulates the tossing of

#N random needles and computes

# the number f of times they intersect a line

for (i in 1:N){

y<-runif(1, min=-1/2,max=1/2) #this locates

# the center of the needle
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t<-runif(1, min=-pi/2,max=pi/2)#this determines

#the inclination of the needle

if ( abs(y)< 0.5*L*cos(t) ) f<-f+1 }

#f/N is the empirical frequency

"the aproximate value of pi is"; (N/f)*2*L

ut

Example 7.18 (Monte Carlo). The R-command lines below implement the
Monte Carlo strategy for computing a double integral over the unit square

# Monte Carlo integration of the function f(x,y)

#over the rectangle [a,b] x[c,d]

# First we describe the function

f<- function(x,y) sin(x*y)

# Next, we describe the region of integration [a,b]x[c,d]

a=0

b=1

c=0

d=1

# Finally, we decide the number N of sample points in

# the region of integration

N=100000

#S will store the integral

S=0

for (i in 1:N){

x<- runif(1,a,b) #we sample a point uniformly in [a,b]

y<- runif(1,c,d) #we sample a point uniformly in [c,d]

S<-S+f(x[1],y[1])

}

’the integral is’; (b-a)*(d-c)*S/N

The next code describes a Monte-Carlo computation of the area of the unit
circle.

nsim<-1000000#nsim is the number of simulations

x<-runif(nsim,-1,1)#we choose nsim uniform samples

#in the interval (-1,1) on the x axis

y<-runif(nsim,-1,1)#we choose nsim uniform samples

#in the interval (-1,1) on the y axis

area<-4*sum(x^2+y^2<1)/nsim

"the area of the unit circle is very likely"; area
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Example 7.19. We describe below the R code that can be used to simulate the
problem discussed in Example 3.32. Namely it determines empirically the waiting
time to observe a coin pattern. It deals with a rather more general situation. We
deal with a “die” with L equally likely faces. When L = 2 this die can be viewed
as a fair coin, while for L = 6 deals with a traditional.

We play m games. A game consists of rolling this generalized die until we
observe the pattern patt. After each game the code records the number of rolls
of this generalized die required to observe the pattern.

The code will return the average of these m empirical waiting times and
graphs the cumulative averages of these empirical waiting times.

#patt is a vector that encodes the pattern

#m is the number of games we play

#L number of ‘faces of the die

#the output is a vector of cumulative frequencies

Tpattern<-function(patt, m, L){

k<-length(patt)

T<-c()

for (i in 1:m){

x<-sample(1:L,k,replace=TRUE)

n<-k

while ( all(x[(n-k+1):n]==patt)==0 ){

x<-c(x, sample(1:L,1,replace=TRUE) )

n<-n+1

}

T<-c(T,n)

}

f<-cumsum(T)/(1:m)

f

}

Now let’s use the above function you need to declare the value L, the number
of sides of the die, choose a pattern patt and decide on the number m of games
you want to play. For example if you flip a coin then L = 2. If the pattern is
HH and you want to play 240 games to find empirically the waiting time then
use the comands

m<-240

patt<-c(1,1)

y<-Tpattern(patt,m,2)

"the mean waiting time to pattern";patt; "is"; y[m]
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plot(1:m,y,type="l", xlab="Number of games",

ylab="Running average of waiting time to pattern")

abline(h=y[m],col="red")

ut



Appendix A

Basic invariants of
frequently used
probability
distributions

X ∼ Bin(n, p)⇐⇒P(X = k) =

(
n

k

)
pkqn−k, k = 0, 1, . . . , n, q = 1− p.

Ber(p) ∼ Bin(1, p).

X ∼ NegBin(k, p)⇐⇒P(X = n) =

(
n− 1

k − 1

)
pkqn−k, n = k, k + 1, . . .

Geom(p) ∼ NegBin(1, p).

X ∼ HGeom(w, b, n), P(X = k) =

(
w
k

)(
b

n−k
)(

w+b
n

) , k = 0, 1, . . . , w.

X ∼ Poi(λ), λ > 0⇐⇒P(X = n) = e−λ
λn

n!
, n = 0, 1, . . .

X ∼ Unif(a, b)⇐⇒pX(x) =
1

b− a
×

{
1, x ∈ [a, b],

0, x 6∈ [a, b].

X ∼ Exp(λ), λ > 0⇐⇒pX(x) =

{
λe−λx, x ≥ 0,

0, x < 0.

X ∼ N(µ, σ2), µ ∈ R, σ > 0⇐⇒pX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , x ∈ R.
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X ∼ Gamma(ν, λ)⇐⇒pX(x) =

{
λν

Γ(ν)x
ν−1e−λx, x > 0,

0, x ≤ 0,
ν, λ > 0.

X ∼ Beta(a, b)⇐⇒pX(x) =
1

B(a, b)
×

{
xa−1(1− x)b−1, x ∈ (0, 1),

0, otherwise.

Name Mean Variance pgf mgf

Ber(p) p pq (q + ps) pet

Bin(n, p) np npq (q + ps)n pnent

Geom(p) 1
p

q
p2

ps
1−qs

pet

1−qet

NegBin(k, p) k
p

kq
p2

(
qs

1−ps

)k (
pet

1−qet

)k
Poi(λ) λ λ eλ(s−1) eλ(et−1)

HGeom(w, b, n) w
w+b · n * (2.28) *

Unif(a, b) a+b
2

(b−a)2

12 NA etb−eta
tb−ta

Exp(λ) λ−1 λ−2 NA λ
λ−t

N(µ, σ2) µ σ2 NA exp
(
σ2

2 t
2 + µt

)
Gamma(ν, λ) ν

λ
ν
λ2

NA
(

λ
λ−t

)ν
Beta(a, b) a

a+b
ab

(a+b)2(a+b+1)
NA ∗

Basic facts about the Gamma function.

Γ : (0,∞)→ R, Γ(x) =

∫ ∞
0

tx−1e−tdt .

(i) Γ(1) = 1.

(ii) Γ(x+ 1) = xΓ(x), ∀x > 0.

(iii) Γ(n) = (n− 1)!, ∀n = 1, 2, 3, . . . .

(iv) Γ(1/2) =
√
π.

(v) For any x, y > 0 we have

B(x, y) :=

∫ 1

0
sx−1(1− s)y−1ds =

Γ(x)Γ(y)

Γ(x+ y)
. (A.1)
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(x)k, 12

A before B, 37

B(x, y), 90

Ba,b(x), 95

FX|B , 149

IE , 58

MX(t), 178

N(µ, σ2), 91, 98, 180

QX , 54

X ⊥⊥ Y , 55

X ∼ Y , 55

Y |B, 149

Exp(λ), 87

Gamma(ν, λ), 93, 180

Γ(x), 90

Geom(p), 62

HGeom(w, b, n), 64

NegBin(k, p), 62

Φ(x), 92

Poi(λ), 64

Unif(a, b), 86

E[Y |B], 127, 149

E[Y |X], 126, 152

E[Y |X = x ], 124, 152

βa,b(x), 94

γµ,σ , 91(n
k

)
, 15

cov[X,Y ], 116, 147

erf, 92

⊥⊥, 29

µn[X], 70, 82

ρ[X,Y ], 116, 147

σ[X], 71, 82
P−→, 189

var[X], 71, 82

gν(x;λ), 93

m!, 12

pY |X=x(y), 124, 151

z-score, 193

((n
k

))
, 24

a.s., 4

almost sure, 4

Bernoulli trial, 58

Bertand’s paradox, 6

Beta function, 90

incomplete, 95, 162

branching processes, 174

cdf, 54, 80

joint, 141

Chebyshev’s inequality, 79, 85, 189

CLT, 190

combinations, 15

with repetitions, 24

conditional

expectation, 126, 127, 149, 153

pdf, 151

pmf, 127

convergence

in probability, 189

correlation coefficient, 116, 147

covariance, 116, 147

craps, 36

derangement, 22

distribution

Bernoulli, 59

Beta, 94
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binomial, 59, 74

Cauchy, 96

chi-squared, 94

discrete uniform, 58

exponential, 87

memoryless property, 88

Gamma, 93

geometric, 62, 75

memoryless property, 62

hypergeometric, 64, 76

negative binomial, 62, 75

normal, 91

Poisson, 64, 77

uniform, 86

equivalent r.v.-s, 55

estimator, 119, 127

event, 2

almost sure, 4

impossible, 2

improbable, 4

sure, 2

expectation, 69, 82

conditional, 126, 127, 149, 153

linearity of the, 78, 114, 157

factorial, 12

falling, 12

formula

Bayes’, 41

inclusion-exclusion, 7, 9

linear regression, 120

Newton’s binomial, 18

regression

Gaussian, 156

Stirling, 15

Wald, 173, 175

function

Beta, 90

Gamma, 90

survival, 88

gambler’s ruin, 38, 130

Gamma function, 90

Gaussian

random variable, 97

random vectors, 160

standard, 91

generating function

moment, 178

probability, 67, 171

half-life, 89, 163

histogram correction, 193

iid, 55, 172

independence, 29

conditional, 31

independent

events, 29

random variables, 54, 157

indicator function, 59, 117

joint

pmf, 109

jointly

continuous, 141

normal, 148

law, 55

of large numbers, 188

of the subconscious statistician, 77, 84, 114,

145, 157

of total probability, 32

linear regression, 120

LLN, 188

MAP, 43

marginals, 109, 142

match, 22

mean, 69, 82

median, 54

memoryless property, 62, 88

mgf, 178

MLE, 42

mode, 55

Monte Carlo method, 189

order statistics, 161

overbooking, 66

partition, 28, 32

Pascal triangle, 16

pdf, 80

bivariante normal, 148

conditional, 151

joint, 141

marginal, 142

percentile, 54

permutations, 13

pmf, 55

conditional, 124

joint, 109

Pochhammer symbol, 12

Poisson process, 182

predictor, 119, 127

linear, 119

principle

multiplication, 10

probability

conditional, 26

density function, 80

distribution, 3

function, 3
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generating function, 67, 171
mass function, 55

problem

balls-in-bins, 122
Banach, 62

birthday, 12
Buffon needle, 143

coupon collector, 120

gambler’s ruin, 38, 130
matching, 22, 115

Monty Hall, 35

process
branching, 174

Galton-Watson, 174

Poisson, 182

quantiles, 54

random variable, 53

continuous, 80
cumulative distribution function (cdf), 54

discrete, 55

expectation of a, 69, 82
Gaussian, 97

hypergeometric, 64

integrable, 69, 82
mean of a, 69, 82

moment of, 70, 82

Pareto, 106
standard deviation, 71, 82

standard normal, 91

variance of a, 71, 82
random vector, 109

continuous, 141

uniformly distributed, 112

sample space, 2
sampling

with replacement, 10

without replacement, 11
SLLN, 189

standard deviation, 82

theorem

Berry-Essen, 192
central limit, 192

uncorrelated random variables, 116

variance, 71, 82
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