
Math 40210: Basic Combinatorics, Fall 2012

Midterm Exam, Monday, October 8

Solutions

1. (a) (5 pts.) Apply Kruskal’s algorithm to find a minimal weight spanning tree in the follow-
ing graph, and compute the weight of the tree you find.
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Solution: One possibility is:
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The weight of this tree is 12.

(b) (5 pts.) A connected graph has weights on its edges. Edge e has weight 1, and all other
edges have weight greater than 1. Explain why the edge e must be in every minimum
weight spanning tree of G. (For this question, you cannot just quote results we have
proved about Kruskal’s algorithm.)

Solution: Suppose T is a minimum weight spanning tree that does not include e. Then
T + e has a cycle that includes e. Let f be any other edge in the cycle. Now T + e− f
is a spanning tree; and because the weight of f is greater than that of e, the weight of
T + e − f is less than that of T , a contradiction (since T is minimum weight). So all
minimum weight spanning trees include e.

2. (a) (5 pts.) A connected bipartite planar graph has n ≥ 3 vertices. Show that it has at most
2n− 4 edges.

Solution: If T is a tree, it has at most (actually exactly) n − 1 edges. For non-trees,
so graphs with at least one region in their planar representations, we consider
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where R is a region of the planar representation, and b(R) is the number of bounding
edges. Since each edge bounds at most 2 regions, this sum is at most 2q, where q is
the number of edges. On the other hand, each region needs at least 4 bounding edges,
since a bipartite G has no triangles. So the sum is at least 4r, where r is the number of
regions in the representation. Using Euler’s formula n− q+ r = 2, we get r = 2−n+ q,
and so our two inequalities combine to give

4(2− n+ q) ≤ 2q.

Rearranging terms we get q ≤ 2n− 4. For n ≥ 3, n− 1 ≤ 2n− 4, so in all cases we get
q ≤ 2n− 4.

(b) (2 pts.) Give an example of a connected bipartite planar graph with n vertices and
exactly 2n− 4 edges. (A single n will do; think small!)

Solution: This bound is achieved by C4 (n = 4, q = 4), or indeed by any graph of the
form K2,n−2.

(c) (3 pts.) A graph on vertex set {x1, x2, x3, x4, x5}∪{y1, y2, y3, y4, y5} has an edge from xi
to yj if and only if i 6= j. Does this graph have a planar representation? Briefly justify
your answer.

Solution: Such a graph would be bipartite and have (4 × 10)/2 = 20 edges and 10
vertices. So q = 20 > 16 = 2n − 4, violating q ≤ 2n − 4. So, no, such a graph is not
planar.

3. (a) (4 pts.) Provide definitions for the following terms. Be sure to say what set of objects
the term being defined applies to. To give you an idea of what I’m expecting, I’ve done
the first one.

i. Size: The size of a graph is the number of edges in the graph.

ii. Eccentricity: Solution: The eccentricity of a vertex is the distance from the vertex
to the furthest away vertex in the graph.

iii. Diameter: Solution: The diameter of a graph is the value of the largest eccen-
tricity.

(b) (6 pts.) Show that if the diameter of G is at least 3, then G is connected.

Solution: Suppose G is not connected. Then the vertex set can be partitioned into
X ∪ Y with no edges going from X to Y . But then in G, there is an edge from every
x ∈ X to every y ∈ Y . This means that every vertex has eccentricity at most 2 in G
(for a vertex in X, it takes one step to get to any vertex in Y and one more to get to
any vertex in X; the same for any vertex in Y ). So the diameter of G is at most 2, a
contradiction.

4. (a) (4 pts.) Give the definitions of a Hamilton path and a Hamilton cycle in a graph.

• Hamilton path:
Solution: A Hamilton path is a path that visits every vertex of the graph.

• Hamilton cycle:
Solution: A Hamilton cycle is a cycle that visits every vertex of the graph.



(b) (3 pts.) Use Dirac’s theorem to show that an r-regular graph with 16 vertices and 96
edges has a Hamilton cycle. (Hint: first figure out what r must be.)

Solution: Dirac says that for G with n ≥ 3 and δ ≥ n/2 (δ the minimum degree), there
is a Hamilton cycle. Here n = 16. Since the sum of the degrees is twice the number of
edges, and all degrees are the same, we have 16d = 2× 96 and so d = 12 (where d is the
degree of every vertex). So δ = 12 > 8, and there is a Hamilton cycle.

(c) (3 pts.) Use Dirac’s theorem to show that the graph from the last part in fact has 3
Hamilton cycles that use completely disjoint sets of edges.

Solution: We want to find three edge-disjoint Hamilton cycles. So, remove the first one
we found. This drops every degree by exactly 2, leaving us with a 16-vertex graph with
minimum degree 10. Dirac still applies, so there is a Hamilton cycle in the new graph
(which is clearly disjoint from the first). Remove this, to get a 16-vertex graph with
minimum degree 8. Dirac still applies, so there is a Hamilton cycle in the new graph
(which is clearly disjoint from the first two). We can’t go any further; after removing
the third Hamilton cycle, the minimum degree is now 6 and Dirac no longer applies.

5. (a) (3 pts.) State Cayley’s formula on the number of labeled trees on n vertices.

Solution: There are nn−2 labeled trees on n vertices.

(b) (7 pts.) How many labeled trees are there on the vertices {1, 2, . . . , n} that have vertex 1
as a leaf? (You may use any facts that you know about Cayley’s formula and/or Prüfer
codes, but please state them clearly!)

Solution: There are two possible solutions. First, there are (n− 1)(n−1)−3 = (n− 1)n−3

labeled trees on {2, . . . , n}. To each of these we can add 1 as a leaf in n − 1 ways (by
joining it to any of 2, . . . , n). This gives (n− 1)(n− 1)n−3 = (n− 1)n−2 trees with 1 as
a leaf.

Second, 1 being a leaf means that 1 doesn’t appear in the Prüfer code (the number of
times a vertex appears in the code is its degree minus 1). So the construct a Prüfer code
of a tree with 1 as a leaf, we just choose each of the n − 2 entries of the code from the
set {2, . . . , n}. There are (n− 1)n−2 such choices.


