
Basic Combinatorics

Math 40210, Section 01 — Fall 2012

Homework 5 — Solutions

• 1.5.2 1: n = 24 and 2q =
∑

v deg(v) = 24 × 3 = 72, so q = 36, meaning that in any
planar representation we must have r = 2 + q − n = 2 + 36− 24 = 14.

• 1.5.2 4: If G is a tree, then q = n − 1 ≤ 2n − 4 (because n ≥ 3). So assume
it is not a tree. Let’s look at

∑
regions R b(R) (note that since we are assuming G is

not a tree, there are at least 2 regions). Since G has no triangles, this is at least
4r = 4(2 + q − n) = 8 + 4q − 4n (this is using Euler’s formula, since G is connected);
but since each edge contributes as a bounding edge to at most two regions, the sum is
at most 2q. So we get 8 + 4q − 4n ≤ 2q, or, rearranging, 2q ≤ 4n− 8, or q ≤ 2q − 4.

• 1.5.2 6: Imagine k disjoint boxes in R2, arranged in a row. Draw a planar representa-
tion of G with each component sitting inside a different box. Add k − 1 edges to the
graph, joining a vertex in the first box to one in the second, a vertex in the second box
to one in the third, and so on, making sure that no crossing are created (see the figure
1 of the figures page). We now have a connected planar graph with n vertices, q+k−1
edges and r faces, where n, q and r are the numbers of vertices, edges and faces of
the original graph. (Note that we have not created any new faces by adding the edges;
these edges travel through the infinite outer face, but don’t disconnect it). Applying
Euler’s formula to this new graph, we get n− (q + k− 1) + r = 2 or n− q + r = k + 1.

• 1.5.2 7: Suppose G has n vertices and m edges. If G is not planar, we are done. If
it is planar, then we want to say that G is not planar. From a theorem in class, it is
enough to show that m′, the number of edges in G, satisfies m′ > 3n− 6. Now since G
is planar, the same theorem tells us that m ≤ 3n− 6, and the number of edges in G is
m′ = (n2 − n)/2−m (since there are (n2 − n)/2 possible edges, each of which must be
in one of G, G). Combining these observations, we see that m′ ≥ (n2 − n)/2− 3n+ 6.
So its enough to show that (n2 − n)/2 − 3n + 6 > 3n − 6, or n2 > 13n − 24. This is
true for all n ≥ 11.

• 1.5.2 9: K3,3 provides a counterexample to the converse: q = 9, n = 6, so q ≤ 3n− 6
(and n ≥ 3); but K3,3 is not planar.

• 1.5.4 2: See figure 2 of the figures page, for an example of how to find a subdivision
of K3,3 as a subgraph of the Petersen graph.
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• 1.6.1 1a: The stump K1 clearly has chromatic number 1. All other trees are bipartite
(no cycles, so in particular no odd cycles), and so can be 2-colored, meaning that
their chromatic number is at most 2. But all trees except the stump have at least
one edge, and so need at least two colors (one for each endvertex of any particular
edge) for a proper coloring, meaning that these trees have chromatic number at least
2. Combining these two observations, we see that all trees that are not the stump have
chromatic number exactly 2.

• 1.6.1 1c: Once we use a color in one of the partite sets, we cannot use it in any of
the others (since every vertex in one partite set is adjacent to every vertex in every
other partite set). So we need at least t colors in a proper coloring (one for each partite
class). But t colors are enough: assign color i to every vertex in the ith partite set,
for each i = 1, . . . , t, to get a proper t-coloring. This shows that χ(Kr1,...,rt) = t. (I’m
assuming here, as is conventional, that each ri > 0.)

• 1.6.1 1d: The Petersen graph has a 5-cycle, and so we need at least 3 colors just to
color that. But 3 colors is enough to properly color the whole graph, as we see in figure
3 of the figures page. This shows that the chromatic number of the Petersen graph is
3.

• 1.6.1 1e: The chromatic number of the Birkhoff Diamond is 3. It’s at least 3 because
it has a K3; the coloring in figure 4 of the figures page shows that it is at most 3.

• 1.6.1 2: We draw a graph on vertex set {c1, . . . , C7}, with two vertices adjacent if
the corresponding committees have a member in common. We need to determine
the chromatic number of this graph, in order to see what is the minimum number of
timeslots needed to allow all committees to meet. The graph is shown in figure 5 of
the figures page, together with a 3-coloring that shows that the chromatic number is 3
(because the graph has triangles, the chromatic number must be at least 3). So three
times slots are needed.

• 1.6.1 4: Adding an edge cannot decrease the chromatic number: if there is a k-coloring
after the edge e = uv has been added, it is still a k-coloring when the edge is removed.
So now, let G have chromatic number k, and let G′ be the graph with edge e added. Let
K be a proper k coloring of G. If K(u) 6= K(v), then K is also a proper k-coloring of
G′, and so χ(G′) = χ(G). If K(u) = K(v), then K is not a proper k-coloring of G′, but
we can use it to get a proper (k + 1)-coloring K ′: let K ′(x) = K(x) for all x 6= u, and
let K ′(u) = k+ 1. This shows that χ(G′) ≤ χ(G) + 1 (although in this case, we do not
know which of χ(G′) = χ(G), χ(G′) = χ(G) + 1 is true without further investigation).
But in either case, the chromatic number increases by at most 1 by adding an edge.

• 1.6.1 6a: A 1-critical graph has chromatic number 1, so must be an empty graph En.
Which n? If n > 1, then on the removal of any vertex, we still have an empty graph
with chromatic number 1, and so the graph is not 1-critical. But if n = 1, when we
remove the only vertex we get a graph which has no vertices, and so has chromatic
number 0. So the only 1-critical graph is E1 = K1, the stump.
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A 2-critical graph has chromatic number 2, so must be a bipartite graph with at least
one edge. On deleting any vertex, we must have an empty graph (the only graphs with
chromatic number 1). So every vertex must be adjacent to every edge. The only graph
with this property is K2, so this is the only 2-critical graph.

• 1.6.1 6b: K3 is 3-critical.

• 1.6.1 6c: Suppose that G is k-critical, but not connected. At least one component, say
C1, of G must have chromatic number k (if not, we could color each component and so
the whole graph with k − 1 colors). Let v be a vertex not in C1. After deleting v, C1

still needs k colors to be properly colored, contradicting the fact that G is critical. So
G must be connected

• 1.6.1 6d: Suppose that G is k-critical, but has a vertex of degree k − 2 or less, say v.
By criticality, we have a k − 1 coloring of G − v. But in any such coloring, at most
k−2 colors appear on the neighbors of v, so we can add v back and give it a color from
{1, . . . , k − 1} different from the color of its neighbors, leading to a (k − 1)-coloring of
G, a contradiction. So G has minimum degree at least k − 1.

• 1.6.1 6e: Let G be 3-critical. Since it has chromatic number 3, it cannot be bipartite,
and so must have some odd cycles. On the deletion of any vertex, the graph must be
bipartite with at least one edge, and so every vertex must belong to every cycle. If G
has even two odd cycles, then this is impossible (there must be at least one vertex on
one odd cycle, but not on the other). So G is a connected graph, with exactly one odd
cycle, and every vertex of the graph must be on this cycle. One possibility: G is an
odd cycle.

If G is not and odd cycle, then it is an odd cycle with some extra edges. But however
we add an edge to an odd cycle, we must create two different odd cycles. To prove this,
let C = v1v2 . . . vkv1 be the odd cycle. If we add the edge v1v` for some odd `, then
v1 . . . v`v1 is an odd cycle different from C. If we add the edge v1v` for some even `,
then v1vell . . . vkv1 is an odd cycle different from C. (See figure 6 of the figures page).
So either way, we create a new odd cycle, which is not allowed, since we have argued
that all 3-critical graphs are allowed to have only one odd cycle.

This means that the only 3-critical graphs are the odd cycles. (I’m not sure how part
d) helps here. Part c) certainly does.)

• 1.6.2 1: This bound is too good to be true, so there must be a counterexample. The
simplest one is the graph on three vertices with one edge (see figure 7 of the figures
page). This graph has average degree 2/3, so the right-hand side of the proposed
inequality is 1 + 2/3; but the chromatic number of the graph is 2, which is larger than
12/3. For a connected counterexample, take K4 with an extra edge hanging off one
vertex (see figure 8 of the figures page). This graph has chromatic number 4, but 1
plus the average degree is only 34/5. For an infinite family of counterexamples, take
Kn together with a single extra vertex, not adjacent to anything, for n ≥ 2; for an
infinite family of connected counterexamples, take Kn with an extra edge hanging off
one vertex, for n ≥ 4.
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• 1.6.2 4: We prove this by induction on τ(G). If τ(G) = 1, then G is an empty graph
En, so χ(G) = 1. So now consider what happens when τ(G) = k > 1. Find a maximum
independent set I, and give everything in that set color k. We want to say that when
we remove I from G (to get G′), we can color G′ using k − 1 colors. If we could show
that the value of τ drops (by at least 1) when we remove a maximum independent set,
then we would have τ(G′) ≤ k−1, so by induction we can indeed color G′ with at most
k − 1 colors and so G with at most k.

So here’s what we need to show: if I is a maximum independent set inG, then τ(G−I) ≤
τ(G)−1. If this was not true, then there would be a path of maximum length in G that
misses I. Consider an endvertex v of that path. If v is adjacent to anything in I, then
the path can be extended by added a neighbor of v in I, a contradiction (of the path
being as long as possible). So v is not adjacent to anything in I, and that means I can
be extended to the larger independent set I ∪ {v}, also a contradiction (this time of
the independent set being maximal). Since either way we get a contradiction, it must
be that τ(G− I) ≤ τ(G)− 1.

• 1.6.2 6: First the lower bound: let the chromatic number be k, and let S1, . . . , Sk be the
color classes of a particular k-coloring (that is, Si is the set of vertices colored i in the
coloring). Each Si is an independent set in G, so |Si| ≤ α(G). But also, the Si’s cover
all of G, so

∑k
i=1 |Si| = n. Combining, we get n =

∑k
i=1 |Si| ≤

∑k
i=1 α(G) = kα(G), so

k ≥ n/α(G), as required.

Now the upper bound: we show that there is coloring that uses n − α(G) + 1 colors.
Simply use color 1 on every vertex of an independent set of size α(G), and use a different
color for each of the remaining n− α(G) vertices, for a total of n− α(G) + 1.

• 1.6.2 8a: We use χ(G) ≥ n/α(G) and χ(G) ≥ ω(G). Multiplying, we get χ(G)χ(G) ≥
nω(G)/α(G). But an independent set in G is exactly a clique in G, so ω(G) = α(G).
Thus we get χ(G)χ(G) ≥ n.

• 1.6.2 8b: From part a), we know that 2
√
n ≤ 2

√
χ(G)χ(G). Thus it is enough to

show that for any positive numbers a, b, we have 2
√
ab ≤ a + b. This is equivalent to

4ab ≤ (a+ b)2 = a2 + 2ab+ b2, which is the same as 0 ≤ a2− 2ab+ b2 = (a− b)2, which
is true since the square of any number, positive or negative, is non-negative.

• 1.6.2 additional: The following is a simple example: start with Kn/2 on vertex set
v1, . . . , vn/2, and then add vertices u1, . . . , un/2 with each ui joined only to vi. This
graph G has α = n/2 (easy to see), as well as χ(G) = n/2, as required. To see that
χ(G) = n/2, note that ω(G) = n/2 (easy), so χ(G) ≥ n/2, but also there is a coloring
using n/2 colors - color each vi with color i, and color u1 with color 2, u2 with color 3,
. . ., un−1 with color n and un with color 1 (a coloring which does not work when n = 2)
– showing that χ(G) = n/2.

• 1.6.3 2: Four colors are needed to color a map of South America. To see this, notice
that Paraguay, Brazil, Bolivia and Argentina are all mutually adjacent, and so form a
K4 in the planar graph corresponding to the map. To see an example of a 4-coloring,
see http://www.infoplease.com/atlas/southamerica.html.
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