
Basic Combinatorics

Math 40210, Section 01 — Fall 2012

Homework 6 — Solutions

• 1.7.1 1: It does not have a perfect matching. A perfect matching is one which saturates
all vertices, and so in particular must saturate the vertex at the center. Suppose, wlog,
that this vertex is saturated by the edge dropping down to the bottom 5 vertices. The
matching then cannot use either of the two edges going up to the upper right or upper
left groups of 5 vertices. So for each of these groups of 5, vertices can only get saturated
using edges within the group. This is not going to be possible for either group, since 5
is odd. Once two edges have been chosen, the 5th vertex cannot get saturated without
one of the other 4 vertices getting re-used.

• 1.7.1 2a: There is no maximal matching in C10 of size 3. Each edge in a matching
removes three edges from consideration (the edge in the matching, and its right and
left neighbors), so 3 edges can remove at most 9 edges from consideration, leaving at
least one that can be added. But there is a maximal matching of size 4, as shown in
figure 1 of the figures page.

• 1.7.1 2b: There is no maximal matching in C11 of size 3, for the same reason as
described above; but there is a maximal matching of size 4, as shown in figure 2 of the
figures page.

• 1.7.1 2c: If n is of the form 3k, there is a maximal matching of size k (take every
third edge), but none smaller (for the reason described in part a)). If n is of the form
3k+ 1, there is a maximal matching of size k+ 1 (take edges v1v2, v4v5, v7v8, etc., until
k edges have been taken, the last being v3k−2v3k−1; then add v3kv3k+1 as the (k + 1)st
edge), but none smaller (for the reason described in part a)). If n is of the form 3k+ 2,
there is a maximal matching of size k+1 (take edges v1v2, v4v5, v7v8, etc., until k edges
have been taken, the last being v3k−2v3k−1; then add either v3kv3k+1 or v3k+1v3k+2 as
the (k + 1)st edge), but none smaller (for the reason described in part a)).

• 1.7.2 1: For each of the two graphs, there are lots of M -alternating paths that are
not M -augmenting; a silly way to find one is to just pick a single edge of M ... it’s a
path (of length 1) but is clearly not M -augmenting. There are noM -augmenting paths
in the first graph (bottom left) - every edge not in the matching has both endvertices
M -saturated, so an M -augmenting path cannot begin. There are M -augmenting paths
in the second graph (bottom right) - one of them is shown in figure 3 of the figures
page.
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• 1.7.2 2a: The condition is met. An example of an SDR is this: take i from the ith set
listed, i = 1, . . . , 5.

• 1.7.2 2b: The condition is met. An example of an SDR is this: take 4 from {1, 2, 4},
then 2 from {2, 4}, then 3 from {2, 3}, and finally 1 from {1, 2, 3}.

• 1.7.2 2c: The condition is violated by the sets {1, 2}, {2, 3}, {1, 2, 3} and {1, 3} - four
sets which between them have a union of size 3. So there is no SDR.

• 1.7.2 4: The statement is false. For example, if S1 = {1, 2}, S2 = {1, 3},, S3 = {1, 4},,
S4 = {2, 3}, S5 = {2, 4} and S6 = {3, 4} (so n = 4, r = 6 and the common cardinality
is 2), then there is clearly no SDR.

• 1.7.2 6: We show that Hall’s condition is satisfied. Let S ⊆ X be given. Look at
the subgraph of G that is induced by the vertices S ∪ N(S) (so from N(S), the set
of neighbors of S in Y , we only look at edges back to S). Let e(S) be the number
of edges in this graph. Going from S to N(S), we have e(S) ≥ δX |S| (each x ∈ S
contributes at least δX edges). Going from N(S) to S, we have e(S) ≤ ∆Y |N(S)| (each
y ∈ N(S) contributes at most ∆Y edges). Putting these two together we get δX |S| ≤
∆Y |N(S)| ≤ δX |N(S)| (the last inequality using δX ≥ ∆Y ), and so |S| ≤ |N(S)|. This
is Hall’s condition; so by Hall’s theorem there is a matching of X into Y .

• 1.7.3, 1: Let G = X ∪ Y be a bipartite graph that satisfies Hall’s condition, |N(S)| ≥
|S| for all S ⊆ X. We want to show that there is a matching of X into Y . Let M be
a maximum matching. By the König-Egerváry theorem, there is an edge cover of size
|M |. Let A be the set of vertices of the edge cover that are in X, B = X \ A, and
C the set of vertices of the edge cover that are in Y . We have a few inequalities and
equalities:

– |A|+ |B| = |X| (by definition of A and B)

– |B| ≤ |N(B)| ≤ |C| (the first of these is Hall’s condition; the second is because
N(B) ⊆ C. Indeed, if x ∈ B has a neighbor y 6∈ C, then xy is an edge not covered
by the edge cover).

– |A|+ |C| = |M | (this is König-Egerváry).

Combining the first and second above we get |X| ≤ |A| + |C|; using the third, we get
|X| ≤ |M |. In other words, the maximum matching has size at least the size of X. But
since each edge of M uses a vertex of X, and each vertex can be used at most once, it
must be that |X| = |M |, and M saturates X. This proves Hall.

• 1.7.3, 2: By the König-Egerváry theorem, the maximum matching in the subgraph
equals the minimum edge cover size. So if we can show that no set of k − 1 vertices
can form an edge cover of the subgraph, so the minimum edge cover has size at least
k, we have shown that the maximum matching size is at least k and so there has to
be a matching of size k. Since the maximum degree of Kn,n is n, each vertex in the
subgraph covers at most n edges, so k − 1 vertices can cover at most (k − 1)n edges;
but the subgraph has more than (k− 1)n edges, so no set of k− 1 vertices can form an
edge cover.
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• 1.7.3, 3: It seems sensible to try to translate the problem to one on a bipartite graph
where zeros of the matrix correspond to edges of the graph, independent sets of zeros
correspond to matchings, rows and columns correspond to vertices, and a covering of
the zeros corresponds to an edge cover. So: form a bipartite graph G = X ∪ Y where
X consists of the m rows of the matrix, Y is the n columns, and there is an edge
from i ∈ X to j ∈ Y if the ij entry is zero. A matching in this graph is exactly
a set of zeros no two of which are in the same row or column, and an edge cover is
exactly a set of rows and columns that covers all zeros. So the statement of the König-
Egerváry theorem (maximum matching size = minimum cover size) translates directly
to maximum number of independent zeros = minimum size of a covering family of rows
and columns.

• 1.7.4, 7: Remember that a perfect matching is one that saturates all the vertices. So
every leaf of the tree must be saturated, and so the edge leaving that leaf must be
used in the matching, and therefore none of the edges leaving the neighbor of the leaf,
except the one going back to the leaf, are allowed to be use. This suggests a proof by
induction, on the number of edges. If T has no edges, or 1, then it is obvious that
there is at most one (in fact exactly one) perfect matching. So assume that our tree
has more than one edge. Start building a possible perfect matching by including all the
edges leaving leafs (note that this may kill us: there may be two leaves adjacent to the
same vertex. If so, we automatically have a tree with no perfect matchings). Then (if
we have succeeded thus far) delete from T all those edges and all other edges leaving
vertices that are joined to leaves, as well as the leaf vertices and their neighbors. The
result graph is still acyclic, so all of its components are trees, and each tree has fewer
edges than the initial tree. To extend the matching we’ve started to a perfect matching
of the original tree, we need to find a perfect matching in each of the components, and
by induction there is at most one way to this for each component, so there is at most
one way to do it simultaneously for the collection of components. This finishes the
induction step.
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