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Set up
Start with recurrence

an = c1an−1 + . . . ckan−k for n ≥ k , a0, . . . ,ak given

For example:

fn = fn−1 + fn−2 for n ≥ 2, f0 = 0, f1 = 1

Form generating function

A(x) = a0 + a1x + a2x2 ++a3x3 + . . .+ anxn + . . .

For example:

F (x) = f0 + f1x + f2x2 + f3x3 + . . .+ fnxn + . . .
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Manipulation
Substitute known values (early on) and recurrence (later)
For example:

F (x) = 0+1x +(f1 + f0)x2 +(f2 + f1)x3 + . . .+(fn−1 + fn−2)xn + . . .

Manipulate to get generating function on right-hand side
For example:

F (x) = x +
(

f1x2 + f2x3 + . . .
)
+
(

f0x2 + f1x3 + . . .
)

= x + x
(

f1x + f2x2 + . . .
)
+ x2 (f0 + f1x + . . .)

= x + x (F (x)− f0) + x2F (x)
= x + xF (x) + x2F (x)

Solve for the generating function
For example:

F (x) =
−x

x2 + x − 1
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Solution I
Find a partial fractions decomposition of the generating function
For example:

F (x) =
A

x − r1
+

B
x − r2

where
I r1 = −1+

√
5

2 and
I r2 = −1−

√
5

2
are roots of denominator, and

I A = −r1/
√

5 and
I B = r2/

√
5

are found by combining the fractions, comparing the numerator of
the result with the numerator of F (x), and solving simultaneous
equations
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Solution II
Rewrite the fractions in the form 1

1−z
For example:

F (x) =
1√
5

(
1

1− x
r1

)
− 1√

5

(
1

1− x
r2

)
Find the nth term of the sequence by extracting nth term of each
fraction
For example:

fn =
1√
5

(
1
r1

)n

− 1√
5

(
1
r2

)n

Simplify to taste
For example:

fn =
1√
5

((
1 +
√

5
2

)n

+

(
1−
√

5
2

)n)
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Comments
Works in principle for any linear recurrence
In practice the partial fractions step can get very tricky, especially
if the denominator has repeated roots (and in general the roots of
the denominator cannot be found exactly)
Comparison of closed-form and power series works fine inside
radius of convergence of power series (however small)
Just the closed form for the generating function tells you a lot. If

A(x) =
p(x)
q(x)

=
p(x)

(x − r1)(x − r2) . . . (x − rk )

with p(x), q(x) are polynomials, q with distinct roots, then

an = γ1

(
1
r1

)n

+ . . .+ γk

(
1
rk

)n

for some constants γ1, . . . , γk . So if r1 is the closest root to 0,

an ≈
(

1
r1

)n

Math 40210 (Fall 2012) Generating Functions November 15, 2012 6 / 8



Example: Perrin sequence
a0 = 3, a1 = 0, a2 = 2 and an = an−2 + an−3 for n ≥ 3
Solve for A(X ) = a0 + a1x + a2x2 + . . . to get

x2 − 3
x3 + x2 − 1

=
A

x − r1
+

B
x − r2

+
C

x − r3

where (x − r1)(x − r2)(x − r3) = x3 + x2 − 1, and, it turns out,
A = −r1, B = −r2 and C = −r3.
So

an =

(
1
r1

)n

+

(
1
r2

)n

+

(
1
r3

)n

and
an ≈ (1.32471)n

where 1.32471 . . . is the plastic number
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Perrin and primes
Perrin (1899) noticed:

I if p is any prime, then p|ap
I if n is a small composite, then n 6 |an

He conjectured the following primality test:

p is a prime if and only if p|ap

In 1982, Adams and Shanks discovered that

271441|a271441

(
≈ 1033,000

)
but 271441 = (521)2

Numbers like 271441 are called Perrin pseudoprimes
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