P versus NP

Math 40210, Spring 2012

February 11, 2012
Properties of graphs

A *property* of a graph is anything that can be described without referring to specific vertices

Examples of properties:

- being bipartite
- having an Euler circuit
- having a Hamilton cycle

Examples of non-properties:

- vertices 1, 2 and 3 form a triangle
- vertices u and v are in different components
The decision problem for a property

The decision problem for a particular property is to determine, for any possible input graph G, whether or not G has the property

Examples of decision problems:

- Is G bipartite?
- Does G have an Euler circuit?
- Is G Hamiltonian?
The class \(\mathbf{P} \)

A property is in class \(\mathbf{P} \) if there is a quick procedure for answering the decision problem, that works for every possible input graph (here “quick” formally means that the number of steps that the procedure takes is at most a polynomial in the number of vertices of the graph)

Examples of \(\mathbf{P} \) properties:

- Being bipartite: pick a vertex to put in \(X \); put its neighbors in \(Y \), put the neighbors of these new vertices in \(X \), etc.; wait until either the process finishes successfully (in which case \(G \) is bipartite), or it breaks down (in which case \(G \) has an odd cycle and is not bipartite)

- Having an Euler circuit: look at the vertex degrees; if they are all even, then \(G \) has an Euler circuit; if one or more is odd, then it does not

“\(\mathbf{P} \)” stands for “polynomial time”
The class **NP**

A property is *in class NP* if, for every graph G for which the answer to the decision problem is YES, it is possible to present a quick proof of this fact (here again, “quick” formally means that the number of steps that need to be taken to verify that the proof is correct is at most a polynomial in the number of vertices of the graph)

Important note: the *proof* that G has the property has to be short, but there’s no limit to the amount of time needed to come up with the proof

Another way to say this: a property is in class **NP** if whenever a graph G has the property, I can quickly convince you that it has the property, *as long as I am given as much time as I need to prepare before beginning to convince you*

“**NP**” stands for “nondeterministic polynomial time”
Examples of **NP** properties

- Being bipartite: Before talking to you I find a valid bipartition $X \cup Y$, and I show it to you. **Or**: while you watch, I run the algorithm that answers the decision problem.

- Having an Euler circuit: Before talking to you I find an Euler circuit, and I show it to you. **Or**: while you watch, I run the algorithm that answers the decision problem.

- Any **P** property is also **NP**: to convince you that G has the property, I run the (quick) algorithm that answers the decision problem.

- Having a Hamilton cycle: Before talking to you, I find a Hamilton cycle in the graph (this may take a **very** long time); once I have found it, I show it to you, and clearly you can quickly verify that it is indeed a Hamilton cycle.
The $1,000,000$ question

P: properties for which the decision problem can be quickly solved

NP: properties for which a YES answer to the decision problem can be quickly verified, given enough preparation time

We’ve seen that \(P \subseteq NP \). The $1,000,000$ question is this:

Is \(P = NP \)?

In other words, is it true that every decision problem for which a YES answer can be quickly verified, can also be quickly solved?

A specific example: is there a quick way of deciding whether a given graph has a Hamilton cycle?
The class **NP-complete**

A property is in the class **NP-complete** if a procedure for solving the decision problem for that property can be converted into a procedure for solving the decision problem for any other **NP** property, without any significant slow down.

NP-complete properties are in a sense the “hardest” properties: if you solve the decision problem for any one of them, you’ve solved the decision problem for all other **NP** properties.

Having a Hamilton cycle is known to be an **NP-complete** property. So:

- if you find a quick way to answer the question “does G have a Hamilton cycle”, you’ve shown $P = NP$
- if you prove that no such quick way exists, you’ve shown $P \neq NP$
The Millennium Prize Problems

In 2000, the Clay Mathematics Institute identified seven important open problems in mathematics, and offered a prize of $1,000,000 for a solution to each one; see http://www.claymath.org/millennium/. One of these seven is the \(P \) versus \(NP \) problem.

The other six are problems of the form “prove \(X \)”, with the $1,000,000 only being offered for a proof of \(X \), not a counterexample. For \(P \) versus \(NP \), the full prize is guaranteed, whichever way the problem is resolved.