1. Let T be a tree whose longest path is length k (k edges). Let P_1, P_2 be two different paths in T, both of length k. Show that P_1 and P_2 must have a vertex in common.

![Diagram of tree with paths P_1 and P_2.]

If P_1, P_2 disjoint, there’s path from vertex v on P_1 to vertex w on P_2 of length ≥ 1.

Eusing that tree is connected?

By taking shortest possible such path, can assume that it only intersects P_1 at v, P_2 at w.

Assume w has that distance $d(v,w) > d(v,u)$, $d(w,v) > d(w,v)$.

Then $b-v-w-d$ is path of length $\geq \frac{k}{2} + 1 + \frac{k}{2} > k$.

We've found a shorter path, contradiction.

Name: SOLUTIONS
2. A tree on vertex set \(\{1, \ldots, n\} \) has Prüfer code \(nnn\ldots n \) (\(n - 2 \) n’s). Draw the tree in the space below.

\[\begin{array}{c}
\text{n-1 vertices} \\
\text{in a ring,} \\
\text{labeled 1 through n-1}
\end{array}\]

3. How can you tell by looking at the Prüfer code of a tree on vertex set \(\{1, \ldots, n\} \), that the tree is a path? [Without, of course, just building the tree from the code ... you should describe a way that just involves scanning the code.]

\[\text{# occurrences of vertex name in code = degree - 1}\]

In path, \(n-2 \) vertices have degree 2, so \(n-2 \) names appear once.

This accounts for all of code

So tree = Prüfer code has no repeated letters.
4. Let G be a graph (not necessarily connected) on n vertices $\{v_1, \ldots, v_n\}$. Put weights on the edges of the complete graph on vertex set $\{v_1, \ldots, v_n\}$ as follows: if $v_iv_j \in E(G)$, set $w(v_iv_j) = 0$, and if $v_iv_j \notin E(G)$, set $w(v_iv_j) = 1$. Run Kruskal’s algorithm on this weighted complete graph. Explain (with justification!) how you can use the output of Kruskal’s algorithm to deduce the number of components that G has.

Suppose G has k components, $G_1 \ldots G_k$, with n_1, \ldots, n_k vertices, $n_1 + \ldots + n_k = n$.

Kruskal picks out as many edges of weight 0 as possible first (without creating cycle), so K picks out spanning tree inside each of G_1, \ldots, G_k for $(n_1 - 1) + \ldots + (n_k - 1) = n - k$ edges of weight 0.

Remaining $k - 1$ edges (to get up to required $n - 1$) have all weight 1, so Kruskal outputs $\#k - 1$.

Conclusion: $\#$ Components = Output of Kruskal + 1.
5. By using the Prüfer code, find a formula for the number of trees on vertex set \(\{1, \ldots, n\} \) \((n \geq 3)\) that have exactly \(k \) leaves (\(k \) between 2 and \(n-1 \)). Your formula should not involve a summation. [Hint: Think of the Prüfer code as a function \(f: \{1, \ldots, n-2\} \to \{1, \ldots, n\} \), with \(f(i) \) being the number in the \(i \)th position of the code. If the tree has exactly \(k \) leaves, what do you know about the range of the function?]

\[\binom{n-2}{k} \text{ ways to choose which } h \text{ leaves.} \]

These \(k \) numbers don't appear in Prüfer code, all other numbers do, so Prüfer code is \(f: \{1, \ldots, n-2\} \to \text{set of size } n-h \)

That is \textbf{surjective} \(\checkmark \) \textbf{Shriling # of second kind}.

There are \((n-h)! \text{ } S(n-2, n-h) \) surjective functions from set of size \(n \) to set of size \(n-h \), so

\(\# \text{ trees with exactly } k \text{ leaves is } \)

\[\binom{n-2}{k} (n-h)! \text{ } S(n-2, n-h) \]