
Problem Solving in Math (Math 43900) Fall 2013

Week ten solutions

Instructor: David Galvin

1. A chocolate bar is made up of a rectangular m by n grid of small squares. Two players take
turns breaking up the bar. On a given turn, a player picks a rectangular piece of chocolate and
breaks it into two smaller rectangular pieces, by snapping along one whole line of subdivisions
between its squares. The player who makes the last break wins. Does one of the players have
a winning strategy for this game?

Solution: There is one piece of chocolate to start, and mn pieces at the end. Each turn by
a player increases the number of squares by 1. Hence a game lasts mn− 1 turns, completely
independently of the strategies of the two players! The winner is determined by the parity of
m and n: if m and n are both odd, mn − 1 is even and player 2 wins. Otherwise mn − 1 is
odd and player 1 wins.

Source: I learned this from Peter Winkler, Dartmouth College.

2. Two players, A and B, take turns naming positive integers, with A playing first. No player
may name an integer that can be expressed as a linear combination, with positive integer
coefficients, of previously named integers. The player who names “1” loses. Show that no
matter how A and B play, the game will always end.

Solution: Suppose the first k moves consist of naming x1, . . . , xk. Let gk be the greatest
common divisor of the xi’s. Consider the set of numbers expressible as a linear combination
of the xi’s over positive integers. Each x in this set is an integer multiple of gk (gk divides
the right-hand side of x =

∑
i aixi, so it divides the left-hand side). We claim that there is

some m such that all multiples of gk greater than mgk are in this set.

If we can prove this claim, we are done. The sequence (g1, g2, g3, . . .) is non-increasing. It stays
constant in going from gi to gi+1 exactly when xi+1 is a multiple of gi, and drops exactly
when xi+1 is not a multiple of gi. By our claim, once the sequence has reached a certain
g, it can only stay there for a finite length of time. So eventually that sequence becomes
constantly 1. But once the sequence reaches 1, there are only finitely many numbers that can
be legitimately played, and so eventually 1 must be played.

Here’s what we’ll prove, which is equivalent to the claim: if x1, . . . , xk are relatively prime
positive integers (greatest common divisor equals 1) then there exists an m such that all
numbers greater than m can be expressed as a positive linear combination of the xi’s. We
prove this by induction on k. When k = 1, xk = 1 and the result is trivial. For k > 1,
consider x1, . . . , xk−1. These may not be relatively prime; say their greatest common divisor
is d. By induction, there’s an m′ such that all positive integer multiples of d greater than m′d
can be expressed as a positive linear combination of the x1, . . . , xk−1. Now d and xk must be
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relatively prime (otherwise the xi’s would not be relatively prime), which means that there
must be some positive integer e (which way may assume is between 1 and xk−1) with ed ≡ 1
(modulo xk). If we add any multiple of xk to e to get e′, we still get e′d ≡ 1 (modulo xk). Pick
a multiple large enough that e′ > m′. By induction, e′d can be expressed as a positive integer
combination of x1, . . . , xk−1. So too can 2e′d, 3e′d, . . . , xke

′d. These xk numbers cover all the
residue classes modulo xk. Let m be one less than the largest of these numbers. For ` > m,
we can express ` as a positive linear combination of x1, . . . , xk as follows: first, determine the
residue class of ` modulo xk, say it’s p. Then add the appropriate positive integer multiple
of xk to pe′d (which can can be expressed as a positive integer combination of x1, . . . , xk−1).

Source: This is the game of Sylver coinage, invented by John H. Conway; see http://en.

wikipedia.org/wiki/Sylver_coinage. It is named after J. J. Sylvester, who proved that if
a and b are relatively prime positive integers, then the largest positive integer that cannot be
expressed as a positive linear combination of a and b is (a− 1)(b− 1)− 1.

3. There are nine cards laid out on a table, numbered 1 through 9. Two players, A and B, take
turns picking up cards (and once a card is picked up, it is out of play). As soon as one of the
players has among his chosen cards three of them that sum to fifteen, that player wins.

(a) If both players play perfectly, what happens?

(b) What game are the players really playing?

Solution: Here are the subsets of three distinct numbers that add to 15: {1, 5, 9}, {1, 6, 8},
{2, 4, 9}, {2, 5, 8}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7} and {4, 5, 6}. We can encode these eight triples
as the rows, columns and diagonals of the following three-by-three array:

6 1 8

7 5 3

2 9 4

So what the players are really doing is alternately selecting squares in a three-by-three array,
with the object of choosing some set of three squares that fill up a row, column or diagonal.
That is, they are playing tic-tac-toe, and the result of optimal play is a draw.

Source: This escapes me at the moment.

4. Alan and Barbara play a game in which they take turns filling entries of an initially empty
1024 by 1024 array. Alan plays first. At each turn, a player chooses a real number and
places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the
determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has
a winning strategy?

Solution: Barbara has a winning strategy. For example, Whenever Alan plays x in row i,
Barbara can play −x in some other place in row i (since there are an even number of places
in row i, Alan will never place the last entry in a row if Barbara plays this strategy). So
Barbara can ensure that all row-sums of the final matrix are 0, so that the column vector of
all 1’s is in the kernel of the final matrix, so it has determinant zero.

Source: Putnam 2008 A2.
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5. Alice and Bob play a game in which they take turns removing stones from a heap that initially
has n stones. The number of stones removed at each turn must be one less than a prime
number. The winner is the player who takes the last stone. Alice plays first. Prove that there
are infinitely many n such that Bob has a winning strategy. (For example, if n = 17, then
Alice might take 6 leaving 11; Bob might take 1 leaving 10; then Alice can take the remaining
stones to win.)

Solution: Suppose there are only finitely many n such that Bob will win if Alice starts
with n stones, say all such n < N . Take K > N so that K − m + 1 is composite for
m = 0, . . . , N . Starting with n = K, Alice must remove p− 1 stones, for p a prime number,
leaving m = K − p + 1 stones. But m > N since K −m + 1 = p is prime and K −m + 1 is
composite for m < N . By assumption, Alice can win starting from a heap of m stones. But
it is Bob’s turn to move, and so he could use the same strategy Alice would have used to win.
This applies for any first move Alice could have made from a heap of K stones. Hence Bob
has a winning strategy for a number K > N of stones, contrary to hypothesis. Instead there
must be infinitely many n for which Bob has a winning strategy.

Source: Putnam 2006 A2; I’ve given the solution published in the American Mathematical
Monthly verbatim. Implicit in this solution is the following useful fact: in a finite, two-person
game with no draws allowed, one of the players must have a winning strategy.

6. A game starts with four heaps of beans, containing 3, 4, 5 and 6 beans. The two players
move alternately. A move consists of taking either one bean from a heap, provided at least
two beans are left behind in that heap, or a complete heap of two or three beans. The player
who takes the last heap wins. Does the first or second player win? Give a winning strategy.

Solution: The first player has a winning strategy. The first player wins by removing one
bean from the pile of 3, leaving heaps of size 2, 4, 5, 6. Regarding heaps of size 2 and heaps
of odd size as “odd”, and heaps of even size other than 2 as “even”, the total parity is now
even. As long as neither player removes a single bean from a heap of size 3, the parity will
change after each move. Thus the first player can always ensure that after his move, the total
parity is even and there are no piles of size 3. (If the second player removes a heap of size 2,
the first player can move in another odd heap; the resulting heap will be even and so cannot
have size 3. If the second player moves in a heap of size greater than 3, the first player can
move in the same heap, removing it entirely if it was reduced to size 3 by the second player.)

Source: Putnam 1995 B5. I’ve reproduced the solution from The William Lowell Putnam
Mathematical Competition 1985–2000, Problems, Solutions, and Commentary by Kiran S.
Kedlaya, Bjorn Poonen and Ravi Vakil, where there is a further nice discussion.
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