
Problem Solving in Math (Math 43900) Fall 2013

Week eleven (November 12) solutions

Instructor: David Galvin

1. For which real values of p and q are the roots of the polynomial x3 − px2 + 11x − q three
successive (consecutive) integers? Give the roots in these cases.

Solution: A polynomial with roots being three consecutive integers is of the form

(x− (a− 1))(x− a)(x− (a+ 1)) = x3 − 3ax2 + (3a2 − 1)x− (a3 − a)

for some integer a. So, matching coefficients, we must have 3a2 − 1 = 11, or a = ±2. When
a = 2 we get roots 1, 2, 3 and p = 6, q = 6; when a = −2 we get roots −3,−2,−1 and p = −6,
q = −6.

Source: From a Harvey Mudd Putnam prep sheet.

2. (a) Determine all polynomials p(x) such that p(0) = 0 and p(x+ 1) = p(x) + 1 for all x.

Solution: By induction, p(x) = x for all positive integers x, so p(x)−x is a polynomial
with infinitely many zeros, so must be identically 0. We conclude that p(x) = x is the
only possible polynomial satisfying the given conditions.

(b) Determine all polynomials p(x) such that p(0) = 0 and p(x2 + 1) = (p(x))2 + 1 for all x.

Solution: We have p(0) = 0, p(1) = p(0)2 + 1 = 1, p(2) = p(1)2 + 1 = 2, p(5) =
p(2)2 + 1 = 5, p(26) = p(5)2 + 1 = 26 and in general, by induction, if the sequence
(an) is defined recursively by a0 = 0 and an+1 = a2n + 1, then p(an) = an. Since the
sequence (an) is strictly increasing, we find that there are infinitely many distinct values
x for which p(x) = x; as in the last part, this tells us that p(x) = x is the only possible
polynomial satisfying the given conditions.

Source: Part b) was Putnam 1971 A2; part a) is a simpler instance of the same idea.

3. Letp(x) = anxn+. . .+a1x+a0 be a polynomial with integer coefficients. If r is a rational root
of p(x) (i.e., if p(r) = 0), show that the numbers anr, anr

2 + an−1r, anr
3 + an−1r

2 + an−2r,
. . ., anr

n + an−1r
n−1 + . . . a1r are all integers. Note: Don’t assume Gauss’ Lemma here.

Solution/source: This was B1 of the 2004 Putnam; see the course website for a solution.

4. Determine, with proof, all positive integers n for which there is a polynomial p(x) of degree
n satisfying the following three conditions:

(a) p(k) = k for k = 1, 2, . . . , n,
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(b) p(0) is an integer, and

(c) p(−1) = 2013.

Solution/source: This was modified from a UIUC mock Putnam; see http://www.math.

illinois.edu/~hildebr/putnam/problems/mock12sol.pdf for a solution (replace “2012”
everywhere in that solution with “2013”, and “2013” with “2014”).

5. Find a non-zero polynomial p(x, y) such that p([t], [2t]) = 0 for all real numbers t. (Here [t]
indicates the greatest integer less than or equal to t.)

Solution/source: One possibility is p(x, y) = (2x − y)(2x − y + 1). Suppose t = n + α,
where n is an integer, and 0 ≤ α < 1. If α < 1/2, then ([t], [2t]) = (n, 2n), and p([t], [2t]) =
p(n, 2n) = 0 (since 2x − y = 0 in this case); if α ≥ 1/2, then ([t], [2t]) = (n, 2n + 1), and
p([t], [2t]) = p(n, 2n+ 1) = 0 (since 2x− y + 1 = 0 in this case).

Source: This was B1 of the 2005 Putnam.

6. Is there an infinite sequence a0, a1, a2, . . . of nonzero real numbers such that for n = 1, 2, 3, . . .
the polynomial

pn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

has exactly n distinct real roots?

Solution: We can explicitly construct such a sequence. Start with a0 = 1 and a1 = −1
(so case n = 1 works fine). We’ll construct the ai’s inductively, always alternating in sign.
Suppose we have a0, a1, . . . , an−1. The polynomial pn−1(x) = a0+a1x+a2x

2+ . . .+an−1x
n−1

has real distinct roots x1 < . . . < xn−1. Choose y1, . . . , yn so that

y1 < x1 < y2 < x2 < . . . < yn−1 < xn−1 < yn.

The sequence pn−1(y1), pn−1(y2), . . . , pn−1(yn) alternates in sign (think about the graph of y =
pn−1(x)). As long as we choose an sufficiently close to 0, the sequence pn(y1), pn(y2), . . . , pn(yn)
alternates in sign (this is by continuity). So, choose such an an. Now choose a yn+1 suffi-
ciently large that pn(yn+1) has the opposite sign to pn(yn) (this is where alternating the signs
of the ai’s comes in — such a yn+1 exists exactly because an and an−1 have opposite signs).
We get that the sequence pn(y1), pn(y2), . . . , pn(yn+1) alternates in sign. Hence pn(x) has n
distinct real roots: one between y1 and y2, one between y2 and y3, etc., up to one between yn
and yn+1. This accounts for all its root, and we are done.

Source: Putnam 1990 B5.
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