
Problem Solving in Math (Math 43900) Fall 2013

Week one (August 27) solutions

Instructor: David Galvin

1. A locker room has 100 lockers, numbered 1 to 100, all closed. I run through the locker room,
and open every locker. Then I run through the room, and close the lockers numbered 2, 4,
6, etc. (all the even numbered lockers). Next I run through the room, and change the status
of the lockers numbered 3, 6, 9, etc. (opening the closed ones, and closing the open ones). I
keep going in this manner (on the ith run through the room, I change the status of lockers
numbered i, 2i, 3i, etc.), until on my 100th run through the room I change the status of
locker number 100 only. At the end of all this, which lockers are open?

Solution: Locker n has its status changed once for each positive divisor of n, and so it is open
in the end exactly if n has an odd number of positive divisors. If n has prime factorization
pa11 . . . pakk , then the number of positive divisors is (a1 + 1) . . . (ak + 1) (a positive divisor takes

the form pb11 . . . pbkk with 0 ≤ bi ≤ ai for each i; so there are ai + 1 choices for the value of bi,
with choices for different i’s being independent). The product (a1 + 1) . . . (ak + 1) is odd only
if each ai + 1 is odd, so only if each ai is even. So Locker n has its status changed exactly
when all the exponents in the prime factorization of n are even; in other words, exactly when
n is a perfect square. So the open lockers are numbered 1, 4, 9, 16, 25, 36, 49, 64, 81 and 100.

Source: This is an old, old problem. I learned it recently from my graduate student John
Engbers.

2. Fix an integer k ≥ 1. Let f(x) = 1/(xk − 1). The nth derivative of f(x) may be written as

f (n)(x) =
gn(x)

(xk − 1)n+1

for some function gn(x). Find the value (in terms of n and k) of gn(1).

Solution: The claimed form of the nth derivative of f(x) is clearly correct: gn(x) can be
found simply by differentiating f(x) n times, and multipling the result by (xk − 1)n+1. But
notice that we can say a little more about gn(x), by doing the differentiations one at a time:
for n > 0,

f (n)(x) =
d

dx

(
f (n−1)(x)

)
=

d

dx

(
gn−1(x)

(xk − 1)n

)
=

d

dx

(
gn−1(x)(xk − 1)−n

)
= −nkxk−1gn−1(x)(xk − 1)−n−1 + g′n−1(x)(xk − 1)−n

=
−nkxk−1gn−1(x) + (xk − 1)g′n−1(x)

(xk − 1)n+1
.
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This constitutes a proof by induction of the following statement: the nth derivative of f(x)
may be written as

f (n)(x) =
gn(x)

(xk − 1)n+1

where the function gn(x) satisfies:

gn(x) =

{
1 if n = 0
−nkxk−1gn−1(x) + (xk − 1)g′n−1(x) if n > 0.

This makes gn(x) a polynomial in x (one can easily prove this by induction). That in particular
means that g′n−1(x) is finite for all x and n ≥ 0. So, evaluating the above recurrence at x = 1,
we get:

gn(1) =

{
1 if n = 0
−nkgn−1(1) if n > 0

(the term (xk − 1)g′n−1(x) disappearing at x = 1!). Now it is straightforward to prove by
induction on n that

gn(1) = (−1)nknn!.

Source: This is (essentially) problem A1 from the 2002 Putnam Competition.

3. (a) Is there a sequence (an)n≥1 of positive terms, such that both of the sums

∞∑
n=1

an
n3
,

∞∑
n=1

1

an

converge?

Solution: Try an = nα. Then

∞∑
n=1

an
n3

=
∞∑
n=1

1

n3−α

which converges as long as 3− α > 1 or α < 2; and

∞∑
n=1

1

an
=
∞∑
n=1

1

nα

which converges as long as α > 1. So an = nα for any α satisfying 1 < α < 2 will work.

(b) Is there a sequence (an)n≥1 of positive terms, such that both of the sums

∞∑
n=1

an
n2
,

∞∑
n=1

1

an

converge?

Solution: This time an = nα won’t work; we need α < 1 for the first sum to converge,
and α > 1 for the second. This suggests that no such an exists, and here’s a proof of
that fact:
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Assume that both sums converge. Then so does

∞∑
n=1

(
an
n2

+
1

an

)
.

But this seems fishy: if an is small, then 1/an is large; and if an is large, then an/n
2 is

large. So it seems that the summand is always large, making convergence hard. We can
easily formalize this: if an ≥ n then an/n

2 ≥ 1/n, and if an ≤ n then 1/an ≥ 1/n. So

∞∑
n=1

(
an
n2

+
1

an

)
>

∞∑
n=1

1

n
=∞,

a contradiction.

Note: If we allow negative an, then it is possible to get both sums to converge: take,
for example, an = (−1)nn.

Source: I found this problem in the lovely book A Mathematical Orchard, Problems and
Solutions by Krusemeyer, Gilbert and Larson.

4. Prove the following statement: for every even number n ≥ 2, the numbers 1 up to n can
be paired off (into n/2 pairs) in such a way that the sum of each pair is a prime number
(for example, if n = 8 the pairing scheme {1, 2}, {3, 4}, {5, 6}, {7, 8} doesn’t work, because
7 + 8 = 15 is not prime; but the pairing scheme {1, 4}, {2, 3}, {5, 8}, {6, 7} does).

Solution: Proof by (strong) induction on n. For n = 2 the statement is obvious. Consider
n > 2. By Bertrand’s Postulate, there is a prime number p with n < p < 2n. Pair the
numbers (n, p− n), (n− 1, p− n+ 1), (n− 2, p− n+ 2), etc., down to ((p+ 1)/2, (p− 1)/2);
all these (distinct and disjoint) pairs sum to p. (E.g., if n = 10, and p = 13, we would pair
(10, 3), (9, 4), (8, 5) and (7, 6)). This leaves the numbers from 1 to p − n − 1 to be paired;
since p− n− 1 is even and less than n, this pairing can be done by induction!

Source: This beautiful argument appeared in:

Greenfield, L. and Greenfield, S., Some problems of combinatorial number theory related to
Bertrands postulate, J. Integer Seq. 1 (1998), Article 98.1.2.

5. Find the sum of the digits, of the sum of the digits, of the sum of the digits, of the number
44444444.

Solution: We start with
44444444 < 1000010000 = 1040000.

Among all numbers below 1040000, none has a larger sum of digits than 1040000 − 1 (a string
of 40000 9’s). So the sum of the digits of 44444444 is at most 9 × 40000 < 1000000. Among
all numbers below 1000000, none has a larger sum of digits than 999999. So the sum of the
digits of the sum of the digits of 44444444 is at most 54. Among all numbers at most 54, none
has a larger sum of digits than 49. So the sum of the digits of the sum of the digits of the
sum of the digits of 44444444 is at most 13.

Now we use a useful fact: the remainder of a number, on division by 9, is the same as the
remainder of the sum of the digits on division by 9. To prove this, we digress into modular

3



arithmetic. Write a ≡ b (mod k) if a and b leave the same remainder on division by k (so,
e.g., 13 ≡ 4 (mod 3) because they both leave remainder 1, but 13 6≡ 4 (mod 5), since 13 leaves
a remainder of 3 and 4 a remainder of 4.) Here are two easy facts:

Fact 1: if a ≡ b (mod k) and c ≡ d (mod k) then a+ c ≡ b+ d (mod k)

and
Fact 2: if a ≡ b (mod k) and c ≡ d (mod k) then ac ≡ bd (mod k).

Now look at a number a = a`a`−1 . . . a2a1 in decimal. We have

a = a`10`−1 + a`−110`−2 + . . . a210 + a1.

Since 10 ≡ 1 (mod 9) we have (by Fact 2) 10i ≡ 1 (mod 9) for all i, and so (again by Fact 2)
ai10i−1 ≡ ai (mod 9). By Fact 1, we then have

a`10`−1 + a`−110`−2 + . . . a210 + a1 ≡ a` + a`−1 + . . .+ a2 + a1 (mod 9).

In other words, the remainder of a number, on division by 9, is the same as the remainder of
the sum of the digits on division by 9, as claimed.

This fact implies that the sum of the digits of the sum of the digits of the sum of the digits
of 44444444 leaves the same remainder on division by 9 as 44444444 itself does.

To calculate the remainder of 44444444 on division by 9, we can use a repeated multiplication
trick. It’s easy that

4444 ≡ 7 (mod 9).

By Fact 2:

44442 ≡ 49 ≡ 4 (mod 9)

44444 ≡ 16 ≡ 7 (mod 9)

44448 ≡ 49 ≡ 4 (mod 9)

444416 ≡ 16 ≡ 7 (mod 9)

444432 ≡ 49 ≡ 4 (mod 9)

444464 ≡ 16 ≡ 7 (mod 9)

4444128 ≡ 49 ≡ 4 (mod 9)

4444256 ≡ 16 ≡ 7 (mod 9)

4444512 ≡ 49 ≡ 4 (mod 9)

44441024 ≡ 16 ≡ 7 (mod 9)

44442048 ≡ 49 ≡ 4 (mod 9)

44444096 ≡ 16 ≡ 7 (mod 9).

By Fact 2 again:

44444444 = 4444409644442564444644444164444844444 ≡ 7.7.7.7.4.7 ≡ 7 (mod 9).

So 44444444 leaves a remainder of 7 on division by 9, and also the sum of the digits of the
sum of the digits of the sum of the digits of 44444444 leaves a remainder of 7 on division by
9; but we’ve calculated that this last is at most 13. The only number at most 13 that leaves
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a remainder of 7 on division by 9 is 7 it self; so the sum of the digits of the sum of the digits
of the sum of the digits of 44444444 must be 7.

Source: This was IMO (International Mathematical Olympiad) 1975 problem 4. Funnily
enough, if you had got this question fully correct at the IMO, you would have scored 7 points!

6. Find polynomials f(x), g(x) and h(x) such that

|f(x)| − |g(x)|+ h(x) =


−1 if x < −1,
3x+ 2 if −1 ≤ x ≤ 0,
−2x+ 2 if x > 0,

OR show that no such polynomials can be found.

Solution: This was on the 1999 Putnam (problem A1); see the appropriate Putnam book
on reserve in the library for a solution.

Basically: Since |f(x)|−|g(x)|+h(x) is piecewise linear, it seems reasonable to assume that if
such polynomials exist, they are all linear. Since f and g appear inside absolute value signs,
we might as well assume that they both have positive leading coefficients. There’s a kink at
x = −1, so one of f , g must change sign at −1, and a kink at 0, so the other changes sign
at 0. If f changed sign at 0 and g at −1, then we would expect |f(x)| − |g(x)| + h(x) to
start decreasing as it crossed −1, and increasing as it crossed 0; but it does the opposite. To
get this behavior, we should have f changing sign at −1 and g at 0. So, if an f , g, h of the
king described exist, they satisfy three linear equations, obtained by thinking about the three
regimes (−∞,−1), (−1, 0) and (0,∞):

−f(x) + g(x) + h(x) = −1

f(x) + g(x) + h(x) = 3x+ 2

f(x)− g(x) + h(x) = −2x+ 2.

Solving yields a valid solution:

f(x) =
3x+ 3

2
, g(x) =

5x

2
, h(x) = −x+

1

2
.

7. Consider the following game played with a deck of 2n cards, numbered from 1 to 2n. The
deck is randomly shuffled and n cards are dealt to each of two players, A and B. Beginning
with A, the players take turns discarding one of their remaining cards and announcing its
number. The game ends as soon as the sum of the numbers on the discarded cards is divisible
by 2n+ 1. The last person to discard wins the game.

Assuming optimal strategy by both A and B, who wins?

Solution: This was on the 1993 Putnam (problem B2); see the appropriate Putnam book
on reserve in the library for a solution.

Basically: B wins. Think about A throwing down his first card, x. We may assume that A
also has 2n+1−x, otherwise B has it and wins immediately. Consider two cards that B has,
say y and z. It must be that x+ y and x+ z leave a different remainder on division by 2n+ 1
(if they left the same remainder, so would y and z on their own, impossible). So each of y
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and z would require a different response from A, if A were going to win on his next throw.
In other words, B can associate to each of n cards a different number, and say to himself “if
I play card y, A must play card number(y) to win on his next throw”. But A only has n− 1
cards, so there must be a card y in B’s hand such that A does not have number(y). B plays
that card, thus ensuring that the game continues at least until B gets to make his second
throw. But then the same type of argument applies, and B can keep putting off the end of
the game, until finally B has just one card left, which he throws down to win.

8. Let f be a non-constant polynomial with positive integer coefficients. Prove that if n is a
positive integer, then f(n) divides f(f(n) + 1) if and only if n = 1.

Solution: This was on the 2007 Putnam (problem B1); see the appropriate link on the course
website for a solution.

Basically: We’ll use modular arithmetic. Write f(x) =
∑m

k=0 ckx
k. We have

f(f(n) + 1) =
m∑
k=0

ck(f(n) + 1)k ≡
m∑
k=0

ck = f(1) (mod f(n)). (1)

Here we’re using Fact 2 from earlier (f(n)+1 ≡ 1 (mod f(n)) implies ck(f(n)+1)k ≡ ck(1)k =
ck (mod f(n))), and then Fact 1 to add these all together.

Plugging n = 1 into (1) gives

f(f(1) + 1) ≡ f(1) ≡ 0 (mod f(1)),

i.e., f(1)|f(f(1) + 1).

For n > 1, could we have
f(f(n) + 1) ≡ 0 (mod f(n))

(i.e., f(n)|f(f(n) + 1))? Combining with (1), this would say

f(1) ≡ 0 (mod f(n)),

i.e., f(n)|f(1). But for n > 1, we have f(n) > f(1) > 0 (we’re working with a non-constant
polynomial with positive coefficients), so we can’t have f(n)|f(1).

Note: When this problem appeared on the Putnam Competition, the requirement that f be
non-constant was not mentioned. Without it, the statement to be proved is false. This is a
cautionary note: sometimes (*extremely* rarely), because of an oversight like this, you have
to make a small tweak to the problem statement to get at the real problem.
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