
Problem Solving in Math (Math 43900) Fall 2013

Week two (September 3) problems — induction

Instructor: David Galvin

Induction

Suppose that P (n) is an assertion about the natural number n. Induction is essentially the following:
if there is some a for which P (a) is true, and if for all n ≥ a we have that the truth of P (n) implies
the truth of P (n + 1), then we can conclude that P (n) is true for all n ≥ a.

Induction works because of the fundamental fact that a non-empty subset of the natural numbers
must have a least element. To see why this lets induction work, suppose that we know that P (a)
is true for some a, and that we can argue that for all n ≥ a, the truth of P (n) implies the
truth of P (n + 1). Suppose further that there are some n ≥ a for which P (n) is not true. Let
F = {n|n ≥ a, P (n) not true}. By assumption F is non-empty, so has a least element, n0 say. We
know n0 6= a, since P (a) is true; so n0 ≥ a + 1. That means that n0 − 1 ≥ a, and since n0 − 1 6∈ F
(if it was, n0 would not be the least element) we know P (n0− 1) is true. But then, by assumption,
P ((n0 − 1) + 1) = P (n0) is true, a contradiction!

Example: Prove that a set of size n ≥ 1 has 2n subsets (including the empty set and the set itself).

Solution: Let P (n) be the statement “a set of size n has 2n subsets”. We prove that P (n) is
true for all n ≥ 1 by induction. We first establish a base case. When n = 1, the generic set under
consideration is {x}, which has 2 = 21 subsets ({x} and ∅); so P (1) is true.

Next we establish the inductive step. Suppose that for some n ≥ 1, P (n) is true. Consider
P (n + 1). The generic set under consideration now is {x1, . . . , xn, xn+1}. We can construct a
subset of {x1, . . . , xn, xn+1} by first forming a subset of {x1, . . . , xn}, and then either adding the
element xn+1 to this subset, or not. This tells us that the number of subsets of {x1, . . . , xn, xn+1}
is 2 times the number of subsets of {x1, . . . , xn, }. Since P (n) is assumed true, we know that
{x1, . . . , xn, } has 2n subsets (this step is usually referred to as applying the inductive hypothesis);
so {x1, . . . , xn, xn+1} has 2× 2n = 2n+1 subsets. This shows that the truth of P (n) implies that of
P (n + 1), and the proof by induction is complete.

Strong Induction

Induction is a great tool because it gives you somewhere to start from in an argument. And
sometimes, the more you start with, the further you’ll go. That’s why the principle of Strong
Induction is worth keeping in mind: if there is some a for which P (a) is true, and if for each n > a
we have that the truth of P (m) for all m, a ≤ m < n, implies the truth of P (n), then we can
conclude that P (n) is true for all n ≥ a.

The proof that this works is almost the same as the proof that induction works. What’s good
about strong induction is that when you are at the part of the argument where you have to show
that the truth of P (n+1) from some assumptions about earlier assertions, you now have a lot more
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to work with: each of P (a), P (a+ 1), . . . , P (n− 1), rather than just P (n) alone. Sometimes this is
helpful, and sometimes it’s absolutely necessary.

Example: Prove that every integer n ≥ 2 can be written as n = p1 . . . p` where the pi’s are (not
necessarily distinct) prime numbers.

Solution: Let P (n) be the statement: “n can be written as n = p1 . . . p` where the pi’s are
(not necessarily distinct) prime numbers”. We’ll prove that P (n) is true for all n ≥ 2 by strong
induction.

P (2) is true, since 2 = 2 works.
Now consider P (n) for some n > 2. We want to show how the (simultaneous) truth of

P (2), . . . , P (n − 1) implies the truth of P (n). If n is prime, then n = n works to show that
P (n) holds. If n is not a prime, then its composite, so n = ab for some numbers a, b with 2 ≤ a < n
and 2 ≤ b < n. We’re allowed to assume that P (a) and P (b) are true, that is, that a = p1 . . . p`
where the pi’s are (not necessarily distinct) prime numbers, and that a = q1 . . . qm where the qi’s
are (not necessarily distinct) prime numbers. It follows that

n = ab = p1 . . . p`q1 . . . qm.

This is a product is (not necessarily distinct) prime numbers, and so P (n) is true.
So, by strong induction, we conclude that P (n) is true for all n ≥ 2.

Notice that we would have gotten exactly nowhere with this argument if, in trying to prove
P (n), all we had been allowed to assume was P (n− 1).

Recurrences

Sometimes we are either given a sequence of numbers via a recurrence relation, or we can argue
that there is such relation that governs the growth of a sequence. A sequence (bn)n≥a is defined via
a recurrence relation if some initial values, ba, ba+1, . . . , bk say, are given, and then a rule is given
that allows, for each n > k, bn to be computed as long as we know the values ba, ba+1, . . . , bn−1.

Sequences defined by a recurrence relation, and proofs by induction, go hand-in-glove. We
may have more to say about recurrence relations later in the semester, but for now, we’ll confine
ourselves to an illustrative example.

Example: Let an be the number of different ways of covering a 1 by n strip with 1 by 1 and 1 by
3 tiles. Prove that an < (1.5)n.

Solution: We start by figuring out how to calculate an via a recurrence. Some initial values of an
are easy to compute: for example, a1 = 1, a2 = 1 and a3 = 2. For n ≥ 4, we can tile the 1 by n
strip EITHER by first tiling the initial 1 by 1 strip with a 1 by 1 tile, and then finishing by tiling
the remaining 1 by n − 1 strip in any of the an−1 admissible ways; OR by first tiling the initial 1
by 3 strip with a 1 by 3 tile, and then finishing by tiling the remaining 1 by n − 3 strip in any of
the an−3 admissible ways. It follows that for n ≥ 4 we have an = an−1 + an−3. So an (for n ≥ 1)
is determined by the recurrence

an =


1 if n = 1,
1 if n = 2,
2 if n = 3, and

an−1 + an−3 if n ≥ 4.
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Notice that this gives us enough information to calculate an for all n ≥ 1: for example, a4 =
a3 + a1 = 3, a5 = a4 + a2 = 4, and a6 = a5 + a3 = 6.

Now we prove, by strong induction, that an < 1.5n. That a1 = 1 < 1.51, a2 = 1 < (1.5)2 and
a3 = 2 < (1.5)3 is obvious. For n ≥ 4, we have

an = an−1 + an−3

< (1.5)n−1 + (1.5)n−3

= (1.5)n

(
2

3
+

(
2

3

)3
)

= (1.5)n
(

26

27

)
< (1.5)n,

(the second line using the inductive hypothesis) and we are done by induction.

Notice that we really needed strong induction here, and we really needed all three of the base
cases n = 1, 2, 3 (think about what would happen if we tried to use regular induction, or what
would happen if we only verified n = 1 as a base case); notice also that an induction argument can
be written quite concisely, while still being fully correct, without fussing too much about “P (n)”.

The problems

1. Let f(n) be the number of regions which are formed by n lines in the plane, where no two
lines are parallel and no three meet in a point (e.g. f(1) = 2, f(2) = 4 and f(3) = 7). Find
a formula for f(n), and prove that it is correct.

2. Prove the following inequalities:

(a) 2(
√
n + 1− 1) ≤ 1 + 1√

2
+ 1√

3
+ . . . + 1√

n
≤ 2
√
n.

(b)
∏n

k=1(2k)! ≥ ((n + 1)!)n.

3. Define a sequence (an)n≥1 by

a1 = 1, a2n = an, and a2n+1 = an + 1.

Prove that an counts the number of 1’s in the binary representation of n.

4. Prove that for all n ≥ 2, it is possible to write n! − 1 as the sum of n − 1 numbers, each of
which is a divisor of n!.

5. Find (with proof!) all sequences (an)n≥0 of positive real numbers for which

a1 + 2a2 + 3a3 + . . . + kak
a1 + a2 + . . . + ak

=
k + 1

2

for all k ≥ 1.

6. Define a sequence (an)n≥0 by

an =

{
9 if n = 0, and

3a4n−1 + 4a3n−1 if n ≥ 1.

Prove that for all n ≥ 0, an ends with at least 2n 9’s in its decimal representation.
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7. Prove if a1, . . . , an are positive reals, then

a1 + . . . + an
n

≥ (a1 . . . an)1/n.

8. You are given a 64 by 64 chessboard, and 1365 L-shaped tiles (2 by 2 tiles with one square
removed). One of the squares of the chessboard is painted purple. Is is possible to tile the
chessboard using the given tiles, leaving only the purple square exposed?
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