
Problem Solving in Math (Math 43900) Fall 2013

Week two (September 3) solutions

Instructor: David Galvin

1. Let f(n) be the number of regions which are formed by n lines in the plane, where no two
lines are parallel and no three meet in a point (e.g. f(1) = 2, f(2) = 4 and f(3) = 7). Find
a formula for f(n), and prove that it is correct.

Solution: Suppose you have n lines down already, so f(n) regions. The (n + 1)st line, not
being parallel to any other will, will meet all n, and all at different places (since no three
lines meet in a point). Without loss of generality we can assume that the (n + 1)st line is
the x-axis, and along the line we can mark, in order, the n meeting points with other lines,
−∞ < x1 < x2 < . . . < xn < ∞. The segment on the (n + 1)st line from −∞ to x1 form
the boundary of two regions (above and below it) that were previously one region; so this
segment adds one region to the total. Similarly all the other segments add one region. There
are n + 1 segments in all, so we get the relation

f(n + 1) = f(n) + n + 1 ((for n ≥ 1)), f(1) = 2.

Computing the first few values, it seems clear that f(n) grows quadratically, and that in
fact f(n) = (n2 + n + 2)/2. We prove this by induction on n, with P (n) the statement
“f(n) = (n2 + n + 2)/2”. P (1) asserts “f(1) = (12 + 1 + 2)/2 = 2, which is true. Suppose
P (n) is true for some n ≥ 1. Let’s look at P (n + 1), which is the assertion “f(n + 1) =
((n + 1)2 + (n + 1) + 2)/2 = (n2 + 3n + 4)/2”. Since P (n) is assumed true, we know

f(n) =
n2 + n + 2

2
.

We also know f(n + 1) = f(n) + n + 1, so

f(n + 1) =
n2 + n + 2

2
+ n + 1 =

n2 + 3n + 4

2
,

and so indeed P (n+1) is true. That P (n) is true for all n ≥ 1, i.e., that f(n) = (n2+n+2)/2
for all n ≥ 1, has now been proved by induction.

Source: A classic.

2. Prove the following inequalities:

(a) 2(
√
n + 1− 1) ≤ 1 + 1√

2
+ 1√

3
+ . . . + 1√

n
≤ 2
√
n.

Solution: Let S(n) = 1 + 1√
2

+ 1√
3

+ . . . + 1√
n

. First we’ll sketch a proof by induction

that S(n) < 2
√
n for all n ≥ 1. The inequality for n = 1 is certainly true. For n ≥ 1,
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S(n+1) = S(n)+ 1√
n+1

. To show that this is less than 2
√
n + 1 is equivalent to showing

S(n) < 2
√
n + 1 − 1√

n+1
. Since we already know (by induction) that S(n) < 2

√
n it is

now sufficient to show that

2
√
n ≤ 2

√
n + 1− 1√

n + 1
.

After a little algebra (square both sides, isolate the last remaining square root on one
side, square both sides again, simplify), this is seen to be true for all n.

Proving 2(
√
n + 1 − 1) ≤ S(n) goes the same way; its true for n = 1. For n > 1,

induction allows us to reduce the problem to verifying

2(
√
n + 2− 1)− 1√

n + 1
≤ 2(
√
n + 1− 1),

which just requires a little algebra along the same lines as before.

Notice that for large n, the two sides (2(
√
n + 1− 1) and 2(

√
n)) are very close!

(b)
∏n

k=1(2k)! ≥ ((n + 1)!)n.

Solution: We prove this for n ≥ 1 by induction. For n = 1, the claimed inequality is
2! ≥ 2!1, which is true. For n > 1 we do

n∏
k=1

(2k)! = (2n)!
n−1∏
k=1

(2k)!

≥ (2n)!(n!)n−1,

the inequality by induction. To finish we need to show

(2n)!(n!)n−1 ≥ ((n + 1)!)n.

The (n!)n−1 term divides out, leaving

(2n)! > (n + 1)n−1(n + 1)!.

This is true: (2n)! is the product of 2n numbers, specifically 1, 2, . . . , n + 1, n + 2, n +
3, . . . , 2n, while (n + 1)n−1(n + 1)! is also the product of 2n numbers, specifically
1, 2, . . . , n + 1, n + 1, n + 1, . . . , n + 1. Listed in the order given, each factor of (2n)!
is at least as large as the corresponding factor of (n + 1)n−1(n + 1)!.

Source: A pair of classics; I found both on NYU’s Putnam prep site.

3. Define a sequence (an)n≥1 by

a1 = 1, a2n = an, and a2n+1 = an + 1.

Prove that an counts the number of 1’s in the binary representation of n.

Solution: Let f(n) count the number of 1’s in the binary representation of n. We first show
that

f(1) = 1, f(2n) = f(n), and f(2n + 1) = f(n) + 1.
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This is easy: Clearly f(1) = 1; if the binary representation of n is a1a2 . . . ak, then the binary
representation of 2n is a1a2 . . . ak0, so f(2n) = f(n); if the binary representation of n is
a1a2 . . . ak, then the binary representation of 2n + 1 is a1a2 . . . ak1, so f(2n + 1) = f(n) + 1.

Since f(n) satisfies the same initial conditions as an, and the same recurrence, it seems clear
that f(n) = an. Formally, we prove the statement “f(n) = an” for all n ≥ 1 by by strong
induction. For n = 1 it’s clear. For n > 1, if n = 2m is even then we have

f(n) = f(m) = am = an,

the first equality by what we’ve proved about f , the second by (strong) induction, and the
third by hypothesis on a. Similarly if n = 2m + 1 is odd then we have

f(n) = f(m) + 1 = am + 1 = an,

and we are done.

Remark: The above induction prove works (suitably modified) to establish rigourously the
evident but important fact that if two sequences are defined recursively, with the same initial
conditions and same recurrence relations, then they are in fact the same sequence.

Source: I found this on Stanford’s Putnam prep site, where it is sourced to the book “The
Art and Craft of Problem Solving” by P. Zeitz.

4. Prove that for all n ≥ 2, it is possible to write n! − 1 as the sum of n − 1 numbers, each of
which is a divisor of n!.

Solution: This is a problem that seems impossible at first; where could one find such precisely
regulated numbers? But once one starts an induction proof, it just falls out. Start with n = 2:
2!− 1 = 1, which can be written as the sum of 2− 1 = 1 number, which is a divisor of 2! = 2.

For n > 2 we have

n!− 1 = n[(n− 1)!− 1] + (n− 1)

= n[k1 + k2 + . . . + kn−2] + (n− 1),

where each ki is a divisor of (n−1)!. (Here we are using the inductive hypothesis: re-expressing
n! − 1 in terms of (n − 1)! − 1, and using the fact that we are assuming the existence of a
good decomposition of (n− 1)!− 1). Now we have

n!− 1 = nk1 + nk2 + . . . + nkn−2 + (n− 1),

so we have written n!− 1 as the sum of n− 1 numbers, each of which divides n! (nki divides
n! because ki divides (n− 1)!, and n− 1 clearly divides n!).

Done by induction!

Source: I found this on Northwestern’s Putnam prep site.

5. Find (with proof!) all sequences (an)n≥0 of positive real numbers for which

a1 + 2a2 + 3a3 + . . . + kak
a1 + a2 + . . . + ak

=
k + 1

2
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for all k ≥ 1.

Solution: After a little experimentation, you might start believing that the only sequences
that work are constant sequences (with all terms equal). We’ll verify this belief strong
induction. Specifically, let a fixed sequence (an)n≥0 of positive real numbers by given, for
which

a1 + 2a2 + 3a3 + . . . + kak
a1 + a2 + . . . + ak

=
k + 1

2

for all k ≥ 1, and suppose for convenience that a1 = a. We will prove by strong induction on
n that the statement P (n) is true for all n ≥ 1, where P (n) is the statement “an = a”.

P (1) is evident. Suppose we know that P (1), P (2), . . . , P (n) are all true, for some n ≥ 1 .
Let’s try to prove P (n + 1). One thing we know is that

a1 + 2a2 + 3a3 + . . . + (n + 1)an+1

a1 + a2 + . . . + an+1
=

(n + 1) + 1

2
=

n + 2

2
.

Another thing we know, by strong induction, is that a1 = . . . = an = a. So what we wrote
above reduces to

(1 + 2 + . . . + n)a + (n + 1)an+1

na + an+1
=

n + 2

2
.

Now a basic fact (which is an easy example of induction!) is that 1+2+ . . .+n = n(n+1)/2,
so the above becomes

n(n+1)a
2 + (n + 1)an+1

na + an+1
=

n + 2

2
.

Solving for an+1 yields an+1 = a, and we are done.

Source: I found this on Northwestern’s Putnam prep site.

6. Define a sequence (an)n≥0 by

an =

{
9 if n = 0, and

3a4n−1 + 4a3n−1 if n ≥ 1.

Prove that for all n ≥ 0, an ends with at least 2n 9’s in its decimal representation.

Solution: Induction! a0 = 9 certainly ends with at least 20 = 1 9’s, so the base case is fine.
For the induction, suppose that an ends with at least 2n 9’s in its decimal representation.
This means that an + 1 ends with 2n zeros. Write an + 1 = a102

n
:= b, so an = b − 1 (with

a, b integers). Using an+1 = 3a4n + 4a3n, we get

an+1 = 3(b− 1)4 + 4(b− 1)3

= 3b4 − 8b3 + 6b2 − 1

= b2(3b2 − 8b + 6)− 1

=
(
102

n)2
a2(3b2 − 8b + 6)− 1

= 102
n+1

[a2(3b2 − 8b + 6)]− 1.

Since a2(3b2− 8b+ 6) is an integer, we conclude that an+1 + 1 ends with at least 2n+1 0’s, so
an+1 ends with at least 2n+1 9’s.

Source: I found this on Northwestern’s Putnam prep site.
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7. Prove if a1, . . . , an are positive reals, then

a1 + . . . + an
n

≥ (a1 . . . an)1/n.

Solution: We’ll prove this by an odd kind of induction. First, we prove (by strong induction
on the exponent) that it is true when n is a power of 2. It’s certainly true when n = 1
(exponent 0). For a larger power of 2, say 2k for k ≥ 1, we have

a1 + . . . + a2k

2k
=

a1+...+a
2k−1

2k−1 +
a
2k−1+1

+...+a
2k

2k−1

2

≥
(a1 . . . a2k−1)1/2

k−1
+ (a2k−1+1 . . . a2k)1/2

k−1

2

≥
(

(a1 . . . a2k−1)1/2
k−1

(a2k−1+1 . . . a2k)1/2
k−1
)1/2

= (a1 . . . a2k)1/2
k

where the first inequality uses (twice) the induction hypothesis for exponent k − 1, and the
second uses it for exponent 1. But notice that I’ve cheated! If I look at the prove I’ve given
in the special case exponent 1, I’m assuming exactly that case, not an earlier one! So I need
to do n = 2 separately. But n = 2 is the assertion

a + b

2
≥
√
ab.

Multiplying both sides by 2, squaring, and rearranging, this reduces to

a2 − 2ab + b2 ≥ 0,

which is true since a2 − 2ab + b2 = (a− b)2.

OK, so by induction we’ve proved the inequality for all powers of 2. What about for non-
powers of 2? What we’ll show is that if the statement is true for n, it’s also true for n − 1.
This allows us to get the truth for any n by first going to a power of 2 above n, and then
repeatedly subtracting! (This is why it’s an odd kind of induction).

So, suppose we know
a1 + . . . + an

n
≥ (a1 . . . an)1/n (1)

where a1, . . . , an are arbitrary positive reals. Let a1, . . . , an−1, positive reals, be given. Set
an = a1+...+an−1

n−1 , and apply the above inequality (1). The left hand side is

a1 + . . . + an−1 + a1+...+an−1

n−1
n

=
a1 + . . . + an−1

n− 1
.

The right-hand side is(
a1 . . . an−1

(
a1 + . . . + an−1

n− 1

))1/n

= (a1 . . . an−1)
1/n

(
a1 + . . . + an−1

n− 1

)1/n

.

So in this instance (1) becomes

a1 + . . . + an−1
n− 1

≥ (a1 . . . an−1)
1/n

(
a1 + . . . + an−1

n− 1

)1/n

.
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A little rearrangement shows that this is the same as

a1 + . . . + an−1
n− 1

≥ (a1 . . . an−1)
1/(n−1),

which is exactly the n− 1 case of the inequality — so we are done.

Source: This is the famous and useful arithmetic mean - geometric mean inequality, some-
times called the AM-GM inequality. The wikipwdia page http://en.wikipedia.org/wiki/

Inequality_of_arithmetic_and_geometric_means gives many proofs of the stronger state-
ment that the inequality holds, and can only hold with equality when all the ai are equal.

8. You are given a 64 by 64 chessboard, and 1365 L-shaped tiles (2 by 2 tiles with one square
removed). One of the squares of the chessboard is painted purple. Is it possible to tile the
chessboard using the given tiles, leaving only the purple square exposed?

Solution: Yes! We’ll prove the more general fact: “Given a 2n by 2n chessboard, with one of
the squares painted purple, and (22n−1)/3 L-shaped tiles, it is possible to tile the chessboard
using the given tiles, leaving only the purple square exposed”. We’ll proceed by induction
on n, with n = 1 trivial. For n > 1, simply divide the chessboard into 4 2n−1 by 2n−1

subchessboards in the obvious way. For each of the three subchessboard that do not include
the purple square, mark the corner square closest to the middle of the board. By induction,
each of the three subchessboard that do not include the purple square can be tiled leaving
only the marked corner exposed, and the subchessboard that does include the purple square
can be tiled leaving only that square exposed. One tile is now left over, which can be used to
cover the three marked squares (they form an L!).

Remark: A picture helps enormously here!

Source: This is a classic problem, that I first learned from Andrew Thomason.
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