
Problem Solving in Math (Math 43900) Fall 2013

Week three (September 10) solutions

Instructor: David Galvin

1. (a) Show that among any n + 1 numbers selected from {1, . . . , 2n}, there must be two
(distinct) such that one divides the other.

Solution: Set up n pigeon holes, numbered 1, 3, 5, . . . , 2n − 1 (all the odd numbers
between 1 and 2n). Each positive integer k ≤ 2n has a unique representation of the
form 2aj, where j ∈ {1, 3, 5, . . . , 2n − 1} and a ≥ 0 (just keep dividing by 2 until the
number becomes odd; the number of times you divide by 2 is a, the resulting odd
number is j). Put number k into hole j. By PHP, at least one j is such that there are
two numbers in hole j; the one with the smaller exponent of 2 divides the other.

Source: Folklore.

(b) Show that among any n+ 1 numbers selected from {1, . . . , 2n}, there must be two that
share no common factors.

Solution: Two of the chosen numbers must be consecutive, and so share no common
factors! (If a|m and a|(m + 1) then a|((m + 1) −m) so a|1). To formally see that two
of the chosen numbers must be consecutive, you could use the PHP. The n holes are
labelled (1, 2), (3, 4), . . ., (2n − 1, 2n), and a chosen number k goes into hole (j, j + 1)
exactly if k ∈ {j, j + 1}.

Source: This was a favourite puzzle of Paul Erdös. It is sometimes called “Pósa’s soup
problem”; the reason is given here: http://www.math.uwaterloo.ca/navigation/

ideas/articles/honsberger/index.shtml.

2. (a) Show that in any group of six people there must EITHER be some three who all know
each other OR some three who all don’t know each other. (Assuming that “knowing” is
a reflexive relation: I know you iff you know me.)

Solution: Pick one person, A say. Of the other 5 people, A must EITHER know at
least 3, OR not know at least three (this is basically PHP: if neither happens, only at
most four of the other 5 are accounted for). Suppose A knows three people, say B,C,D.
IF any pair among B,C,D know each other, then together with A they form a triple,
all three of whom know each other. IF NOT, then B,C,D form a triple, all three of
whom don’t know each other. The same argument works if there are three people that
A doesn’t know.

(b) Is there some number n such that in any group of n people there must EITHER be some
four who all know each other OR some four who all don’t know each other? What about
if “four” is replaced by “five”, “six”, etc.?
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Solution/Source: For every k ≥ 1, there is a finite n(k) such that in any group
of n(k) people there must EITHER be some k who all know each other OR some k
who all don’t know each other. This is the famous Ramsey’s Theorem (see http:

//en.wikipedia.org/wiki/Ramsey’s_theorem). For k = 3, six works, but five doesn’t.

For k = 4, 18 works but not 17 (this is hard!). For general k, 4k works but
√

2
k

doesn’t,
and closing this gap has been a major open problem in discrete mathematics for the past
80 years.

3. Prove that any 55 element subset of {1, 2, . . . , 100} contains elements that differ by 10, 12
and 13, but need not contain elements differing by 11.

Solution: For 10: Use pigeonholes (1, 11), (2, 12), . . . , (10, 20), (21, 31), (22, 32), . . . , (30, 40),
. . ., (81, 91), (82, 92) . . . , (90, 100). 50 in all. Put k in hole (j, j + 10) if j ∈ {j, j + 10}. By
PHP, one hole has at least 2 numbers in it; these differ by 10.

For 12 and 13, the same argument work. For 12, there are 52 holes (four labeled with just
the single numbers (97), (98), (99), (100)); For 13, there are 51 holes (three labeled with just
the single numbers (88), (89), (90)).

What happens for 11? The same strategy leads to 55 holes (including 10 holes labeled with
just the single numbers (90), . . . , (99)), so this strategy won’t work. But it does allow us to
prove that NO strategy will work: just (carefully) pick a 55 element subset that includes 1
number from each of the 55 holes, to get a 55 element subset containing no elements differing
by 11.

Source: I took this from Larson’s book Problem solving through problems.

4. Let aj , bj cj be integers for 1 ≤ j ≤ N , with, for each j, at least one of aj , bj cj odd. Show
that there exist integers r, s, t such that raj + sbj + tcj is odd for at least 4N/7 values of j,
1 ≤ j ≤ N .

Solution: All that matters about aj , bj cj is the parity (odd/even) of each. There are 7 possi-
bilities, which we can encode by triples (1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)
(with, for example, (1, 0, 1) encoding that aj is odd, bj is even, cj is odd).

It is useless to try and find r, s, t all even: then raj + sbj + tcj will always be even.
So, considering parity, there are again only 7 possibilities for r, s, t, encoded by triples
(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1).

It is easy to check that if we take any of the possible triples for aj , bj cj , then as we run over
each of the 7 possible triples for r, s, t, exactly 4 of the 7 numbers raj + sbj + tcj is odd.

So, given any set of N triples aj , bj cj , exactly 4N of the 7N sums raj + sbj + tcj are odd
as r, s, t runs over its seven possibilities. We can place these 4N odd sums among 7 bins,
according to which choice for the triple r, s, t we made. At least one of these bins must
contain at least 4N/7 triples; any choice of r, s, t that has that bin’s triple associated with it
will do.

Source: Putnam 2000 B1.

5. Let A and B be 2 by 2 matrices with integer entries such that A, A + B, A + 2B, A + 3B
and A+ 4B are all invertible matrices whose inverses have integer entries. Show that A+ 5B
is invertible and that its inverse has integer entries.
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Solution: When does an integer 2 by 2 matrix have integer inverse? If the entries are cij ,
then what’s needed is for the determinant D = c11c22 − c12c21 to divide each of c11, c12, c21
and c22. In other words, c11 = aD, c12 = bD, c21 = cD and c22 = dD for integers a, b, c and
d. Hence D = c11c22 − c12c21 = (ad− bc)D2, so 1 = (ad− bc)D. Since ad− bc is an integer,
and so is D, this can only happen if D = ±1.

Let the entries of A be aij , and those of B be bij . We have the following relation (just by
doing some algebra):

det(A+ nB) = a+ nh+ n2k,

where a = det(A), h = a11b22−a12b21−a21b12 +a22b22 and k = det(B). This is a polynomial
in n, of degree 2.

We know that each of A + nB, n = 0, 1, 2, 3, 4, have integer inverses, so determinants ±1.
So at least three of them must have the same determinant. That means that there are three
different inputs n for which the quadratic polynomial a+nh+n2k has the same output. For
a quadratic polynomial to have this property, it must be a constant, so h = 0 and k = 0.
That means that for all n,

det(A+ nB) = a = detA = ±1,

and so the inverse of A + nB exists and has integer entries for all n (and in particular for
n = 5).

Source: Putnam 1994 A4.

6. A partition of a set X is a collection of disjoint non-empty subsets (the parts) whose union
is X. For a partition π of X, and an element x ∈ X, let π(x) denote the number of elements
in the part containing x.

Let π, π′ be any two partitions of {1, 2, . . . , 9}. Show that there are two distinct numbers x
and y in {1, 2, . . . , 9} such that π(x) = π(y) and π′(x) = π′(y).

Solution: We want to show that at least 4 elements x must have the same value of π(x).
Why is this helpful? Because these 4 elements can’t possible have distinct values of π′(x); the
smallest possible 4 distinct values are 1, 2, 3 and 4, accounting for 10 elements of a 9-element
set. So there are two among the 4, say x, y, with π′(x) = π′(y), and of course π(x) = π(y),
so we are done.

Suppose π has a part of size 4 or more. Then definitely at least 4 elements x must have the
same value of π(x). So assume that every part in π has size 3 or less. The possibilities for
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the part sizes are:

3, 3, 3 → has 9 elements with same value of π(x)

3, 3, 2, 1 → has 6 elements with same value of π(x)

3, 3, 1, 1, 1 → has 6 elements with same value of π(x)

3, 2, 2, 2 → has 6 elements with same value of π(x)

3, 2, 2, 1, 1 → has 4 elements with same value of π(x)

3, 2, 1, 1, 1, 1 → has 4 elements with same value of π(x)

3, 1, 1, 1, 1, 1, 1 → has 6 elements with same value of π(x)

2, 2, 2, 2, 1 → has 8 elements with same value of π(x)

2, 2, 2, 1, 1, 1 → has 6 elements with same value of π(x)

2, 2, 1, 1, 1, 1, 1 → has 5 elements with same value of π(x)

2, 1, 1, 1, 1, 1, 1, 1 → has 7 elements with same value of π(x)

1, 1, 1, 1, 1, 1, 1, 1, 1 → has 9 elements with same value of π(x).

(Of course this could have been done more efficiently!) In all cases, there are at least 4
elements x with the same value of π(x).

Source: Putnam 1995 B1.

7. The Fibonacci numbers are defined by the recurrence f0 = 0, f1 = 1 and fn = fn−1 + fn−2
for n ≥ 2. Show that the Fibonacci sequence is periodic modulo any positive integer. (I.e,
show that for each k ≥ 0, the sequence whose nth term is the remainder of fn on division by
k is a periodic sequence).

Solution: Consider the sequence obtained from the Fibonacci sequence by taking the re-
mainder of each term on division by k (so the result is a sequence, all terms in {0, . . . , k−1}).
Suppose that there are two consecutive terms in this sequence, say the mth and (m + 1)st,
taking values a, b, and two other consecutive terms , say the nth and n+1st, taking the same
values a, b (with m < n). Then the (m+ 2)nd and (n+ 2)nd terms of the reduced sequence
agree.

[WHY? Because the (m+ 2)nd term is the remainder of Fm+2 on division by k, which is the
remainder of Fm + Fm+1 on division by k, which is the remainder of Fm on division by k
PLUS the remainder of Fm+1 on division by k, which is the remainder of a on division by
k PLUS the remainder of b on division by k, which is the remainder of Fn on division by
k PLUS the remainder of Fn+1 on division by k, which is the remainder of Fn + Fn+1 on
division by k, which is the remainder of Fn+2 on division by k.]

The same argument shows that the reduced sequence is periodic beyond the mth terms, with
period (at most) n−m.

So all we need to do to find periodicity is to find two consecutive terms in the sequence,
that agree with two other consecutive terms. There are only k2 possibilities for a pair of
consecutive values in the sequence, and infinitely many consecutive values, so by PHP there
has to be a coincidence of the required kind.

Source: I found this on Northwestern’s Putnam prep site.
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8. Prove that from a set of ten distinct two-digit numbers, it is possible to select two non-empty
disjoint subsets whose members have the same sum.

Solution: The maximum subset-sum is 99+98+ . . .+90 = 945. The minimum subset-sum is
10. So there at most 936 possible sums, as we run over non-empty subsets of a 10-element set
of two digit numbers. But there are 210 − 1 = 1023 non-empty subsets of the 10-element set.
BY PHP, there are two different non-empty subsets, A and B, with equal sums. PROBLEM:
A, B may not be disjoint. SOLUTION: We certainly can’t have A ⊂ B or B ⊂ A (otherwise
one sum would definitely be larger). So A \ (A ∩ B) and B \ (A ∩ B) are both non-empty.
They are clearly disjoint, and have the same sums, since we obtained them by removing the
sam set from both A and B.

Source: This was problem 1 on the 1972 International Mathematical Olympiad.
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