
Problem Solving in Math (Math 43900) Fall 2013

Week four (September 17) problems — number theory

Instructor: David Galvin

Some useful principles/definitions from number theory

1. Divisibility: For integers a, b, a|b (a divides b) if there is an integer k with ak = b.

The greatest common divisor of a, b, gcd(a, b) (sometimes just written (a, b)) is that number
d such that d|a and and d|b, and for any other number e with e|a and e|b, we have e < d
(but in fact it turns out that we have e|d if d = gcd(a, b) and e|a, e|b; this follows easily from
looking at the prime factorizations of a and b, see below).

The least common multiple of a, b, lcm(a, b) is that number f such that a|f and and b|f , and
for any other number g with a|g and b|g, we have f < g (but in fact, as with gcd, it turns
out that we have f |g if f = lcm(a, b) and a|g, b|g).

If gcd(a, b) = 1 (so no factors in common other that 1) then a and b are said to be coprime
or relatively prime.

2. Primes: If p > 1 only has 1 and p as divisors, it is said to be prime; otherwise it is composite.

The fundamental fact about prime numbers (other that there are infinitely many of them!)
is that every number n > 1 has a prime factorization:

n = pa11 . . . pakk

with each pi a prime, and each ai > 0. Moreover, the factorization is unique if we assume
that p1 < . . . < pk.

3. Euclidean algorithm: Euclid described a simple way to compute gcd(a, b). Assume a > b.
Write

a = kb + j

where 0 ≤ j < b. If j = 0, then gcd(a, b) = b. If j > 0, then it is fairly easy to check that
gcd(a, b) = gcd(b, j). Repeat the process with the smaller pair b, j, and keep repeating as
long as necessary. For example, suppose I want gcd(63, 36):

63 = 1.36 + 27

36 = 1.27 + 9

27 = 3.9.

We conclude 9 = gcd(27, 9) = gcd(36, 27) = gcd(63, 36).
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4. Bézout’s Theorem: Given a, b, there are integers x, y such that ax + by = gcd(a, b).
Moreover, the set of numbers that can be expressed in the form ax′ + by′ = c for integers
x′, y′ is exactly the set of multiples of gcd(a, b).

The proof comes from working the Euclidean algorithm backwards. I’ll just do an example,
with the pair 63, 36. We have

9 = 36− 1.27

= 36− 1(63− 1.36)

= −1.63 + 2.36

so we can take x = −1 and y = 2.

Once we have found an x and y, the rest is easy. Suppose c = kgcd(a, b) is a multiple of
gcd(a, b); then (kx)a + (ky)b = cgcd(a, b). On the other hand, if ax′ + by′ = c then since
gcd(a, b)|a and gcd(a, b)| we have gcd(a, b)|c, so c is a multiple of gcd(a, b).

The most common form of Bézout’s Theorem is that if (a, b) = 1 then every integer k can be
written as a linear combination of a and b; in particular there is x, y with ax + by = 1.

5. Modular arithmetic: When dealing with remainders of numbers on division, the language
of modular arithmetic is extremely useful. Write

a ≡ b (mod k)

if a and b leave the same remainder on division by k, or equivalently if k|(a−b), or equivalently
equivalently if a = mk + b for some integer m (so, e.g., 13 ≡ 4 (mod 3) because they both
leave remainder 1, but 13 6≡ 4 (mod 5), since 13 leaves a remainder of 3 and 4 a remainder of
4.) Here are two easy and incredible useful facts:

Fact 1: if a ≡ b (mod k) and c ≡ d (mod k) then a + c ≡ b + d (mod k)

and
Fact 2: if a ≡ b (mod k) and c ≡ d (mod k) then ac ≡ bd (mod k).

If a ≡ b (mod k) then we also say that a and b are in the same congruence class modulo m (an
example of a congruence class modulo 3 is the set {3k+ 2 : k ∈ Z} = {. . . ,−4,−1, , 2, 5, . . .}).
The set of congruence classes modulo m is denoted by Z/mZ.

6. Useful facts/theorems:

(a) Inverses: If p is a prime, and a 6≡ 0 (mod p), then there is a whole number b such that
ab ≡ 1 (mod p).

(b) Fermat’s theorem: If p is a prime, and a 6≡ 0 (mod p), then ap−1 ≡ 1 (mod p).

More generally, for arbitrary m (prime or composite) define ϕ(m) to be the number
of numbers in the range 1 through m that are coprime with m. If (a,m) = 1 then
aϕ(m) ≡ 1 (mod m). (When m = p this reduces to Fermat’s Theorem.)

We refer to ϕ as Euler’s totient function. A quick way to calculate its value: if m has
prime factorization m = pa11 . . . pakk , then

ϕ(m) = m

k∏
i=1

(
1− 1

pi

)
.
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(c) Chinese Remainder Theorem: Suppose n1, n2, . . . , nk are pairwise relatively prime.
If a1, a2, . . . , ak are any integers, there is a number x that simultaneously satisfies x ≡
ak (mod nk). Moreover, modulo n1n2 . . . nk, this solution is unique.

The problems

1. Let a and b be two integer for which a− b is divisible by 3. Prove that a3 − b3 is divisible by
9.

2. Find all integers n such that 2n + n|8nn + n.

3. Let x, y and z be integers with the property that

1

x
− 1

y
=

1

z
.

Prove that both gcd(x, y, z)xyz and gcd(x, y, z)(y − x) are both perfect squares.

4. Let n > 1 be an integer and p a prime such that n|(p− 1) and p|(n3 − 1). Prove that 4p− 3
is a perfect square.

5. Show that the sum of consecutive primes is never twice a prime.

6. Prove that 270 + 370 is divisible by 13.

7. Define f(n) by f(1) = 7 and f(n) = 7f(n−1) for n > 1. Find the last two digits of f(7). (Note
that f(7) is an exponential tower of 7’s, 7 high.)

8. Several positive integers are written on a chalk board. One can choose two of them, erase
them, and replace them with their greatest common divisor and least common multiple. Prove
that eventually the numbers on the board do not change.

9. How many primes numbers have the following (decimal) form: digits alternating between 1s
and 0s, beginning and ending with 1?

10. Take a walk on the number line, starting at 0, by on the first step taking a step of length one,
either right or left, on the second step taking a step of length two, either right or left, and in
general on the kth step taking a step of length k, either right or left.

(a) Prove that for each integer m, there is a walk that visits (has a step ending at) m.

(b) Lt f(m) denote the shortest number of steps needed to reach m. Show that

lim
m→∞

f(m)√
m

exists, and find the value of the limit.
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