
Problem Solving in Math (Math 43900) Fall 2013

Week four (September 17) solutions

Instructor: David Galvin

1. Let a and b be two integer for which a− b is divisible by 3. Prove that a3 − b3 is divisible by
9.

Solution: a3 − b3 = (a− b)(a2 + ab + b2). Since a− b is known to be divisible by 3, we just
need to show that a2 + ab + b2 is too, for the product to be divisible by 3× 3 = 9. We know
a ≡ b (mod 3), so (using the basic facts) a2 + ab + b2 ≡ a2 + a2 + a2 ≡ 3a2 ≡ 0 (mod 3); so
indeed a2 + ab + b2 is divisible by 3.

Source: Northwestern Putnam preparation.

2. Find all integers n such that 2n + n|8nn + n.

Solution: It seems like, if 2n +n|8nn+n, then the quotient should be something like n4n, so
lets hypothesize that it is n4n+k for some integer k. The equation (2n+n)(n4n+k) = n8n+n
reduces to k2n + n24n + nk = n.

If k = 0 this becomes n24n = n or n4n = 1. This holds for no n.

If k > 0, then k2n + n24n + nk > n, so the equality holds for no n.

If k < 0, say k = −` for ` > 0, then the equality becomes

n24n = (` + 1)n + `2n.

For this to hold, we probably need ` ≈ n22n, so try ` = n22n +m for integer m. The equality
becomes

n32n + mn + n + m2n = 0.

This can’t hold for m = 0 or m > 0, so consider m = −k < 0. We reduce to

n32n + n = k(2n + 1).

The solution to this is probably of the form k = n3 + r. Substituting this in leads to

n = n3 + r(2n + 1).

If r = 0, the only possible solution is n = 1. If r > 0, there is no possible solution. If r = −s
with s > 0, then the equation becomes

s(2n + 1) = n3 − n.

It’s easy to check that 5(2n + 1) > n3 − n for all n ≥ 1, so we need only consider s ≤ 4, for
which it is easy to check that there are no solution.
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So: the only possibility is n = 1, which does in fact work, so this is the unique solution.

Source: I took this from Northwestern’s Putnam preparation, where the original question
was to find all n for which 2n + n|8n + n; using the same strategy this can be solved rather
more quickly than the one I (accidently!) wrote.

3. Let x, y and z be integers with the property that

1

x
− 1

y
=

1

z
.

Prove that both gcd(x, y, z)xyz and gcd(x, y, z)(y − x) are both perfect squares.

Solution: If we replace x, y and z with x/gcd(x, y, z), y/gcd(x, y, z) and z/gcd(x, y, z) then
neither the defining relation, nor the perfect-squareness or otherwise of the targets change,
so we might as well assume that gcd(x, y, z) = 1.

So our first task is to show that if x, y and z have no factor in common to all three (other
than 1), and 1/x− 1/y = 1/z, then xyz is a square.

We can get xyz out of the defining relation by multiplying through by x2yz to get

xyz = x2z + xy = x2(y + z)

so its enough to show y+z a square. If not, there’s some prime p with p2a+1|(y+z), and with
p2a+2 6 |(y + z). Using xyz = x2(y + z) we get that p2a+1|xyz. But we can’t have p|x (we’re
assuming gcd(x, y, z) = 1), so p2a+1|yz. By PHP, we must have either pa+1|y or pa+1|z. If
the former, then from p2a+1|(y + z) we get pa+1|(y + z) and so pa+1|z, and if the latter for
the same reason we get pa+1|y. So either way, we have both pa+1|y and pa+1|z, so p2a+2|yz,
so p2a+2|(y + z), a contradiction. So y + z is a square as required.

Our second task is to show that if x, y and z have no factor in common to all three (other
than 1), and 1/x− 1/y = 1/z, then y − z is a square.

We can get y − x out of the defining relation as follows: multiply through by xyz to get

yz = xz + xy

which is equivalent to
(y − x)(z − x) = x2.

Suppose p|(y − x). Then p|x2 and so p|x. Since p|(y − x) we also have p|y. Since we are
assuming gcd(x, y, z) = 1 we therefore cannot have p|z, and so, since p|x, we cannot have
p|(z − x).

It follows that gcd(y − x, z − x) = 1. How can it be that the product of two numbers is a
perfect square (x2 in this case), and the two numbers are co-prime? By looking at the prime
factorization, we see that it can happen only if both of the numbers are perfect squares. So
y − x is a square, as required.

Source: Northwestern Putnam preparation.

2



4. Let n > 1 be an integer and p a prime such that n|(p− 1) and p|(n3 − 1). Prove that 4p− 3
is a perfect square.

Solution: We have p|(n − 1)(n2 + n + 1) so either p|(n − 1) or p|(n2 + n + 1). The first is
impossible (it implies p ≤ n − 1, but n|(p − 1) says n ≤ p − 1 so p ≥ n + 1). So we have
p|(n2 + n + 1).

By n|(p−1) we have kn = p−1 for some k ≥ 1, and by p|(n2 +n+1) we have `p = n2 +n+1
for some ` ≥ 1. From the first, we have `p = `kn + `, and so `kn + ` = n2 + n + 1 or

n2 + (1− `k)n + (1− `) = 0.

The solutions to this quadratic must be integers, so the discriminant must be a perfect square,
i.e.,

(1− `k)2 − 4(1− `) = x2

for some integer x.

One possibility is ` = 1 (the left-hand side above becomes (1− k)2, certainly a square). But
` = 1 says p = n2 + n + 1, so 4p− 3 = 4n3 + 4n + 1 = (2n + 1)2, a perfect square.

If ` > 1 then rewriting the above as (`k − 1)2 + 4(`− 1) = x2, we see that

4(`− 1) ≥ 2(`k − 1) + 1

(why? (`k− 1)2 is a perfect square, and when we add 4(`− 1) we get a larger perfect square;
the first perfect square after (`k − 1)2 is (`k)2, which differs from (`k − 1)2 by 2(`k − 1) + 1,
so we need to add at least this much).

4(`− 1) ≥ 2(`k− 1) + 1 implies k = 1 (if k ≥ 2 then 2(`k− 1) ≥ 4`− 2 > 4(`− 1)). But k = 1
says p = n + 1, so n + 1|(n2 + n + 1), so n + 1|n2, impossible for n > 0 (why¿ n + 1|n2 − 1,
so if n + 1|n2 then n + 1|1).

Source: Northwestern Putnam preparation.

5. Show that the sum of consecutive primes is never twice a prime.

Solution: Suppose p < q are consecutive primes, with p + q = 2r where r is prime. Then
r = (p + q)/2 satisfies p < r < q, a contradiction since there are no primes between p and q.

Source: Stanford Putnam preparation.

6. Prove that 270 + 370 is divisible by 13.

Solution: (Dan’s quick solution) 22 ≡ −32 (mod 13); raising both sides to the power 35, get
270 ≡ −370 (mod 13), and we are done!

(My laborious solution): By Fermat (or easy multiplication!) we have 212 ≡ 1 (mod 13), so
260 ≡ 1 (mod 13). By easy multiplication, 210 ≡ 10 (mod 13), so 270 ≡ 10 (mod 13).

By Fermat (or easy multiplication) we have 312 ≡ 1 (mod 13), so 360 ≡ 1 (mod 13). By easy
multiplication, 310 ≡ 3 (mod 13), so 370 ≡ 3 (mod 13).

Combining, 270 + 370 ≡ 13 ≡ 0 (mod 13), as required.

Source: Stanford Putnam preparation.
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7. Define f(n) by f(1) = 7 and f(n) = 7f(n−1) for n > 1. Find the last two digits of f(7). (Note
that f(7) is an exponential tower of 7’s, 7 high.)

Solution: Notice that 74 = 2401 ≡ 1 (mod 100). So really all we need to do is to find the
remainder, on division by 4, of a tower of six sevens.

Now 7 ≡ −1 (mod 4), and a tower of five 7’s is odd, so f(6) ≡ (−1)2k+1 ≡ −1 ≡ 3 (mod 4)
(here 2k + 1 = f(5); we don’t need to know its value, just that it is odd). So f(6) = 4m + 3
for some m, and

f(7) = 7f(6) = 74m+3 ≡ 73(74)m ≡ 43 (mod 100).

The last two digits are 43.

Source: Stanford Putnam preparation.

8. Several positive integers are written on a chalk board. One can choose two of them, erase
them, and replace them with their greatest common divisor and least common multiple. Prove
that eventually the numbers on the board do not change.

Solution: (Thanh’s quick solution) If you pick two numbers a, b with a|b or b|a, then since
gcd(a, b) = min{a, b} and lcm(a, b) = max{a, b} in this case, the numbers do not change. In
general gcd(a, b)|lcm(a, b), so if it is not the case that a|b or b|a, then after the swap it is the
case for that particular pair. Initially there are only finitely many pairs (a, b) with a 6 |b and
b 6 |a; either eventually we replace all these pairs with pairs of which one divides to other (in
which case we are done), or we eventually commit to avoiding all remaining such pairs (in
which case we are done).

(My laborious solution) When we take a pair of numbers (a, b), and replace them with
(gcd(a, b), lcm(a, b)), we preserve something, namely the product of the pair of numbers (that
ab = gcd(a, b)lcm(a, b) is easily seen from the prime factorization of a and b: if

a =
n∏

i=1

paii , b =
n∏

i=1

pbii

(with maybe some of the ai, bi zero) then

ab =
n∏

i=1

pai+bi
i ,

gcd(a, b) =

n∏
i=1

p
min{ai,bi}
i , lcm(a, b) =

n∏
i=1

p
max{ai,bi}
i ,

so

gcd(a, b)lcm(a, b) =
n∏

i=1

p
min{ai,bi}+max{ai,bi}
i .

Thus ab = gcd(a, b)lcm(a, b) follows from x+y = min{x, y}+max{x, y}, valid for any positive
integers x, y.)

For any fixed positive number, there are only finitely many ways to write it as the product
of a fixed number of positive numbers (if the target of the product is N , and we are using
d numbers, then each of the d numbers must be a divisor of N , so the number of ways of
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writing N as a product of d terms is at most a(N)d, where a(N) is the number of divisors of
N). This shows that there are only finitely many possibilities for the numbers written on the
board.

Consider the sum of the numbers. How does this change with the swap operation? It depends
on how a + b compares to gcd(a, b) + lcm(a, b). Experimentation suggests that gcd(a, b) +
lcm(a, b) ≥ a + b, with equality iff the pair (a, b) coincides (in some order) with the pair
(lcm(a, b), gcd(a, b)). To prove this, first consider a = b, for which the result is trivial. For all
other cases, assume without loss of generality that a > b. We have

lcm(a, b) ≥ a > b ≥ gcd(a, b).

If any one of a = lcm(a, b), b = gcd(a, b) holds then by the conservation of product the other
must too, and the result we are trying to prove is true. So now we may assume

lcm(a, b) > a > b > gcd(a, b),

and what we want to show is that this implies gcd(a, b) + lcm(a, b) > a + b. Let n = ab =
gcd(a, b)lcm(a, b), so

gcd(a, b) + lcm(a, b) = gcd(a, b) +
n

gcd(a, b)
and a + b = b +

n

b
.

A little calculus shows that the function f(x) = x+n/x is decreasing on the interval (0,
√
n].

Since gcd(a, b) < b <
√
n, this shows that

gcd(a, b) +
n

gcd(a, b)
> b +

n

b

which is exactly what we want to show.

So, suppose we have the bunch of numbers in front of us, and we perform the swap operation
infinitely often. All swaps preserve the product. Some swaps also preserve the sum; these
swaps are exactly the swaps that don’t change the set of numbers. All other swaps increase the
sum. We can only increase the sum finitely many times (there are only finitely many different
configurations of numbers). Therefore there must be some point (curiously, not boundable
as a function of the original numbers!) after which we make no more sum-increasing swaps;
from that point on, the numbers remain unchanged.

Source: Stanford Putnam preparation.

9. How many primes numbers have the following (decimal) form: digits alternating between 1s
and 0s, beginning and ending with 1?

Solution: The number xn = 1010 . . . 101, with n 0’s, can be written as

1 + 100 + 1000 + 1000000 + . . . + 1000 . . . 000 = 1 + (100) + (100)2 + . . . + (100)n,

in other words, xn = Pn(100) where Pn(x) is the polynomial 1 + x + x2 + . . . + xn.

We want to know for which n the polynomial Pn(x) is prime for x = 100.

For n = 0, it is not (P0(100) = 1), and for n = 1 it is (P1(100) = 101). So we assume n ≥ 2.
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Since (x− 1)(1 + x + x2 + . . . + xn) = (xn+1 − 1), we have

99Pn(100) = 100n+1 − 1 = 102(n+1) − 1 =
(
10n+1

)2 − 1 =
(
10n+1 − 1

) (
10n+1 + 1

)
.

What happens if Pn(100) is prime? It must divide one of 10n+1−1, 10n+1+1. But, for n ≥ 2,

Pn(100) = 1 + (100) + (100)2 + . . . + (100)n > 1 + 102n > 1 + 10n+1,

so Pn(100) is too big to divide either 10n+1 + 1 or 10n+1 − 1. Hence for n ≥ 2, Pn(100) can’t
be prime.

The conclusion is that the only prime of the given form is 101.

Source: NYU Putnam preparation.

10. Take a walk on the number line, starting at 0, by on the first step taking a step of length one,
either right or left, on the second step taking a step of length two, either right or left, and in
general on the kth step taking a step of length k, either right or left.

(a) Prove that for each integer m, there is a walk that visits (has a step ending at) m.

Solution: We can easily get to the number m = n(n + 1)/2, for any integer n: just do
1+2+3+ . . .+n. What about a number of the form n(n+1)/2−k, where 1 ≤ k ≤ n−1?
For k even we can get to this by flipping the + to a − in front of k/2. For k odd we can
get to this by first adding n+ 1 to the end, then subtracting n− 2 (net effect: −1), then
flipping the + to a − in front of (k − 1)/2.

Thus we can reach every number in the interval [n(n+ 1)/2− (n−1), n(n+ 1)/2]. Using
1 + 2 + 3 + . . . + n = n(n + 1)/2 we can easily check that the union of these disjoint
intervals, as n increases from 1, covers the positive integers. To get to a negative integer
m, just reverse the signs on any scheme that gets to −m.

Another way to get to n > 0: do n = (−1 + 2) + (−3 + 4) + . . . + (−(2n− 1) + 2n).

(b) Lt f(m) denote the shortest number of steps needed to reach m. Show that

lim
m→∞

f(m)√
m

exists, and find the value of the limit.

Solution: Our second solution to part 1 shows f(n) ≤ 2n, but to solve part 2 we need to
do better. Our first solution to part 1 shows that if m ∈ [n(n+1)/2−(n−1), n(n+1)/2]
then f(m) ≤ n + 2. But it is also easy to see that in that interval, f(m) ≥ n, since the
largest number that can be reached in n−1 step is 1+2+ . . .+(n−1) = n(n+1)/2−n.

For m ∈ [n(n+ 1)/2− (n−1), n(n+ 1)/2], we have (n−1)/
√

2
√
m ≤ (n+ 1)/

√
2, and so

√
2

n

n + 1
≤ f(m)√

m
≤
√

2
n + 2

n− 1
.

Notice that n here is a function of m, and that as m→∞ we have n→∞ also. So the
sequence f(m)/

√
m is sandwiched between two positive sequences both of which go to√

2 as m→∞. By the squeeze theorem,

lim
m→∞

f(m)√
m

exists and equals
√

2.
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Source: From A Mathematical Orchard, Problems and Solutions by Krusemeyer, Gilbert and
Larson.
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