
Problem Solving in Math (Math 43900) Fall 2013

Week five (September 24) solutions

Instructor: David Galvin

1. Let x be a real number such that x + 1/x is an integer. Prove that

xn +
1

xn

is also an integer for any positive number n.

Solution: Note that x 6= 0. Try induction on n; base case n = 1 is given. For n > 1,

xn +
1

xn
=

(
x +

1

x

)(
xn−1 +

1

xn−1

)
−
(
xn−2 +

1

xn−2

)
.

By (strong) induction, all three terms in parentheses on the right-hand side are integers (not
quite: when n = 2, one of the terms is x0 + 1/x0, which is an integer but not by induction),
so the right-hand side is an integer.

Source: Jay.

2. The following scenario is explained to 100 perfect logicians: in the middle of the night they
will be put into a dark room, and a certain number of them will be selected to have a blue
dot put on their foreheads. Those with the dots don’t realize that the dots are being put
on, and can’t see their own foreheads. The person running the game provides a guarantee
that at least one person will have such a blue dot. At dawn on day 1, the lights are turned
on, and everyone is allowed to look at the foreheads of everyone else (just not their own!).
When everyone has thoroughly examined everyone else, the lights go out. All those who now
know for certain that they have a blue dot on their forehead are instructed to slip quietly
out of the room; their game is over. At dawn on day 2, the lights are turned on again, and
the observation period recommences; then the lights go out and all those who now know for
certain that they have a blue dot on their forehead leave. The process is repeated indefinitely.

Suppose initially that all 100 logicians have a blue dot put on their forehead. What happens?

Solution: I haven’t yet found a completely satisfactory solution to this yet ... I’ll post one
when I do!

Source: Patrick & Seamus

3. Given five points on the surface of a sphere, show that there exists a closed hemisphere which
contains four of those points.
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Solution: Fix two of the points, and consider the great circle through them. This great
circle divides the sphere into two open hemispheres A and B, each of which, together with
the great circle, forms a closed hemisphere; call these A′, B′. If any two other points lie on
the great circle, then both A′ and B′ have at least 4 of the points. If exactly one other of the
points lie on the great circle, then by PHP at least one of A, B must have at least one of the
remaining two points; if A, then A′ has at least 4 points, and if B, then B′ does. If no other
point lies on the great circle, then by PHP at least one of A, B must have at least two of
the remaining three points; if A, then A′ has at least 4 points, and if B, then B′ does. This
covers all possibilities, so we are done.

Source: John; also Putnam 2002 problem A2

4. Five men crash-land their airplane on a deserted island in the South Pacific. On their first
day they gather as many coconuts as they can find into one big pile. They decide that, since
it is getting dark, they will wait until the next day to divide the coconuts.

That night each man took a turn watching for rescue searchers while the others slept. The
first watcher got bored so he decided to divide the coconuts into five equal piles. When he
did this, he found he had one remaining coconut. He gave this coconut to a monkey, took
one of the piles, and hid it for himself. Then he jumbled up the four other piles into one big
pile again.

The second watcher did the same thing, as did all the others: they each divided the pile of
coconuts they found at the start of their watch into five equal piles and each found they had
one extra coconut left over, which they gave to the monkey. They each took one of the five
piles and hid those coconuts. They each came back and jumbled up the remaining four piles
into one big pile.

In the morning, none of them admitted to what they had done, so they divided the (rather
smaller!) pile of coconuts into five equal piles. When they did this, they found that they had
left over, which they gave to the lucky monkey.

How many coconuts were there in the original pile?

Solution: Let x be the number of coconuts. From the first man’s action we deduce x ≡ 1 (5),
or x = 5k + 1. After the first man is done, the pile of coconuts has size 4(x− 1)/5. From the
second man’s action we deduce 4(x− 1)/5 ≡ 1 (5), or (4x− 4)/5 = 5`+ 1, so 4x = 25`+ 9, or
4x ≡ 9 (25). To get information about x from this, we must multiply by that number b such
that 4b = 1 (25); b = 19 works. So (19)4x ≡ (19)9 (25) or x ≡ 21 (25).

After the second man is done, the pile of coconuts has size 4((4(x−1)/5)−1)/5 = (16x−36)/25.
From the third man’s action we deduce (16x− 36)/25 ≡ 1 (5), or (16x− 36)/25 = 5` + 1, so
16x = 125`+ 61, or 16x ≡ 61 (125). To get information about x from this, we must multiply
by that number b such that 16b = 1 (125); b = 86 works. So (86)16x ≡ (86)61 (125) or
x ≡ 121 (125).

A pattern is emerging: maybe it’s better to thing of x ≡ −4 (5), x ≡ −4 (25), x ≡ −4 (125),
instead of x ≡ 1 (5), x ≡ 21 (25), x ≡ 121 (125). Let’s try: After the third man is done, the
pile of coconuts has size (4/5)((16x− 36)/25− 1) = (64x− 244)/125. From the fourth man’s
action we deduce (64x−244)/125 ≡ −4 (5), or (64x−244)/125 = 5m−4, so 64x = 625`−256.
To make this useful, we need to multiply by the inverse of 64 modulo 625; it is 459 (I used a
modular arithmetic calculator online). So (459)64x ≡ x ≡ (459)(−256) ≡ −4 (625).
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Similar, but increasingly more computationally intensive, calculations lead us to x ≡ −4 (3125)
(from fifth man’s actions) and x ≡ −4 (15625) (the action of the morning). Notice that any
x satisfying x ≡ −4 (15625) satisfies all of the other recurrences; so the only restriction on x
is x ≡ −4 (15625). The smallest possible option is x = 15621 (a lot of coconuts!)

Here’s a “cheap” solution: we can go through the above process without actually calculating
the various inverses: First man’s action tells us that x ≡ 1 (5). He leaves (4/5)(x−1) coconuts.
Second man’s action tells us that (4/5)(x − 1) ≡ 1 (5), or 4x ≡ 9 (25), or x ≡ (4−1)9 (25).
(Because 4and25 have no factors in common, we know that there are a and b with 4a+25b = 1,
telling us that 4 does have an inverse modulo 25.) Second man leaves (4/5)((4/5)(x− 1)− 1)
coconuts. His action, using the cheap strategy just employed, tells us that there is some k
such that x ≡ k (125). Keep repeating, until finally we discover that after the action of
the next morning, a necessary condition on x for x to work is that x ≡ k (15625) for some
(explicitly computable) k. Of course, this is a vacuous statement unless we can actually figure
out what k could be.

But we can! Take k = −4, and to check that this works consider what happen if there are
initially −4 coconuts. The first man divides them into five equal piles of size −1, leaving +1
left over, which goes to the monkey. He takes his share of −1, leaving exactly what he started
with: −4 coconuts! So every other action also works, and also leaves −4 coconuts.

Of course, −4 is not a physical solution; but it tells us that the necessary condition is x ≡
−4 ≡ 15621 (15625). We can then easily check that any x of the form x = 15625k + 15621
works.

Source: Kevin

5. Using the digits 1 up to 9, two numbers must be made. The product of these two numbers
should be as large as possible. All digits must be used exactly once. Which are the requested
two numbers?

Solution: First observation: the digits of the requested two numbers have to form descending
sequences (if not, the product can be increased by swapping a later bigger digit with an earlier
smaller digit in one of the numbers; I’m thinking of reading the numbers from left-to-right in
decimal.

First task: figure out the best product using a 5 digit number versus a 4 digit number.
Suppose two numbers are 9abcd and efgh. It’s a quick check that we should have e > a (if
not we can increase the product by instead taking 9efgh and abcd). Since one of a, e must be
8 (if not one of the numbers wouldn’t be in decreasing order), so e = 8 and our two numbers
are 9abcd and 8fgh.

Suppose a = 7. Then the numbers are 97bcd and 8fgh. Write these as 97000+A and 8000+B
to get the product (97000)(8000) + 97000B + 8000A + AB. Claim: it’s best to have B > A.
For suppose A > B. Then using 97000 +B and 8000 +A we get the product (97000)(8000) +
97000A + 8000B + AB, which is bigger than (97000)(8000) + 97000B + 8000A + AB (the
difference is 89000(A−B)). So we should have f = 6, making our numbers 97bcd and 86gh.

If a 6= 7, then by the decreasing-sequence property we must have f = 7, making our numbers
9abcd and 87gh.

So we have two possibilities: 1) 97bcd and 86gh and 2) 9abcd and 87gh. Similar sort of
reasoning can narrow things down more from here, or we could just try all possibilities, to
see which gives the bigger product.
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There’s another 5-versus-4 possibility: abcde and 9fgh. One can analyse this possibility
similarly, reducing down to a managable number of possibilities to check.

It turns out that the best 5-versus-4 possibility is 9642 and 87531 (and the product of these
two numbers is 843,973,902).

One then has to check that no 6-versus-3, 7-versus-2 or 8-versus-1 possibility beats this, using
similar thinking.

This is quite a bit of work! Does anyone see a more streamlined approach?

Source: Lindsay

6. Let a1, a2, . . . and b1, b2, . . ., be sequences of positive reals with a1 = b1 = 1 and bn = bn−1an−2
for n = 2, 3, . . .. Assume that the sequence (bj)

∞
j=1 is bounded. Prove that the sum

S =
∞∑
n=1

1

a1a2 . . . an

converges, and evaluate S.

Solution: The question strongly suggests that the sum is independent of the choice of se-
quences, so try an example: all bi = 1. This makes an = 2 for n ≥ 2, and the sum becomes
1 + (1/2) + (1/2)2 + . . . = 3/2. This suggests S = 3/2.

To prove this, lets re-write S in terms of the b’s (that’s about all we can do!). Using an =
(bn + 2)/bn−1 (and b1 = 1), the terms in S are

1,
1

b2 + 2
,

1

b2 + 2

b2
b3 + 2

,
1

b2 + 2

b2
b3 + 2

b3
b4 + 2

, . . . .

We want the partial sums of this sequence to converge to 3/2, so we look at the difference
between 3/2 and the partial sums. The first difference is 1/2. The second is

3

2
− 1− 1

b2 + 2
=

b2
2(b2 + 2)

.

The third is

3

2
− 1− 1

b2 + 2
− b2

(b2 + 2)(b3 + 2)
=

b2
2(b2 + 2)

− b2
(b2 + 2)(b3 + 2)

=
b2b3

2(b2 + 2)(b3 + 2)
.

A pattern is emerging: it seems that 3/2 minus the sum of the first k terms is

b2 . . . bk
2(b2 + 2) . . . (bk + 2)

.

We prove this by induction on k, with some base cases already established. For the inductive
step, we observe that (by induction) 3/2 minus the sum of the first k + 1 terms is

b2 . . . bk
2(b2 + 2) . . . (bk + 2)

− b2 . . . bk
(b2 + 2) . . . (bk+1 + 2)

=
b2 . . . bk+1

2(b2 + 2) . . . (bk+1 + 2)
,

so we have what we want by induction.
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To finish off, we need to show that

b2 . . . bk
2(b2 + 2) . . . (bk + 2)

→ 0

as k → ∞. The terms of the sequence are positive. Since (bk)k≥0 is bounded, there exist
C > 0 such that bj < C for all j. This means 1 + (2/bj) > 1 + (2/C) for all j, so

bj
bj + 2

<
1

1 + (2/C)
=

C

2 + C
.

It follows that
b2 . . . bk

2(b2 + 2) . . . (bk + 2)
<

1

2

(
C

2 + C

)k

for all k. The right-hand side tends to 0 as k →∞, so

b2 . . . bk
2(b2 + 2) . . . (bk + 2)

→ 0

as k →∞; so we are done, and have proved that S = 3/2.

Source: Jonathan, and also Putnam 2011 problem A2
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