
Problem Solving in Math (Math 43900) Fall 2013

Week six (October 1) problems — recurrences

Instructor: David Galvin

Definition of a recurrence relation

We met recurrences in the induction hand-out.
Sometimes we are either given a sequence of numbers via a recurrence relation, or we can argue

that there is such relation that governs the growth of a sequence. A sequence (bn)n≥a is defined via
a recurrence relation if some initial values, ba, ba+1, . . . , bk say, are given, and then a rule is given
that allows, for each n > k, bn to be computed as long as we know the values ba, ba+1, . . . , bn−1.

Sequences defined by a recurrence relation, and proofs by induction, go hand-in-glove. Here’s
an illustrative example.

Example: Let an be the number of different ways of covering a 1 by n strip with 1 by 1 and 1 by
3 tiles. Prove that an < (1.5)n.

Solution: We start by figuring out how to calculate an via a recurrence. Some initial values of an
are easy to compute: for example, a1 = 1, a2 = 1 and a3 = 2. For n ≥ 4, we can tile the 1 by n
strip EITHER by first tiling the initial 1 by 1 strip with a 1 by 1 tile, and then finishing by tiling
the remaining 1 by n − 1 strip in any of the an−1 admissible ways; OR by first tiling the initial 1
by 3 strip with a 1 by 3 tile, and then finishing by tiling the remaining 1 by n − 3 strip in any of
the an−3 admissible ways. It follows that for n ≥ 4 we have an = an−1 + an−3. So an (for n ≥ 1)
is determined by the recurrence

an =


1 if n = 1,
1 if n = 2,
2 if n = 3, and

an−1 + an−3 if n ≥ 4.

Notice that this gives us enough information to calculate an for all n ≥ 1: for example, a4 =
a3 + a1 = 3, a5 = a4 + a2 = 4, and a6 = a5 + a3 = 6.

Now we prove, by strong induction, that an < 1.5n. That a1 = 1 < 1.51, a2 = 1 < (1.5)2 and
a3 = 2 < (1.5)3 is obvious. For n ≥ 4, we have

an = an−1 + an−3

< (1.5)n−1 + (1.5)n−3

= (1.5)n

(
2

3
+

(
2

3

)3
)

= (1.5)n
(

26

27

)
< (1.5)n,
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(the second line using the inductive hypothesis) and we are done by induction.

Notice that we really needed strong induction here, and we really needed all three of the base
cases n = 1, 2, 3 (think about what would happen if we tried to use regular induction, or what
would happen if we only verified n = 1 as a base case).

Solving via generating functions

Given a sequence (an)n≥0, we can form its generating function, the function

F (x) =
∞∑
n=0

anx
n.

Often we can use a recurrence relation to produce a functional equation that F (x) satisfies, then
solve that equation to find a compact (non-infinite-summation) expression for F (x), then finally
use knowledge of calculus power-series to extract an exact expression for an. There are so many
different varieties of this method, that I won’t describe it in general, just give an example. The
Perrin sequence is defined by p0 = 3, P1 = 0, p2 = 2, and

pn = pn−2 + pn−3 for n > 2.

(A quite interesting sequence: see http://en.wikipedia.org/wiki/Perrin_number#Primes_and_
divisibility.) The generating function of the sequence is

P (x) = p0 + p1x+ p2x
2 + p3x

3 + p4x
4 + . . . .

Plugging in the given values for p0, p1 and p2, and the recurrence’s right-hand side for all others,
we get

P (x) = 3 + 2x2 + (p0 + p1)x
3 + (p1 + p2)x

4 + . . .

= 3 + 2x2 + x3(p0 + p1x+ . . .) + x2(p1x+ p2x
2 + . . .)

= 3 + 2x2 + x3P (x) + x2(P (x)− p0)
= 3− x2 + (x3 + x2)P (x).

We can now solve for P (x) as a rational function in x, and expand using partial fractions:

P (x) =
3− x2

1− x2 − x3

=
A

1− α1x
+

B

1− α2x
+

C

1− α3x

where A,B and C are some constants and (1−α1x)(1−α2x)(1−α3x) = 1−x2−x3, or equivalently
(x−α1)(x−α2)(x−α3) = x3−x−1. In other words, α1, α2 and α3 are the solutions to x3−x−1 = 0
(it happens that one of them, say α1, is real, and is roughly 1.32 [it’s called the plastic number]
and the other two are a complex conjugate pair with absolute value smaller than α1).

Using
1

1− kx
= 1 + kx+ k2x2 + . . . ,

we now get that

P (x) = (A+B+C) + (Aα1 +Bα2 +Cα3)x+ (Aα2
1 +Bα2

2 +Cα2
3)x

2 + (Aα3
1 +Bα3

2 +Cα3
3)x

3 + . . . ,
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and so we can read off a formula for pn (by uniqueness of power-series representations):

pn = Aαn
1 +Bαn

2 + Cαn
3 .

But what are A,B and C? One way to figure them out is to use the initial conditions, to get a set
of simultaneous equations:

A + B + C = 3
Aα1 + Bα2 + Cα3 = 0
Aα2

1 + Bα2
2 + Cα2

3 = 2.

It turns out that the unique solution to this system is A = B = C = 1. This solution satisfies the
first equation above, evidently; it satisfies the second since

(x−α1)(x−α2)(x−α3) = x3−x−1 = x3−(α1+α2+α3)x
2+(α1α2+α1α3+α2α3)x−(α1α2α3) (1)

implies α1 + α2 + α3 = 0; and it satisfies the last since

(α1 + α2 + α3)
2 = (α2

1 + α2
2 + α2

3) + 2(α1α2 + α1α3 + α2α3),

and from (1) this reduces to 0 = α2
1 + α2

2 + α2
3 − 2 so α2

1 + α2
2 + α2

3 = 2.
So we have an exact formula for pn:

pn = αn
1 + αn

2 + αn
3

where α1, α2 and α3 are the roots of x3 − x− 1.
Notice that without even doing the explicit computation of A,B and C, we have learned some-

thing from the generating function approach about pn, namely the following: since α1 ≈ 1.32 is
real and (α2, α3) is a complex conjugate pair with absolute value smaller than α1, we have that for
large n,

pn ≈ Aαn
1 ≈ A(1.32)n.

In other words, with very little work, we have isolated the rough growth rate of pn.
If this business of generating functions interests you, you can find out much more in Herb Wilf’s

beautiful book generatingfunctionology (just google it; it’s freely available online).

Solving via characteristic function

Mimicing what we did with the Perrin sequence, we can easily prove the following theorem: let
(an) be a sequence defined recursively, via the defining relation

an = c1an−1 + c2an−2 + ckan−k for n ≥ k,

(for some constants ci) together with initial values a0, a1, a2, . . . , ak−1. Form the polynomial

C(x) = xk − c1xk−1 − c2xk−2 − . . .− ck−1x− ck

(called the characteristic polynomial of the recurrence). If C(x) = (x − α1)(x − α2) . . . (x − αk)
factors into distinct linear terms, then there are constants A1, A2, . . . , Ak such that for all n ≥ 0,

an = A1α
n
1 + . . .+Akα

n
k
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with the Ai’s explicitly findable by solving the k by k system of linear equations

A1 + . . .+Ak = a0

A1α1 + . . .+Akαk = a1

A1α
2
1 + . . .+Akα

2
k = a2

. . .

A1α
k−1
1 + . . .+Akα

k−1
k = ak−1.

Even without solving this system, if C(x) has a unique root (say α1) of greatest absolute value,
then we know the asymptotic growth rate

pn ∼ A1α
n
1

as n→∞.
Similar statements can be made when C(x) has repeated roots, with the form of the final answer

changing depending on what is the right expression to use in the partial fractions expansion step
of the generating function method. I won’t make a general statement, because it would be way too
cumbersome (but ask me if you want to see more!); instead here’s an example:

Suppose an = 4an−1 − 4an−2 for all n ≥ 2, with a0 = 0 and a1 = 1. The generating function
method gives that the generating function A(x) satisfies

A(x) =
x

1− 4x+ 4x2
.

The correct partial fractions expansion now is

A(x) =
A

1− 2x
+

B

(1− 2x)2
.

The coefficient of xn in A/(1− 2x) is A(2n). For B/(1− 2x)2, we use:

1

1− kx
= 1 + kx+ k2x2 + . . . ,

so differentiating

k

(1− kx)2
= k + 2k2x+ 3k3x2 + . . .+ (n+ 1)kn+1xn + . . . ,

so
1

(1− kx)2
= 1 + 2kx+ 3k2x2 + . . .+ (n+ 1)knxn + . . . ,

so the coefficient of xn in B/(1− 2x)2 is B(n+ 1)(2n). [This trick of figuring out new power series
from old by differentiation is quite useful!] This gives

an = A2n + (n+ 1)B2n.

Using a0 = 0 we get A+B = 0, and using a1 = 1 we get 2A+ 4B = 1, so A = −1/2, B = 1/2 and

an = n2n−1

(a fact that if we had guessed correctly, we could have easily proven by induction).
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Solving via matrices

The Perrin recurrence can be encoded in matrix form: start with pn+2 = pn + pn−1, and add the
trivial identities pn+1 = pn+1 and pn = pn to get pn

pn+1

pn+2

 =

 0 1 0
0 0 1
1 1 0

 pn−1
pn
pn+1

 (2)

valid for n ≥ 1. iteratively applying, we get that for all n ≥ 1, pn
pn+1

pn+2

 =

 0 1 0
0 0 1
1 1 0

n 3
0
2

 . (3)

Write this as vn = Anv. If we can diagonalize A (that is, find invertible S with SAS−1 = D,
with D a diagonal matrix), then we can write A = S−1DS, so An = S−1DnS, from which we can
easily find vn and so pn explicitly. If you know enough linear algebra, you’ll quickly see that this
approach requires finding eigenvalues, which are roots of a certain cubic, and the computations
quickly reduce to exactly the same ones as those of the previous two methods described. I mention
this method just to bring up the matrix point of view of recurrences, which can sometimes be quite
helpful.

Solving general recurrences

I’ve only talked about recurrences with constant coefficients, but of course recurrences can be far
more general. While the generating function method is very good to bear in mind for more general
problems, there’s really no general approach that’s sure to work; solving recurrences generally
involves ad-ho tool like playing with lots of small examples, and spotting, conjecturing and proving
patterns (often by induction).

A non-Putnam warm-up exercise

Using the trick of repeatedly differentiating the identity

1

1− x
= 1 + x+ x2 + . . . ,

find a nice expression for the coefficients of the power series (about 0) of 1/(1 − x)k. Use this to
derive, via generating functions, the identity

n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6
,

and if you are feeling masochistic, go on to find a nice closed-form for

n∑
i=0

i3

using the same idea.
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The problems

1. Define a selfish set to be a set which has its own cardinality (number of elements) as an
element. Find, with proof, the number of subsets of {1, 2, . . . , n} which are minimal selfish
sets, that is, selfish sets none of whose proper subsets is selfish.

2. Define a sequence (pn)n≥1 recursively by p1 = 3, p2 = 7 and, for n ≥ 3,

pn = 4 + pn−1 + 2pn−2 + . . .+ 2p1

(so, for example, p3 = 4+p2 +2p1 = 17 and p4 = 4+p3 +2p2 +2p1 = 41). Find a closed-form
expression for pn for general n.

3. Let (xn)n≥0 be a sequence of nonzero real numbers such that x2n − xn−1xn+1 = 1 for n =
1, 2, 3, . . .. Prove there exists a real number a such that xn+1 = axn − xn−1 for all n ≥ 1.

4. Define a sequence by ak = k for k = 1, 2, . . . , 2006 and

ak+1 = ak + ak−2005

for k ≥ 2006. Show that the sequence has 2005 consecutive terms each divisible by 2006.

5. The last question was clearly written with the years 2005 and 2006 in mind. Does the
conclusion remain true for an arbitrary year? That is, fix m ≥ 1. Define a sequence by
ak = k for k = 1, 2, . . . ,m+ 1 and

ak+1 = ak + ak−m

for k ≥ m+1. For which m is it true that the sequence has m consecutive terms each divisible
by m+ 1?

6. Let am,n denote the coefficient of xn in the expansion of (1 + x + x2)m. Prove that for all
integers k ≥ 0,

0 ≤
b2k/3c∑
i=0

(−1)iak−i,i ≤ 1.

(Here bac denote the round-down of a to the nearest integer at or below a; so for example
b3.4c = 3, b2.999c = 2 and b5c = 5.)

7. Define (an)n≥0 by
1

1− 2x− x2
=
∑
n≥0

anx
n.

Show that for each n ≥ 0, there is an m = m(n) such that am = a2n + a2n+1.
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