
Problem Solving in Math (Math 43900) Fall 2013

Week six (October 1) solutions

Instructor: David Galvin

A non-Putnam warm-up exercise

Using the trick of repeatedly differentiating the identity

1

1− x
= 1 + x + x2 + . . . ,

find a nice expression for the coefficients of the power series (about 0) of 1/(1 − x)k. Use this to
derive, via generating functions, the identity

n∑
i=0

i2 =
n(n + 1)(2n + 1)

6
,

and if you are feeling masochistic, go on to find a nice closed-form for

n∑
i=0

i3

using the same idea.

Solution: Differentiating the left-hand side k times, we get

k!

(1− x)k+1
,

and differentiating the right-hand side k times, we get an power series where the coefficient of xn−k

is n(n−1) . . . (n− (k−1)), so the coefficient of xn is (n+k)(n+k−1) . . . (n+1). Dividing through
by k!, the coefficient of xn in 1/(1− x)k+1 is

(n + k)(n + k − 1) . . . (n + 1)

k!
=

(
n + k

k

)
.

Let an =
∑n

i=0 i
2; an satisfies the recurrence a0 = 0 and an = an−1 + n2 for n > 0. Letting
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A(x) = a0 + a1x + a2x
2 . . . be the generating function of the an’s, we get

A(x) = 0 + (a0 + 12)x + (a1 + 22)x2 + . . .

= xA(x) + (12x + 22x2 + 32x3 + . . .)

= xA(x) + [1.0 + 1]x + [2.1 + 2]x2 + [3.2 + 3]x3 + . . .

= xA(x) + (1.0x + 2.1x2 + 3.2x3 + . . .) + (1x + 2x2 + 3x3 + . . .)

= xA(x) + x2(2.1 + 3.2x + . . .) + x(1 + 2x + 3x2 + . . .)

= xA(x) + x2
d2

dx2

(
1

1− x

)
+ x

d

dx

(
1

1− x

)
= xA(x) +

2x2

(1− x)3
+

x

(1− x)2

= xA(x) +
x2 + x

(1− x)3

so

A(x) =
x2 + x

(1− x)4
=

x2

(1− x)4
+

x

(1− x)4
.

This means that an consists of two parts — the coefficient of xn−2 in 1/(1−x)4 and the coefficient
of xn−1 in 1/(1− x)4. By what we established earlier, this is(

n + 1

3

)
+

(
n + 2

3

)
=

n(n + 1)(2n− 1)

6
.

If you were feeling masochistic, you might have used the same method to discover

n∑
i=0

i3 =

(
n(n + 1)

2

)2

.

The problems

For these, time got away from me and I was unable to write up full solutions. Instead I’ve given
the source of the problem (all but one are Putnam problems), so you can find the solution either
(for pre-2000) in the appropriate book that’s on reserve in the math library, or (for post-2000) by
following the links on the course website.

1. Define a selfish set to be a set which has its own cardinality (number of elements) as an
element. Find, with proof, the number of subsets of {1, 2, . . . , n} which are minimal selfish
sets, that is, selfish sets none of whose proper subsets is selfish.

Source: Putnam 1996, B1. Notes: the anser is the nth Fibonacci number!

2. Define a sequence (pn)n≥1 recursively by p1 = 3, p2 = 7 and, for n ≥ 3,

pn = 4 + pn−1 + 2pn−2 + . . . + 2p1

(so, for example, p3 = 4+p2 +2p1 = 17 and p4 = 4+p3 +2p2 +2p1 = 41). Find a closed-form
expression for pn for general n.
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Solution: The first few values are p1 = 3, p2 = 7, p3 = 17, p4 = 41, p3 = 17, p4 = 41. A
pattern seems to be emerging: pn = 2pn−1 + pn−2, with p1 = 3, p2 = 7. We verify this by
induction on n. It’s certainly true for n = 3. For n > 3,

pn = 4 + pn−1 + 2pn−2 + 2pn−3 + . . . + 2p3 + 2p2 + 2p1

= (pn−1 + pn−2) + 4 + pn−2 + 2pn−3 + . . . + 2p3 + 2p2 + 2p1

= (pn−1 + pn−2) + pn−2 (induction)

= 2pn−1 + pn−2,

as required. With this new recurrence, it is easy to apply the method of generating functions,
as described in the introduction, to get

pn =
(1 +

√
2)n+1

2
+

(1−
√

2)n+1

2
.

Source: This problem arose in my research. A graph is a collection of points, some pairs of
which are joined by edges. A Widom-Rowlinson coloring of a graph is a coloring of the points
using 3 colors, red, white and blue, in such a way that no point colored red is joined by an
edge that is colored blue. I was looking at how many Widom-Rowlinson colorings there are
of the graph Pn that consists of n points, numbered 1 up to n, with edges from 1 to 2, from
2 to 3, etc., up to from n − 1 to n. It turns out that there are pn such colorings, where pn
satisfies the first recurrence. In trying to find a closed form for pn, I realized that pn satisfies
the Fibonacci-like recurrence described in the solution above, and so was able to solve for pn
explicitly using generating functions.

3. Let (xn)n≥0 be a sequence of nonzero real numbers such that x2n − xn−1xn+1 = 1 for n =
1, 2, 3, . . .. Prove there exists a real number a such that xn+1 = axn − xn−1 for all n ≥ 1.

Source: Putnam 1993, A2.

4. Define a sequence by ak = k for k = 1, 2, . . . , 2006 and

ak+1 = ak + ak−2005

for k ≥ 2006. Show that the sequence has 2005 consecutive terms each divisible by 2006.

Source: Putnam 2006, A3. Notes: the key points are 1) any recursive sequence of this kind
can be extended both forward and backwards, and the resulting doubly infinite sequence,
reduced to any modulus, is periodic.

5. The last question was clearly written with the years 2005 and 2006 in mind. Does the
conclusion remain true for an arbitrary year? That is, fix m ≥ 1. Define a sequence by
ak = k for k = 1, 2, . . . ,m + 1 and

ak+1 = ak + ak−m

for k ≥ m+1. For which m is it true that the sequence has m consecutive terms each divisible
by m + 1?

Solution: The solution to the previous problem goes through fine with general positive m.

Source: An idle thought.
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6. Let am,n denote the coefficient of xn in the expansion of (1 + x + x2)m. Prove that for all
integers k ≥ 0,

0 ≤
b2k/3c∑
i=0

(−1)iak−i,i ≤ 1.

(Here bac denote the round-down of a to the nearest integer at or below a; so for example
b3.4c = 3, b2.999c = 2 and b5c = 5.)

Source: Putnam 1997, B4.

7. Define (an)n≥0 by
1

1− 2x− x2
=
∑
n≥0

anx
n.

Show that for each n ≥ 0, there is an m = m(n) such that am = a2n + a2n+1.

Source: Putnam 1999, A3.
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