Problem Solving in Math (Math 43900) Fall 2013

Week six (October 1) solutions

Instructor: David Galvin

A non-Putnam warm-up exercise

Using the trick of repeatedly differentiating the identity

1 2
—=14+z4+2°4+...,
1—=x

find a nice expression for the coefficients of the power series (about 0) of 1/(1 — z)*. Use this to
derive, via generating functions, the identity
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and if you are feeling masochistic, go on to find a nice closed-form for
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using the same idea.

Solution: Differentiating the left-hand side k times, we get

k!
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and differentiating the right-hand side k times, we get an power series where the coefficient of 2" *
isn(n—1)...(n—(k—1)), so the coefficient of z™ is (n+k)(n+k—1)...(n+1). Dividing through
by k!, the coefficient of 2" in 1/(1 — z)**! is
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Let a,, = Z?:o i%; a, satisfies the recurrence ag = 0 and a,, = a,—1 + n® for n > 0. Letting



A(z) = ag + a1z + asz? ... be the generating function of the a,’s, we get
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This means that a,, consists of two parts — the coefficient of "2 in 1/(1 — 2)* and the coefficient
of z" 1 in 1/(1 — z)*. By what we established earlier, this is

(n;—l) . (n;—2> _ n(n+1)6(2n—1)‘

If you were feeling masochistic, you might have used the same method to discover

=0

The problems

For these, time got away from me and I was unable to write up full solutions. Instead I've given
the source of the problem (all but one are Putnam problems), so you can find the solution either
(for pre-2000) in the appropriate book that’s on reserve in the math library, or (for post-2000) by
following the links on the course website.

1. Define a selfish set to be a set which has its own cardinality (number of elements) as an
element. Find, with proof, the number of subsets of {1,2,...,n} which are minimal selfish
sets, that is, selfish sets none of whose proper subsets is selfish.

Source: Putnam 1996, B1. Notes: the anser is the nth Fibonacci number!
2. Define a sequence (pp)p>1 recursively by p; = 3, po = 7 and, for n > 3,

Pn =4+ pn-1+2pp—2+...4+2pm

(so, for example, p3 = 44 pa+2p1 = 17 and py = 4+ p3+2p2+2p; = 41). Find a closed-form
expression for p, for general n.



Solution: The first few values are py = 3, po = 7, p3 = 17, py = 41, p3 = 17, py = 41. A
pattern seems to be emerging: p, = 2pn—1 + pn—2, With p; = 3, po = 7. We verify this by
induction on n. It’s certainly true for n = 3. For n > 3,
Pn = 44 Pn1+2pn2+2pn-3+...+2p3+2p2 +2p;
= (Pn—1+Pn—2) +4+pp—2+2pp-3+ ... +2p3+2p2 + 2
= (pp—1+ pn—2) +pn—2 (induction)
= 2pp-1+ Pn-2,

as required. With this new recurrence, it is easy to apply the method of generating functions,
as described in the introduction, to get

b — (1 4 \gi)n—i—l N (1 _ \gi)n—l—l.

Source: This problem arose in my research. A graph is a collection of points, some pairs of
which are joined by edges. A Widom-Rowlinson coloring of a graph is a coloring of the points
using 3 colors, red, white and blue, in such a way that no point colored red is joined by an
edge that is colored blue. I was looking at how many Widom-Rowlinson colorings there are
of the graph P,, that consists of n points, numbered 1 up to n, with edges from 1 to 2, from
2 to 3, etc., up to from n — 1 to n. It turns out that there are p, such colorings, where p,
satisfies the first recurrence. In trying to find a closed form for p,, I realized that p,, satisfies
the Fibonacci-like recurrence described in the solution above, and so was able to solve for p,
explicitly using generating functions.

. Let (xn)n>0 be a sequence of nonzero real numbers such that :L‘% — Tp—1Znt1 = 1 for n =
1,2,3,.... Prove there exists a real number a such that z, 1 = az,, — x,—1 for all n > 1.

Source: Putnam 1993, A2.

. Define a sequence by a =k for K =1,2,...,2006 and

Ak+1 = Gk + ax—2005

for £ > 2006. Show that the sequence has 2005 consecutive terms each divisible by 2006.

Source: Putnam 2006, A3. Notes: the key points are 1) any recursive sequence of this kind
can be extended both forward and backwards, and the resulting doubly infinite sequence,
reduced to any modulus, is periodic.

. The last question was clearly written with the years 2005 and 2006 in mind. Does the
conclusion remain true for an arbitrary year? That is, fix m > 1. Define a sequence by
ap =k for k=1,2,...,m+1 and

Ak+1 = Q) + Gk—m

for k > m+1. For which m is it true that the sequence has m consecutive terms each divisible
by m + 17

Solution: The solution to the previous problem goes through fine with general positive m.

Source: An idle thought.



6. Let @y, denote the coefficient of 2™ in the expansion of (1 + z + 22)™. Prove that for all

integers k > 0,
|2k/3]

0< Z (=Dag—;; < 1.

1=0
(Here |a]| denote the round-down of a to the nearest integer at or below a; so for example

13.4] =3, [2.999] =2 and [5] = 5.)

Source: Putnam 1997, B4.

7. Define (ap)n>0 by

1 n
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Show that for each n > 0, there is an m = m(n) such that a, = a2 + a2,;.

Source: Putnam 1999, A3.



