
Problem Solving in Math (Math 43900) Fall 2013

Week seven (October 8) problems — inequalities

Instructor: David Galvin

A list of some of the most important general inequalities to know

Many Putnam problem involve showing that a particular inequality between two expressions holds
always, or holds under certain circumstances. There are a huge variety of general inequalities
between sets of numbers satisfying certain conditions, that are quite reasonable for you to quote
as “well-known”. I’ve listed some of them here, mostly without proofs. If you are interested in
knowing more about inequalities, consider looking at the book Inequalities by Hardy, Littlewood
and Pólya (QA 303 .H223i at the math library).

Squares are positive

Surprisingly many inequalities reduce to the obvious fact that x2 ≥ 0 for all real x, with equality
iff x = 0. I’ll highlight one example in what follows.

The triangle inequality

For reals x and y, |x+ y| ≤ |x|+ |y| (called the triangle inequality because it says that the distance
travelled along the line in going from x to −y — |x + y| — does not decrease if we demand that
we go through the intermediate point 0)

Arithmetic mean — Geometric mean — Harmonic mean inequality

For positive a1, . . . , an
n

1
a1

+ . . .+ 1
a1

≤ n
√
a1 . . . an ≤

a1 + . . .+ an
n

with equalities in both inequalities iff all ai are equal. The three expressions above are the harmonic
mean, the geometric mean and the arithmetic mean of the ai.

For n = 2, here’s a proof of the second inequality:
√
a1a2 ≤ (a1 + a2)/2 iff 4a1a2 ≤ (a1 + a2)

2

iff a21 − 2a1a2 + a22 ≥ 0 iff (a1 − a2)2 ≥ 0, which is true by the “squares are positive” inequality;
there’s equality all along iff a1 = a2.

For n = 2 the first inequality is equivalent to
√
a1a2 ≤ (a1 + a2)/2.

Power means inequality

For a non-zero real r and positive a1, . . . , an define

M r(a1, . . . , an) =

(
ar1 + . . .+ arn

n

)1/r

,

1



and set M0(a1, . . . , an) = n
√
a1 . . . an. For real numbers r < s,

M r(a1, . . . , an) ≤M s(a1, . . . , an)

with equality iff all ai are equal.
Notice that M−1(a1, . . . , an) is the harmonic mean of the ai’s, and M1(a1, . . . , an) is their

geometric mean, so this inequality generalizes the Arithmetic mean — Geometric mean — Harmonic
mean inequality.

There is a weighted power means inequality: let w1, . . . , wn be positive reals that add to 1, and
define

M r
w(a1, . . . , an) = (w1a

r
1 + . . .+ wna

r
n)1/r

for non-zero real r, with M0
w(a1, . . . , an) = aw1

1 . . . awn
n . For real numbers r < s,

M r
w(a1, . . . , an) ≤M s

w(a1, . . . , an).

(This reduces to the power means inequality when all wi = 1/n.)

Cauchy-Schwarz-Bunyakovsky inequality

Let x1, . . . , xn and y1, . . . , yn be real numbers. We have

(x1y1 + . . .+ xnyn)2 ≤
(
x21 + . . .+ x2n

) (
y21 + . . .+ y2n

)
.

Equality holds if one of the sequences (x1, . . . , xn), (y1, . . . , yn) is identically zero. If both are not
identically zero, then there is equality iff there is some real number λ such that xi = λyi for each i.

This is really a very general inequality: if you are familiar with inner products from linear
algebra, the CauchySchwarz-Bunyakovsky inequality really says that if x, y are vectors in an inner
product space (over either the reals or the complex numbers) then

|〈x,y〉|2 ≤ 〈x,x〉〈y,y〉.

Equivalently
|〈x,y〉| ≤ ||x|| ||y||.

There is equality iff x and y are linearly dependent.

Hölder’s inequality

Fix p > 1 and define q by 1/p+ 1/q = 1. Let x1, . . . , xn and y1, . . . , yn be real numbers. We have

|x1y1 + . . .+ xnyn| ≤ (|x1|p + . . .+ |xn|p)1/p
(
|y1|q + . . .+ |yn|2

)1/q
.

Notice that Hölder becomes CauchySchwarz-Bunyakovsky in the case p = 2.

Chebyshev’s sum inequality

If a1 ≥ . . . ≥ an and b1 ≥ . . . ≥ bn are sequences of reals, then

a1b1 + . . .+ anbn
n

≥
(
a1 + . . .+ an

n

)(
b1 + . . .+ bn

n

)
.

The same holds if a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn; if either a1 ≥ . . . ≥ an and b1 ≤ . . . ≤ bn or
a1 ≤ . . . ≤ an and b1 ≥ . . . ≥ bn, then

a1b1 + . . .+ anbn
n

≤
(
a1 + . . .+ an

n

)(
b1 + . . .+ bn

n

)
.
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The rearrangement inequality

If a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn are sequences of reals, and aπ(1), . . . , aπ(n)is a permutation
(rearrangement) of a1 ≤ . . . ≤ an, then

anb1 + . . .+ a1bn ≤ aπ(1)b1 + . . .+ aπ(n)bn ≤ a1b1 + . . .+ anbn.

If a1 < . . . < an and b1 < . . . < bn, then there is equality in the first inequality iff π is the reverse
permutation π(i) = n + 1 − i, and there is equality in the second inequality iff π is the identity
permutation π(i) = i.

Jensen’s inequality

A real function f(x) is convex on the interval [c, d] if for all c ≤ a < b ≤ d, the line segment joining
(a, f(a)) to (b, f(b)) lies entirely above the graph y = f(x) on the interval (a, b), or equivalently, if
for all 0 ≤ t ≤ 1 we have

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b).

If f(x) is convex on the interval [c, d], and c ≤ a1 ≤ . . . ≤ an ≤ d, then

f

(
a1 + . . .+ an

n

)
≤ f(a1) + . . .+ f(an)

n

(note that when n = 2, this is just the definition of convexity).
We say that f(x) is concave on [c, d] if for all c ≤ a < b ≤ d, and for all 0 ≤ t ≤ 1, we have

f((1− t)a+ tb) ≥ (1− t)f(a) + tf(b).

If f(x) is concave on the interval [c, d], and c ≤ a1 ≤ . . . ≤ an ≤ d, then

f

(
a1 + . . .+ an

n

)
≥ f(a1) + . . .+ f(an)

n
.

As an example, consider the convex function f(x) = x2; for this function Jensen says that(
a1 + . . .+ an

n

)2

≤ a21 + . . .+ a2n
n

,

which is equivalent to the powers means inequality M1(a1, . . . , an) ≤ M2(a1, . . . , an); and when
f(x) = − lnx we get

n
√
a1 . . . an ≤

a1 + . . .+ an
n

,

the AM-GM inequality.

Two miscellaneous comments

1) Maximization/minimization problems are often problems about inequalities in disguise. For
example, to find the minimum of f(a, b) as (a, b) ranges over a set R, it is enough to first guess
that the minimum is m, then find an (a, b) ∈ R with f(a, b) = m, and then use inequalities to show
that f(a, b) ≥ m for all (a, b) ∈ R.

2) If an expression is presented as a sum of n squares, it is sometimes helpful to think of it
as the (square of the) distance between two points in n dimensional space, and then think of the
problem geometrically.
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Some warm-up problems

You should find that these are all fairly easy to prove by direct applications of an appropriate
inequality.

1. n! <
(
n+1
2

)n
for n = 2, 3, 4, . . ..

2.
√

3(a+ b+ c) ≥
√
a+
√
b+
√
c for positive a, b, c.

3. Minimize x1 + . . .+ xn subject to xi ≥ 0 and x1 . . . xn = 1.

4. Minimize
x2

y + z
+

y2

z + x
+

z2

x+ y

subject to x, y, z ≥ 0 and xyz = 1.

5. If triangle has side lengths a, b, c and opposite angles (measured in radians) A,B,C, then

aA+ bB + cC

a+ b+ c
≥ π

3
.

6. Identify which is bigger:
1999!(2000) or 2000!(1999).

(Here n!(k) indicates iterating the factorial function k times, so for example 4!(2) = 24!.)

7. Identify which is bigger:
19991999 or 20001998.

8. Minimize
sin3 x

cosx
+

cos3 x

sinx

on the interval 0 < x < π/2.

The problems

These are old Putnam problems of varying hardness.

1. Show that for non-negative reals a1, . . . , an and b1, . . . , bn,

(a1 . . . an)1/n + (b1 . . . bn)1/n ≤ ((a1 + b1) . . . (an + bn))1/n .

2. Minimize

(u− v)2 +

(√
2− u2 − 9

v

)2

in the range 0 < u <
√

2, v > 0.

3. For positive integers m,n, show

(m+ n)!

(m+ n)m+n
<

m!

mm

n!

nn
.
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4. Maximize x3 − 3x subject to x4 + 36 ≤ 13x2.

5. Show that for every positive integer n,(
2n− 1

e

) 2n−1
2

≤ 1 · 3 · 5 · . . . · (2n− 1) <

(
2n+ 1

e

) 2n+1
2

.

6. Let f be a real function with a continuous third derivative such that f(x), f ′(x), f ′′(x) and
f ′′′(x) are positive for all x. Suppose that f ′′′(x) ≤ f(x) for all x. Show that f ′(x) < 2f(x)
for all x.

7. Maximize ∫ y

0

√
x4 + (y − y2)2 dx

on the interval [0, 1].
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