
Problem Solving in Math (Math 43900)

Fall 2019

Instructor: David Galvin

The 2019 William Lowell Putnam Mathematical Competition will take place on Saturday,
December 7, 2019. Every year, around 4500 US & Canadian undergraduates from around 550
institutions participate in the competition, which takes place on-campus.

The competition consists of two three-hour sessions (morning and afternoon), with each
session having six problems. The problems are hard, not because they are made up of lots
of parts, or involve extensive computation, or require very advanced mathematics to solve.
They are hard because they each require a moment of cleverness, intuition and ingenuity to
reach a solution. Typically, the median score out of 120 (10 possible points per question)
is 1! The Putnam Competition may be the most challenging and rewarding tests of mathe-
matical skill that you will ever encounter. See https://www.maa.org/math-competitions/

putnam-competition for more information, including information about prizes and recogni-
tion for high performers.

To help prepare students for the Putnam Competition, the math department runs the 1
credit course Math 43900, which meets Tuesdays, 3.30pm-4.20pm. Each meeting will (usually)
be built around a specific theme (pigeon-hole principle, induction & recursion, inequalities,
probability, etc.). We’ll talk about the general theme, then spend time trying to solve some
relevant problems. At the end of each meeting I’ll hand out a set of problems on that theme,
that you can cut your teeth on. Usually we’ll begin the next session with presentations of
solutions to some of those problems. On occasional meetings, I might give out a problem set
at the beginning, and have everyone pick a problem or two to work on individually for the
meeting period (a sort of “mock Putnam”).

The grade for the class will be determined solely by active participation in class (partic-
ipating in class discussions, occasionally presenting problem solutions on the board) and by
participation in the 2019 Putnam Competition.

Those who want to get the most out of the Putnam Competition are also encouraged to
take part in the Virginia Tech Regional Mathematics Contest (also on-campus) which happens
six weeks or so before the Putnam. More information on this competition will be available in
early September.
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1 Math 43900 organizational information

To help prepare for the Putnam Competition, the math department runs the 1 credit course
Math 43900. If you are signed up for Math 43900, then you are also signed up to participate in
the Putnam competition on December 7. One can also participate in the Putnam competition
without participating in this course. This year, the details of the course are as follows:

• Instructor: David Galvin, 136 Hayes-Healy, dgalvin1@nd.edu.

• Meetings: Tuesdays, 3.30pm-4.20pm, Hayes-Healy 229, starting August 27, ending
December 10 (the Tuesday after the competition).

• Office hours: Email me for an appointment.

• Text: There is no required text. The following books (one available online through
the library, the others on reserve at the Math library) are worth looking at. First, two
classics that deal with the art of problem-solving:

– Problem-solving through problems by Larson (QA 43 .L37 1983)

– How to solve it by Pólya (QA 11 .P6 2004).

Next, a doorstop filled with problems and strategies for the Putnam itself:

– Putnam and beyond by Gelca and Andreescu (online access).

Finally, three books that exhaustively catalog all Putnam Competitions up to 2000:

– The William Lowell Putnam Mathematical Competition 1985-2000: problems, so-
lutions, and commentary by Kedlaya, Poonen and Vakil (QA 43 .W5425 2002)

– The William Lowell Putnam Mathematical Competition problems and solutions:
1938-1964 by Gleason, Greenwood and Kelly (QA 43 .W54)

– The William Lowell Putnam Mathematical Competition problems and solutions:
1965-1984 by Alexanderson, Klosinski and Larson (QA 43 .W542 1985).

• Course website: http://www3.nd.edu/~dgalvin1/43900/43900_F19/index.html.
This is where announcements, problem sets, etc., will be posted. Also, I’ve put here
a link to an online archive of the problems & solutions for the Putnam Competitions
from 1995 on. (NB — when following this link straight from a pdf file of the course
notes, the tilde in front of dgalvin1 sometimes causes a problem; if so just enter it by
hand.)

• Course organization: Each meeting will (usually) be built around a specific theme
(pigeon-hole principle, induction & recursion, inequalities, probability, etc.). We’ll talk
about the general theme, then spend time trying to solve some relevant problems. At
the end of each meeting I’ll hand out a set of problems on that theme, that you can
cut your teeth on. Usually we’ll begin the next session with presentations of solutions
to some of those problems. On occasional meetings, I might give out a problem set at
the beginning, and have everyone pick a problem or two to work on individually for the
meeting period (a sort of “mock Putnam”).
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• Grading and homework: The grade for the class will be determined solely by active
participation in class (participating in class discussions, occasionally presenting problem
solutions on the board) and by participation in the 2019 Putnam Competition. I’ll give
out a problem set at the end of each meeting, usually with many problems; I don’t
expect anyone to work on all the problems, but I do expect everyone to work on at least
some of the problems each week, and to be prepared to talk about their progress at the
beginning of the next meeting.

• Honor code: It’s perfectly fine to collaborate with your colleagues on problems (al-
though I do encourage you to try many problems on your own, since the Putnam Com-
petition itself is an individual competition). You have all taken the Honor Code pledge,
to not participate in or tolerate academic dishonesty. For this course, that means that
if you use a source to help you solve a problem (such as discussion with a colleague, or
consulting a book or online resource), you should acknowledge that in your write-up or
oral presentation.
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2 Week one (August 27) — A grab-bag

Most weeks’ handouts will be a themed collection of problems — all involving inequalities of
one form or another, for example, or all involving linear algebra. The Putnam Competition
itself has no such theme, and so every so often we’ll have a handout that includes the realistic
challenge of figuring out what (possibly different) approach (or approaches) to take for each
problem. This introductory problem set is one such.

Look over the problems, pick out some that you feel good about, and tackle them! You’ll
do best if you engage your conscious brain fully on a single problem, rather than hopping
back-and-forth between problems every few minutes (but it’s also a good idea to read all the
problems before tackling one, to allow your subconscious brain to mull over the whole set).

Remember that problem solving is a full-contact sport: throw everything you know at the
problem you are tackling! Sometimes, the solution can come from an unexpected quarter.

The point of Math 43900 is to introduce you to (or reacquaint you with) a variety of tricks
and tools that tend to be frequently useful in the solving of competition puzzles; but even
before that process starts, there are lots of common-sense things that you can do to make
problem-solving fun, productive and rewarding. Whole books are devoted to these strategies
(such as Larson’s Problem solving through problems and Pólya’s How to solve it).

Without writing a book on the subject, here (adapted from a list by Ravi Vakil) are some
slogans to keep in mind when solving problems:

• Try small cases!

• Plug in small numbers!

• Do examples!

• Look for patterns!

• Draw pictures!

• Write lots!

• Talk it out!

• Choose good notation!

• Look for symmetry!

• Break into cases!

• Work backwards!

• Argue by contradiction!

• Consider extreme cases!

• Modify the problem!

• Make a generalization!
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• Don’t give up after five minutes!

• Don’t be afraid of a little algebra!

• Take a break!

• Sleep on it!

• Ask questions!

And above all:

• Enjoy!

We’ll elaborate on these slogans as the semester progresses.

2.1 Week 1 problems

1. Let

f(n) =
n∑

k=1

1√
k +

√
k + 1

.

Evaluate f(9999).

2. Take a walk on the number line, starting at 0, in the following way: start by taking a
step of length one, either right or left; then take a step of length two, either right or left,
and so on — meaning that in general, the kth you move, it’s to take a step of length k,
either right or left.

Show that for each integer m, there is a walk that visits (has a step ending at) m.

3. A locker room has 100 lockers, numbered 1 to 100, all closed. I run through the locker
room, and open every locker. Then I run through the room again, and close the lockers
numbered 2, 4, 6, etc. (all the even numbered lockers). Next I run through the room,
and change the status of the lockers numbered 3, 6, 9, etc. (opening the closed ones, and
closing the open ones). I keep going in this manner (on the ith run through the room,
I change the status of lockers numbered i, 2i, 3i, etc.), until on my 100th run through
the room I change the status of locker number 100 only. At the end of all this, which
lockers are open?

4. (Maybe harder?) Find all ordered pairs (a, b) of positive integers for which

1

a
+

1

b
=

3

2018
.

5. (Definitely harder!) Let a0 < a1 < a2 . . . be an infinite sequence of positive integers.
Prove that there exists a unique integer n ≥ 1 such that

an <
a0 + a1 + a2 + . . .+ an

n
≤ an+1.
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2.2 Week 1 solutions

1. Let

f(n) =
n∑

k=1

1√
k +

√
k + 1

.

Evaluate f(9999).

Solution: This problem was on the 2014 U. Illinois Urbana-Champaign mock Putnam.

Rationalize!

f(n) =
n∑

k=1

1√
k +

√
k + 1

=
n∑

k=1

√
k −

√
k + 1

(
√
k +

√
k + 1)(

√
k −

√
k + 1)

=
n∑

k=1

(
√
k + 1−

√
k)

=
√
n+ 1− 1,

the last line by a telescoping sum. So f(9999) =
√
10000− 1 = 99.

2. Take a walk on the number line, starting at 0, in the following way: start by taking a
step of length one, either right or left; then take a step of length two, either right or left,
and so on — meaning that in general, the kth you move, it’s to take a step of length k,
either right or left.

Show that for each integer m, there is a walk that visits (has a step ending at) m.

Solution: I found this problem in A Mathematical Orchard, Problems and Solutions by
Krusemeyer, Gilbert and Larson.

We can easily get to the number m = n(n+ 1)/2, for any integer n: just do 1 + 2+ 3+
. . .+ n. What about a number of the form n(n+ 1)/2− k, where 1 ≤ k ≤ n− 1? For k
even we can get to this by flipping the + to a − in front of k/2. For k odd we can get
to this by first adding n + 1 to the end, then subtracting n − 2 (net effect: −1), then
flipping the + to a − in front of (k − 1)/2.

Thus we can reach every number in the interval [n(n+1)/2− (n−1), n(n+1)/2]. Using
1 + 2 + 3 + . . . + n = n(n + 1)/2 we can easily check that the union of these disjoint
intervals, as n increases from 1, covers the positive integers. To get to a negative integer
m, just reverse the signs on any scheme that gets to −m.

Another, much simpler way to get to n > 0: do n = (−1+2)+ (−3+4)+ . . .+(−(2n−
1) + 2n).

3. A locker room has 100 lockers, numbered 1 to 100, all closed. I run through the locker
room, and open every locker. Then I run through the room again, and close the lockers
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numbered 2, 4, 6, etc. (all the even numbered lockers). Next I run through the room,
and change the status of the lockers numbered 3, 6, 9, etc. (opening the closed ones, and
closing the open ones). I keep going in this manner (on the ith run through the room,
I change the status of lockers numbered i, 2i, 3i, etc.), until on my 100th run through
the room I change the status of locker number 100 only. At the end of all this, which
lockers are open?

Solution: I learned of this problem from Imre Leader, but I think it has been around
for a very long time.

The open lockers in the end are those numbered 1, 4, 9, 16, 25, 36, 49, 64, 81 and 100.

Locker n has its status changed once for each positive divisor of n, and so it is open in
the end exactly if n has an odd number of positive divisors. If n has prime factorization
pa11 . . . pakk , then the number of positive divisors is (a1 +1) . . . (ak +1) (a positive divisor
takes the form pb11 . . . pbkk with 0 ≤ bi ≤ ai for each i; so there are ai+1 choices for the value
of bi, with choices for different i’s being independent). The product (a1 + 1) . . . (ak + 1)
is odd only if each ai + 1 is odd, so only if each ai is even. So Locker n has its status
changed exactly when all the exponents in the prime factorization of n are even; in other
words, exactly when n is a perfect square. So the open lockers are numbered 1, 4, 9, 16,
25, 36, 49, 64, 81 and 100.

4. (Maybe harder?) Find all ordered pairs (a, b) of positive integers for which

1

a
+

1

b
=

3

2018
.

Solution: This is Problem A1 of the 2018 Putnam competition.

The given equation is equivalent to

2018(a+ b) = 3ab.

It possible, but not so pleasant, to work with this equation. It’s much easy to work with
the equivalent equation

(3a− 2018)(3b− 2018) = 20182.

Each of the factors on the left is congruent to 1 (mod 3). There are 6 positive factors
of 20182 = 22 · 10092 that are congruent to 1 (mod 3): 1, 22, 1009, 22 · 1009, 10092,
22 · 10092. These lead to the 6 possible pairs: (a, b) = (673, 1358114), (674, 340033),
(1009, 2018), (2018, 1009), (340033, 674), and (1358114, 673).

As for negative factors, the ones that are congruent to 1 (mod 3) are −2,−2 · 1009,−2 ·
10092. However, all of these lead to pairs where a ≤ 0 or b ≤ 0.

5. (Definitely harder!) Let a0 < a1 < a2 . . . be an infinite sequence of positive integers.
Prove that there exists a unique integer n ≥ 1 such that

an <
a0 + a1 + a2 + . . .+ an

n
≤ an+1.
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Solution: This was Question 1 at the 2014 International Mathematical Olympiad.
For an extensive discussion of this problem, with lots of different solutions, see the
weblog of Fields medalist Tim Gowers, http://gowers.wordpress.com/2014/07/19/
mini-monomath/).

For convenience of typography set

f(n) :=
a0 + a1 + a2 + . . .+ an

n
.

We begin by showing that there must be at least one n ≥ 1 such that

an < f(n) ≤ an+1

holds. Indeed, suppose not; then for each n ≥ 1, we have either

f(n) ≤ an

or
an+1 < f(n)

(both note not both, since an < an+1).

We prove, by induction on n, that it’s the second of these that must occur, i.e., that

an+1 < f(n).

The base case n = 1 is clear: we cannot have f(1) ≤ a1, since this is the same as
a0 + a1 ≤ a1, and we known that a0 > 0; so we must have a2 < f(1). [Recall that we
have made the assume that there is no n ≥ 1 for which an < f(n) ≤ an+1.] For n > 1,
the inductive hypothesis tells us that

an < f(n− 1).

Recalling the definition of f(n−1), multiplying across by n−1, adding an to both sides,
and dividing by n, this is the same as

an < f(n);

so we can’t have f(n) ≤ an, and so must have an+1 < f(n). This completes the induction.

Summary so far: under the assumption that there is no n ≥ 1 for which an < f(n) ≤
an+1, we have concluded that an+1 ≤ f(n) for all n ≥ 1.

We now claim that it follows from this (“this” being “an+1 ≤ f(n) for all n ≥ 1”) that

an+1 < a0 + a1

for all n ≥ 1. Again, we proceed by (this time strong) induction on n, with n = 1
immediate from a2 < f(1). For n > 1 we have

an+1 < f(n)

=
a0 + a1 + a2 + . . .+ an

n

<
a0 + a1 + (a0 + a1) + . . .+ (a0 + a1)

n

=
n(a0 + a1)

n
= a0 + a1,
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where in the second inequality we have used the induction hypothesis to bound ak <
a0 + a1 for each of k = 2, . . . , n− 1. This completes the induction.

Summary so far: under the assumption that there is no n ≥ 1 for which an < f(n) ≤
an+1, we have concluded that an+1 ≤ a0 + a1 for all n ≥ 1. But this is a contradiction:
since the ai’s are integers and increasing, there must be some n ≥ 1 for which an+1 >
a0 + a1.

Interim conclusion: there is at least one n ≥ 1 for which an < f(n) ≤ an+1.

Now we need to show that there is a unique such n. To do this, suppose that n is such
that an < f(n) ≤ an+1, and that m > n. We will prove (by induction on m) that
f(m) ≤ am. If we can do this, we will have shown that there can be at most one n such
that an < f(n) ≤ an+1, and combined with our interim conclusion, we would have a
unique such n.

The base case for the induction is m = n+1; f(n+1) ≤ an+1 is just a simple rearrange-
ment of f(n) ≤ an+1. We now move onto the induction step. For m > n+ 1, we get to
assume f(m− 1) ≤ am−1. Combining this with am−1 < am, we get f(m− 1) ≤ am, and
a simple rearrangement of this leads to f(m) ≤ am, completing the induction.
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3 Week two (September 3) — Induction

Often one can tackle a problem that involves one or more parameters by checking what
happens with small values of the parameters, noticing a pattern, and then establishing that
the pattern holds in general. The most powerful mathematical technique for establishing the
correctness of a pattern is induction.

Basic induction

Suppose that P (n) is an assertion about the natural number n. Induction is essentially the
following: if there is some a for which P (a) is true, and if for all n ≥ a we have that the truth
of P (n) implies the truth of P (n + 1), then we can conclude that P (n) is true for all n ≥ a.
This should be fairly obvious: knowing P (a) and the implication “P (n) =⇒ P (n + 1)”
at n = a, we immediately deduce P (a + 1). But now knowing P (a + 1), the implication
“P (n) =⇒ P (n+1)” at n = a+1 allows us to deduce P (a+2); and so on. Induction is the
mathematical tool that makes the “and so on” above rigourous. Induction works because of
the following fundamental fact, often referred to as the well-ordering principle:

A non-empty subset of the natural numbers must have a least element.

To see why well-ordering allows induction work, suppose that we know that P (a) is true for
some a, and that we can argue that for all n ≥ a, the truth of P (n) implies the truth of
P (n + 1). Suppose now (for a contradiction) that there are some n ≥ a for which P (n) is
not true. Let F = {n|n ≥ a, P (n) not true}. By assumption F is non-empty, so has a
least element, n0 say. We know n0 ̸= a, since P (a) is true; so n0 ≥ a + 1. That means that
n0 − 1 ≥ a, and since n0 − 1 ̸∈ F (if it was, n0 would not be the least element) we know
P (n0 − 1) is true. But then, by assumption, P ((n0 − 1)+ 1) = P (n0) is true, a contradiction!

Example: Prove that a set of size n ≥ 1 has 2n subsets (including the empty set and the set
itself).

Solution: Let P (n) be the statement “a set of size n has 2n subsets”. We prove that P (n)
is true for all n ≥ 1 by induction. We first establish a base case. When n = 1, the generic set
under consideration is {x}, which has 2 = 21 subsets ({x} and ∅); so P (1) is true.

Next we establish the inductive step. Suppose that for some n ≥ 1, P (n) is true. Con-
sider P (n + 1). The generic set under consideration now is {x1, . . . , xn, xn+1}. We can con-
struct a subset of {x1, . . . , xn, xn+1} by first forming a subset of {x1, . . . , xn}, and then either
adding the element xn+1 to this subset, or not. This tells us that the number of subsets of
{x1, . . . , xn, xn+1} is 2 times the number of subsets of {x1, . . . , xn, }. Since P (n) is assumed
true, we know that {x1, . . . , xn, } has 2n subsets (this step is usually referred to as applying
the inductive hypothesis); so {x1, . . . , xn, xn+1} has 2 × 2n = 2n+1 subsets. This shows that
the truth of P (n) implies that of P (n+ 1), and the proof by induction is complete.

Strong Induction

Induction is a great tool because it gives you somewhere to start from in an argument. And
sometimes, the more you start with, the further you’ll go. That’s why the principle of Strong
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Induction is worth keeping in mind: if there is some a for which P (a) is true, and if for each
n > a we have that the truth of P (m) for all m, a ≤ m < n, implies the truth of P (n), then
we can conclude that P (n) is true for all n ≥ a.

The proof that this works is almost the same as the proof that induction works. What’s
good about strong induction is that when you are at the part of the argument where you have
to show that the truth of P (n+ 1) from some assumptions about earlier assertions, you now
have a lot more to work with: each of P (a), P (a + 1), . . . , P (n − 1), rather than just P (n)
alone. Sometimes this is helpful, and sometimes it’s absolutely necessary.

Example: Prove that every integer n ≥ 2 can be written as n = p1 . . . pℓ where the pi’s are
(not necessarily distinct) prime numbers.

Solution: Let P (n) be the statement: “n can be written as n = p1 . . . pℓ where the pi’s are
(not necessarily distinct) prime numbers”. We’ll prove that P (n) is true for all n ≥ 2 by
strong induction.

P (2) is true, since 2 = 2 works.
Now consider P (n) for some n > 2. We want to show how the (simultaneous) truth of

P (2), . . . , P (n − 1) implies the truth of P (n). If n is prime, then n = n works to show that
P (n) holds. If n is not a prime, then its composite, so n = ab for some numbers a, b with
2 ≤ a < n and 2 ≤ b < n. We’re allowed to assume that P (a) and P (b) are true, that is, that
a = p1 . . . pℓ where the pi’s are (not necessarily distinct) prime numbers, and that a = q1 . . . qm
where the qi’s are (not necessarily distinct) prime numbers. It follows that

n = ab = p1 . . . pℓq1 . . . qm.

This is a product of (not necessarily distinct) prime numbers, and so P (n) is true.
So, by strong induction, we conclude that P (n) is true for all n ≥ 2.

Notice that we would have gotten exactly nowhere with this argument if, in trying to prove
P (n), all we had been allowed to assume was P (n− 1).

Recurrences

Sometimes we are either given a sequence of numbers via a recurrence relation, or we can argue
that there is such relation that governs the evolution of the sequence. A sequence (bn)n≥a is
defined via a recurrence relation if some initial values, ba, ba+1, . . . , bk say, are given, and then
a rule is given that allows, for each n > k, bn to be computed as long as we know the values
ba, ba+1, . . . , bn−1.

Sequences defined by a recurrence relation, and proofs by induction, go hand-in-glove. We
may have more to say about recurrence relations later in the semester, but for now, we’ll
confine ourselves to an illustrative example.

Example: Let an be the number of different ways of covering a 1 by n strip with 1 by 1 and
1 by 3 tiles. Prove that an < (1.5)n.

Solution: We start by figuring out how to calculate an via a recurrence. Some initial values
of an are easy to compute: for example, a1 = 1, a2 = 1 and a3 = 2. For n ≥ 4, we can tile the
1 by n strip EITHER by first tiling the initial 1 by 1 strip with a 1 by 1 tile, and then finishing
by tiling the remaining 1 by n− 1 strip in any of the an−1 admissible ways; OR by first tiling
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the initial 1 by 3 strip with a 1 by 3 tile, and then finishing by tiling the remaining 1 by n− 3
strip in any of the an−3 admissible ways. It follows that for n ≥ 4 we have an = an−1 + an−3.
So an (for n ≥ 1) is determined by the recurrence

an =


1 if n = 1,
1 if n = 2,
2 if n = 3, and

an−1 + an−3 if n ≥ 4.

Notice that this gives us enough information to calculate an for all n ≥ 1: for example,
a4 = a3 + a1 = 3, a5 = a4 + a2 = 4, and a6 = a5 + a3 = 6.

Now we prove, by strong induction, that an < 1.5n. That a1 = 1 < 1.51, a2 = 1 < (1.5)2

and a3 = 2 < (1.5)3 is obvious. For n ≥ 4, we have

an = an−1 + an−3

< (1.5)n−1 + (1.5)n−3

= (1.5)n

(
2

3
+

(
2

3

)3
)

= (1.5)n
(
26

27

)
< (1.5)n,

(the second line using the inductive hypothesis) and we are done by induction.

Notice that we really needed strong induction here, and we really needed all three of the
base cases n = 1, 2, 3 (think about what would happen if we tried to use regular induction,
or what would happen if we only verified n = 1 as a base case); notice also that an induction
argument can be written quite concisely, while still being fully correct, without fussing too
much about “P (n)”.

Presenting a proof by induction

A proof by induction (any sort of proof, indeed), should be presented in complete sentences.
If you read the proof aloud, giving the mathematical symbols their usual english-language
names, it should form a coherent narrative. And remember that for a write-up of the solution
to a problem, the goal is not to convince yourself that you have solved the problem; it is to
convince someone else, who doesn’t get to ask you for clarification as they read your solution.

Here is a template for the presentation of an induction proof.

Claim 3.1 For every natural number n,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Proof: We proceed by induction on n.1

1Here you might chose to say specifically that you are proving the predicate P (n):“1+2+3+. . .+n = n(n+1)
2 ”

for n ∈ N; this is usually not necessary for proving a simple statement, but it can be very useful, when proving
a more complex statement, especially one involving multiple variables, to introduce explicit notation for the
predicate.
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Base case: The base case n = 1 is obvious.2

Induction step: Let n be an arbitrary natural number. Assume

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
3.

From this we get

1 + 2 + 3 + . . .+ n+ (n+ 1) = (1 + 2 + 3 + . . .+ n) + (n+ 1)

=
n(n+ 1)

2
+ n+ 1

=
n2 + n+ 2n+ 2

2

=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2
.

The equality of the first and last expressions in this chain is the case n+ 1 of the assertion4,
so we have verified the induction step.

By induction the assertion is true for all n. □

In proving an identity — an equality between two expressions, both depending on some
variable(s) — by induction, it is often very helpful to start with one side of the n+ 1 case of
the identity, and manipulate it via a sequence of equalities in a way that introduces one side
of the n case of the identity into the mix; this can then be replaced with the other side of
the n case, and then the whole thing might be massage-able into the other side of the n + 1
identity. That’s exactly how we proceeded above.

Nested induction

Note: The last few examples in this section are taken from notes written by Amites Sarkar
(and the last example is copied almost verbatim from his notes).

Sometimes the induction step requires more than just simple algebra; it may itself require
an application of induction!

Example: Show that for all n ≥ 1, the number 2× 7n + 3× 5n − 5 is divisible by 24.

Solution: We proceed by (an outer) induction on n, with the base case n = 1 straightforward.
For the induction step, suppose that 24 divides 2×7n+3×5n−5, and consider the number

2× 7n+1 + 3× 5n+1 − 5.

2It’s ok to say this, if the base case really is obvious!
3Or, if you have named the predicate P (n), “assume P (n)”.
4Or, “is P (n+ 1)
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We wish to show that this number is divisible by 24. Now

2× 7n+1 + 3× 5n+1 − 5 = 14× 7n + 15× 5n − 5

= 5 (2× 7n + 3× 5n − 5) + 4× 7n + 20.

By induction we know that 24 divides 5 (2× 7n + 3× 5n − 5), show we need to show that also
24 divides 4× 7n + 20, which is the same as showing that 6 divides 7n + 5. We prove this by
(an inner) induction on n, with the base case n = 1 easy. For the induction step, note that

7n+1 + 5 = 7(7n + 5)− 30.

By the (inner) induction hypothesis, 6 divides 7(7n + 5), and since also 6 divides 30 we get
that 6 divides 7n+1 + 5, completing the (inner) induction, and so also completing the (outer)
induction.

In this example we had an induction within an induction, which of course is perfectly OK
— the “inner” induction makes no reference to the “outer” one.

Induction beyond N
Induction can work to prove families of statements indexed by sets other than N, as long as the
indexing set has the well-ordering property (non-empty subsets always have least elements).
Rather than giving a general statement, we present an illustrative example.

Example: Suppose we have a function f defined on pairs of positive integers, given by
f(1, 1) = 2 and

f(m+ 1, n) = f(m,n) + 2(m+ n)

f(m,n+ 1) = f(m,n) + 2(m+ n− 1)

for all pairs (m,n) of positive integers other than (1, 1).
It’s not actually clear that this is a well defined function! For example, we could try to

calculate

f(2, 2) = f(1+1, 2) = f(1, 2)+2(1+2) = f(1, 1+1)+6 = f(1, 1)+2(1+1−1)+6 = 2+2+6 = 10

or

f(2, 2) = f(2, 1+1) = f(2, 1)+2(2+1−1) = f(1+1, 1)+4 = f(1, 1)+2(1+1)+4 = 2+4+4 = 10;

but was it just a coincidence that these two paths from (2, 2) to (1, 1) actually gave the same
answer? If we had defined a function f ′ by f ′(1, 1) = 2 and

f ′(m+ 1, n) = f ′(m,n) + 5(m+ n)

f ′(m,n+ 1) = f ′(m,n) + 2(m+ n− 1)

for all pairs (m,n) of positive integers other than (1, 1), then we would immediately have run
into trouble: viewing f ′(2, 2) as f ′(1 + 1, 2), we get

f ′(2, 2) = f ′(1+1, 2) = f ′(1, 2)+5(1+2) = f ′(1, 1+1)+15 = f ′(1, 1)+2(1+1−1)+15 = 2+2+15 = 19
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while viewing f ′(2, 2) as f ′(2, 1 + 1), we get

f ′(2, 2) = f ′(2, 1+1) = f ′(2, 1)+2(2+1−1) = f ′(1+1, 1)+4 = f ′(1, 1)+5(1+1)+4 = 2+10+4 = 16.

So this slightly modified function f ′ is not, in fact, well defined.
Nevertheless, a lot of experimentation suggests that no matter which path you take from

(m,n) to (1, 1), the recurrence always yields the same answer for f(m,n), and in fact yields
that answer

f(m,n) = (m+ n)2 − (m+ n)− 2n+ 2.

How might we prove this by induction?
One approach is first to fix n = 1. There is only one way to go from (m, 1) to (1, 1) (keep

using the first clause of the recurrence), so clearly f(m, 1) is well defined. We can prove, by
induction on m, that

f(m, 1) = (m+ 1)2 − (m+ 1)− 2

(implicit in this statement is that f(m, 1) is well-defined).
Now we can try to prove the following statement, by induction on n:

P (n) : for all m, f(m,n) = (m+ n)2 − (m+ n)− 2n+ 2.

The base case n = 1 has already been dealt with. For the induction step, we get to assume
that for some n ≥ 1, f(m,n) is know to be well-defined and equal to (m+n)2−(m+n)−2n+2
for all m (or, if we were doing strong induction, f(m, k) is know to be well-defined and equal
to (m + k)2 − (m + k) − 2k + 2 for all m and all k ≤ n). We then try to establish that
f(m,n+1) is well defined and equal to (m+(n+1))2− (m+(n+1))− 2(n+1)+2 for all m.

This we do — by induction on m. The base case m = 1 is easy (and unambiguous),
because there is only one thing we can do, namely apply the second clause in the definition
of f . For m > 1, we either

• apply the first clause of the definition, in which case we quickly get an expression for
f(m,n+1) because (by this second induction) f(m−1, n+1) is know to be well-defined,
and its value is known, or

• apply the second clause of the definition, in which case we quickly get an expression for
f(m,n+ 1) because (by the first induction) f(m,n− 1) is know to be well-defined, and
its value is known.

As long as these two values for f(m,n+ 1) agree, and agree with (m+ (n+ 1))2 − (m+ (n+
1))− 2(n+ 1) + 2, the induction step works.

(Notice that I’m leaving the algebraic details to the reader!)

Strengthening the induction hypothesis

If you try to prove that

1 +
1

22
+

1

32
+ · · ·+ 1

n2
< 2
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using induction on n, you run into trouble — it just doesn’t work. (Try it and see). But if we
you try to prove that

1 +
1

22
+

1

32
+ · · ·+ 1

n2
< 2− 1

n
,

again using induction on n, this time it does work (again, try it and see). What’s going
on? Why is it easier to prove a stronger statement? The answer lies in the fact that, in the
inductive step, while the conclusion has gotten stronger, so has the induction hypothesis. We
have more to prove, but also more to prove it with. The stronger statement is better matched
to the inductive step.

Many famous theorems in mathematics have been proven by finding an appropriate strength-
ening, and proving the stronger statement by induction. In the example above, the strength-
ening was not obvious. Now here is an example where the strengthening comes more naturally.

With Fn denoting the nth Fibonacci number (so that F1 = F2 = 1 and Fn = Fn−1 + Fn−2

for n ≥ 3, suppose we have to prove that

F 2
n + F 2

n+1 = F2n+1

for n ≥ 1. Let’s call that statement P (n). Assuming it, and trying to prove P (n+1), we end
up needing to show that

2FnFn+1 + F 2
n+1 = F2n+2

again for n ≥ 1. Let’s call that statement Q(n). In trying to prove Q(n) by induction, we end
up needing to show that

F 2
n+1 + F 2

n+2 = F2n+3.

But this is just P (n + 1). Our inner induction loop has broken out and somehow become
entangled with the outer induction. Is this a disaster? No! We just have to strengthen the
original statement to the statement R(n):

F 2
n + F 2

n+1 = F2n+1 and 2FnFn+1 + F 2
n+1 = F2n+2.

Since P (n) and Q(n) together imply P (n+1), and Q(n) and P (n+1) together imply Q(n+1)
(both of these need to be checked by the reader!), if R(n) is the statement that both P (n) and
Q(n) are true, then R(n) implies R(n + 1). So we are done, once we know that R(1) holds
(and it does).

3.1 Week 2 problems

1. Let f(n) be the number of regions which are formed by n lines in the plane, where no
two lines are parallel and no three meet in a point (so f(1) = 2, f(2) = 4 and f(3) = 7).
Find a formula for f(n), and prove that it is correct.

2. Let x1, . . . , xn be n positive numbers satisfying

x1 + x2 + · · ·+ xn =
1

2
.

Prove that
(1− x1)

(1 + x1)
· (1− x2)

(1 + x2)
· · · · · (1− xn)

(1 + xn)
≥ 1

3
.
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3. Define a sequence (an)n≥1 by

a1 = 1, a2n = an, and a2n+1 = an + 1.

Prove that an counts the number of 1’s in the binary representation of n.

4. At time 0, a particle resides at the point 0 on the real line. Just before 1 second passes,
it divides into 2 particles that fly in opposite directions and stop at distance 1 from
the original particle. Just before 2 seconds pass, each of these particles again divides
into 2 particles flying in opposite directions and stopping at distance 1 from the point
of division, and so on, every second. Whenever two particles meet they annihilate each
other (leaving nothing behind). How many particles will there be at time 2050?

5. Define polynomials fn(x) for n ≥ 0 by f0(x) = 1, fn(0) = 0 for n ≥ 1, and

d

dx
fn+1(x) = (n+ 1)fn(x+ 1)

for n ≥ 0. Find, with proof, the explicit factorization of f100(1) into powers of distinct
primes.

6. The numbers 1 through 2n are partitioned into two sets A and B of size n, in an
arbitrary manner. The elements a1, . . . , an of A are sorted in increasing order, that is,
a1 < a2 < . . . < an, while the elements b1, . . . , bn of B are sorted in decreasing order,
that is, b1 > b2 > . . . > bn. Find (with proof!) the value of the sum

n∑
i=1

|ai − bi|.

7. On an infinite sheet of white graph paper (a paper with a square grid), n squares are
colored black. At moments t = 1, 2, . . ., squares are recolored according to the following
rule: each square gets the color occurring at least twice in the triple formed by this
square, its top neighbor, and its right neighbor.

(a) Prove that after the moment t = n, all squares are white.

(b) Can you find, for infinitely many n, an initial configuration of n squares such that
before the moment t = n there are still some squares colored black?

8. Players 1, 2, 3, . . . n are seated around a table, and each has a single penny. Player 1
passes a penny to Player 2, who then passes two pennies to Player 3. Player 3 then
passes one penny to Player 4, who passes two pennies to Player 5, and so on, players
alternately passing one penny or two to the next player who still has some pennies. A
player who runs out of pennies drops out of the game and leaves the table. Find an
infinite set of numbers n for which some player ends up with all n pennies.

9. Show that the sequence

√
7,

√
7−

√
7,

√
7−

√
7−

√
7,

√
7−

√
7−

√
7−

√
7, . . .

converges, and find its limit.
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3.2 Week 2 solutions

1. Let f(n) be the number of regions which are formed by n lines in the plane, where no
two lines are parallel and no three meet in a point (so f(1) = 2, f(2) = 4 and f(3) = 7).
Find a formula for f(n), and prove that it is correct.

Solution: This is a folklore problem.

We claim that f(n) = (n2 + n+ 2)/2.

To prove this, suppose you have n lines drawn already, so f(n) regions. The (n + 1)st
line, not being parallel to any other will, will meet all n, and all at different places
(since no three lines meet in a point). Without loss of generality we can assume that
the (n+ 1)st line is the x-axis, and along the line we can mark, in order, the n meeting
points with other lines, −∞ < x1 < x2 < . . . < xn < ∞. The segment on the (n+ 1)st
line from −∞ to x1 form the boundary of two regions (above and below it) that were
previously one region; so this segment adds one region to the total. Similarly all the
other segments add one region. There are n+ 1 segments in all, so we get the relation

f(n+ 1) = f(n) + n+ 1 ((for n ≥ 1)), f(1) = 2.

Computing the first few values, it seems clear that f(n) grows quadratically, and that in
fact f(n) = (n2 + n+ 2)/2. We prove this by induction on n, with P (n) the statement
“f(n) = (n2 + n + 2)/2”. P (1) asserts “f(1) = (12 + 1 + 2)/2 = 2, which is true.
Suppose P (n) is true for some n ≥ 1. Let’s look at P (n + 1), which is the assertion
“f(n+ 1) = ((n+ 1)2 + (n+ 1) + 2)/2 = (n2 + 3n+ 4)/2”. Since P (n) is assumed true,
we know

f(n) =
n2 + n+ 2

2
.

We also know f(n+ 1) = f(n) + n+ 1, so

f(n+ 1) =
n2 + n+ 2

2
+ n+ 1 =

n2 + 3n+ 4

2
,

and so indeed P (n + 1) is true. That P (n) is true for all n ≥ 1, i.e., that f(n) =
(n2 + n+ 2)/2 for all n ≥ 1, has now been proved by induction.

2. Let x1, . . . , xn be n positive numbers satisfying

x1 + x2 + · · ·+ xn =
1

2
.

Prove that
(1− x1)

(1 + x1)
· (1− x2)

(1 + x2)
· · · · · (1− xn)

(1 + xn)
≥ 1

3
.

Solution: I found this problem on a Putnam prep class handout prepared by Amites
Sarkar, Western Washington University.

We prove the result be induction on n, with the base case n = 1 very easy (the inequality
holds with equality in this case).
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For the induction step, assume that for some n ≥ 1, whenever x1, . . . , xn are n positive
numbers satisfying

x1 + x2 + · · ·+ xn =
1

2

then
(1− x1)

(1 + x1)
· (1− x2)

(1 + x2)
· · · · · (1− xn)

(1 + xn)
≥ 1

3
.

Let x1, . . . , xn, xn+1 be n+ 1 positive numbers satisfying

x1 + x2 + · · ·+ xn + xn+1 =
1

2
.

Setting x′
i = xi for i = 1, . . . , n − 1, and x′

n = xn + xn+1, we apply the induction
hypothesis to the numbers x′

1, . . . , x
′
n (which are positive and sum to 1/2) to conclude

(1− x′
1)

(1 + x′
1)

· (1− x′
2)

(1 + x′
2)

· · · · · (1− x′
n)

(1 + x′
n)

≥ 1

3
. (⋆)

We claim that
(1− xn)

(1 + xn)
· (1− xn+1)

(1 + xn+1)
≥ (1− xn − xn+1)

(1 + xn + xn+1)
. (⋆⋆)

If (⋆⋆) is true, then

(1− x1)

(1 + x1)
· · · · · (1− xn−1)

(1 + xn−1)
· (1− xn)

(1 + xn)
· (1− xn+1)

(1 + xn+1)
≥ (1− x1)

(1 + x1)
· · · · · (1− xn−1)

(1 + xn−1)
· (1− xn − xn+1)

(1 + xn + xn+1)

=
(1− x′

1)

(1 + x′
1)

· · · · · (1− x′
n)

(1 + x′
n)

≥ 1

3
,

the last inequality by (⋆).

So what remains is to prove (⋆⋆); but after a little algebra this reduces to

2x2
nxn+1 + 2xnx

2
n+1 ≥ 0,

which is clearly true.

3. Define a sequence (an)n≥1 by

a1 = 1, a2n = an, and a2n+1 = an + 1.

Prove that an counts the number of 1’s in the binary representation of n.

Solution: I found this problem on Stanford’s Putnam prep site, where it is sourced to
the book “The Art and Craft of Problem Solving” by P. Zeitz.

Let f(n) count the number of 1’s in the binary representation of n. We first show that

f(1) = 1, f(2n) = f(n), and f(2n+ 1) = f(n) + 1.
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This is easy: Clearly f(1) = 1; if the binary representation of n is a1a2 . . . ak, then the
binary representation of 2n is a1a2 . . . ak0, so f(2n) = f(n); if the binary representation
of n is a1a2 . . . ak, then the binary representation of 2n+1 is a1a2 . . . ak1, so f(2n+1) =
f(n) + 1.

Since f(n) satisfies the same initial conditions as an, and the same recurrence, it seems
clear that f(n) = an. Formally, we prove the statement “f(n) = an” for all n ≥ 1 by by
strong induction. For n = 1 it’s clear. For n > 1, if n = 2m is even then we have

f(n) = f(m) = am = an,

the first equality by what we’ve proved about f , the second by (strong) induction, and
the third by hypothesis on a. Similarly if n = 2m+ 1 is odd then we have

f(n) = f(m) + 1 = am + 1 = an,

and we are done.

Remark: The above induction prove works (suitably modified) to establish rigorously
the evident but important fact that if two sequences are defined recursively, with the
same initial conditions and same recurrence relations, then they are in fact the same
sequence.

4. At time 0, a particle resides at the point 0 on the real line. Just before 1 second passes,
it divides into 2 particles that fly in opposite directions and stop at distance 1 from
the original particle. Just before 2 seconds pass, each of these particles again divides
into 2 particles flying in opposite directions and stopping at distance 1 from the point
of division, and so on, every second. Whenever two particles meet they annihilate each
other (leaving nothing behind). How many particles will there be at time 2050?

Solution: I took this problem from Matousek and Nesetril, Invitation to Discrete Math-
ematics, Section 1.3 exercise 9 (of 2nd edition).

We prove the following by induction on m ≥ 1: at time 2m − 1 (at the moment when
2m−1 seconds have passed), there is a single particle at every odd number from −2m+1
to 2m+1; AND, at no earlier time has there a particle as far away from 0 as ±(2m− 1).

Once we have this, we easily see that at time 211 = 2048 there is a single particle at
each of ±211 (all other newly created particles have annihilated each other), so that at
time 211 + 1 there are four particles, at −211 − 1, −211 + 1, 211 − 1 and 211 + 1, and at
time 211 + 2 = 2050 there are again four particles, at −211 − 2, −211 + 2, 211 − 2 and
211 + 2 (two particles created at −211 annihilate each other, and two created at 211 also
annihilate each other).

The base case for the induction is clear. For the induction step, assume that for some
m ≥ 1, at time 2m − 1 there is a single particle at every odd number from −2m + 1 to
2m + 1, and at no earlier time has there a particle as far away from 0 as ±(2m − 1). It
follows that at time 2m, there will be particles at ±2m, and no others (all other newly
created particles have annihilated each other).
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Consider the evolution of the particles at ±2m. Scaling the whole system to recenter at
2m, after a further 2m − 1 seconds the particle at 2m will have given rise to particles at
every odd number from (−2m+1)+2m to (2m− 1)+2m, and this particle will not have
created any particle that goes beyond 1 (to the left) or 2m+1 − 1 (to the right). [This is
the induction hypothesis]. Similarly, the particle at −2m will have given rise to particles
at every odd number from (−2m + 1)− 2m to (2m − 1)− 2m, and this particle will not
have created any particle that goes beyond −1 (to the right) or −2m+1 +1 (to the left).

These two applications of the induction hypothesis proceeded independently of each
other; but in fact since the evolution of the particle at 2m stays to the right of 0 and the
evolution of the particle at −2m stays to the left of 0, the two can be run simultaneously
without interacting.

It follows that at time 2m+1 − 1 there is a single particle at every odd number from
−2m+1 +1 to 2m+1 +1, and at no earlier time has there a particle as far away from 0 as
±(2m+1 − 1). This completes the induction.

Note: The number of particles at time m is exactly the number of odd entries in the
mth row of Pascal’s triangle, i.e., the number of numbers k, 0 ≤ k ≤ m such that

(
m
k

)
is odd; and in fact, after a suitable (and fairly obvious) translation, the locations of the
particles at time m correspond to the specific k for which

(
m
k

)
is odd. All this can be

proven by induction. See, for example, http://www.alunw.freeuk.com/pascal.html
for a discussion of this.

5. Define polynomials fn(x) for n ≥ 0 by f0(x) = 1, fn(0) = 0 for n ≥ 1, and

d

dx
fn+1(x) = (n+ 1)fn(x+ 1)

for n ≥ 0. Find, with proof, the explicit factorization of f100(1) into powers of distinct
primes.

Solution: This was problem B2 of the 1985 Putnam competition.

The answer is 10199. It is a fairly easy induction that fn(x) = x(x + n)n−1 (left to
reader). Once this relation is established, the result follows immediately.

6. The numbers 1 through 2n are partitioned into two sets A and B of size n, in an
arbitrary manner. The elements a1, . . . , an of A are sorted in increasing order, that is,
a1 < a2 < . . . < an, while the elements b1, . . . , bn of B are sorted in decreasing order,
that is, b1 > b2 > . . . > bn. Find (with proof!) the value of the sum

n∑
i=1

|ai − bi|.

Solution: I got this problem from the UMass Putnam preparation class.

The wording of the question strongly suggests that the answer is independent of the
choice of A and B, so we should start with a particularly nice choice of A and B, see

23



what answer we get, conjecture that this is always the answer, and then try to prove
the conjecture.

Letting A = {1, 2, 3, . . . , n} and B = {2n, 2n− 1, . . . , n+ 1}, we find that

n∑
i=1

|ai − bi| = (2n− 1) + (2n− 3) + . . .+ 1 = n2

(it is an easy induction that the sum of the first n odd positive integers is n2).

So, we try to prove by induction that
∑n

i=1 |ai− bi| = n2. The base case n = 1 is trivial.

For n ≥ 2, we can consider two cases. Case 1 is when 1 and 2n end up in different
partition classes. Let’s start by considering 1 ∈ A, 2n ∈ B. In this case, |a1 − b1| will
contribute 2n − 1 to the sum. What about the remaining terms? Notice that A \ {1}
and B \ {2n} form a partition {a2, . . . , an} ∪ {b2, . . . , bn} of {2, . . . , 2n − 1}, with the
a’s increasing and the b’s decreasing. Setting a′1 = a2 − 1, a′2 = a3 − 1, etc., up to
a′n−1 = an − 1, and also setting b′1 = b2 − 1, b′2 = b3 − 1, etc., up to b′n−1 = bn − 1, we get
that A′ and B′ form a partition {a′1, . . . , a′n−1} ∪ {b′1, . . . , b′n−1} of {1, . . . , 2n− 2}, with
the a′’s increasing and the b′’s decreasing. By induction,

n−1∑
i=1

|a′i − b′i| = (n− 1)2,

and so, since |a′i − b′i| = |ai+1 − bi+1| for each i,

n∑
i=1

|ai−bi| = (2n−1)+
n∑

i=2

|ai+1−bi+1| = (2n−1)+
n−1∑
i=1

|a′i−b′i| = (2n−1)+(n−1)2 = n2.

If 2n ∈ A, 1 ∈ B, an almost identical argument gives the same result.

Case 2 is where 1 and 2n end up in the same partition class. We start with the case
where 1, 2n ∈ A. Let x be such that 1, 2, . . . , x ∈ A, but x+ 1 ∈ B. Then

n∑
i=1

|ai − bi| =
x∑

i=1

(bi − i) +
n−1∑

i=x+1

|ai − bi|+ (2n− (x+ 1)).

(Note that this is valid even if x = n − 1, the largest it can possibly be; the second
sum in this case is empty and so 0). If we modify A and B to form A′ = {a′1, . . . , a′n},
B′ = {b′1, . . . , b′n} by swapping 1 and x+ 1, then

n∑
i=1

|a′i − b′i| =
x∑

i=1

(bi − (i+ 1)) +
n−1∑

i=x+1

|ai − bi|+ (2n− 1)

=
x∑

i=1

(bi − i) +
n−1∑

i=x+1

|ai − bi|+ (2n− (x+ 1))

=
n∑

i=1

|ai − bi|.
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But now (with A′ and B′) we are back in case 1, so

n∑
i=1

|ai − bi| =
n∑

i=1

|a′i − b′i| = n2.

A very similar reduction works if 1, 2n ∈ B.

7. On an infinite sheet of white graph paper (a paper with a square grid), n squares are
colored black. At moments t = 1, 2, . . ., squares are recolored according to the following
rule: each square gets the color occurring at least twice in the triple formed by this
square, its top neighbor, and its right neighbor. Prove that after the moment t = n, all
squares are white.

Solution: I got this problem from Matousek and Nesetril, Invitation to Discrete Math-
ematics, Section 1.3 exercise 8 (of 2nd edition).

(Sketch) Strong induction on n. Let R be the lowest row initially containing a black
square, and let C be the leftmost such column. By the inductive hypothesis, after
moment n − 1 all squares above R are white, and also all squares to the right of C.
The only possible remaining black square at the intersection of R and C disappears at
moment n.

8. Players 1, 2, 3, . . . n are seated around a table, and each has a single penny. Player 1
passes a penny to Player 2, who then passes two pennies to Player 3. Player 3 then
passes one penny to Player 4, who passes two pennies to Player 5, and so on, players
alternately passing one penny or two to the next player who still has some pennies. A
player who runs out of pennies drops out of the game and leaves the table. Find an
infinite set of numbers n for which some player ends up with all n pennies.

Solution: This was problem A2 on the Putnam competition, 1997. The solution be-
low is taken verbatim from Kiran Kedlaya’s Putnam archive https://kskedlaya.org/
putnam-archive/.

We show more precisely that the game terminates with one player holding all of the
pennies if and only if n = 2m + 1 or n = 2m + 2 for some m. First suppose we are in
the following situation for some k ≥ 2. (Note: for us, a “move” consists of two turns,
starting with a one-penny pass.)

• Except for the player to move, each player has k pennies;

• The player to move has at least k pennies.

We claim then that the game terminates if and only if the number of players is a power
of 2. First suppose the number of players is even; then after m complete rounds, every
other player, starting with the player who moved first, will have m more pennies than
initially, and the others will all have 0. Thus we are reduced to the situation with half
as many players; by this process, we eventually reduce to the case where the number
of players is odd. However, if there is more than one player, after two complete rounds
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everyone has as many pennies as they did before (here we need m ≥ 2), so the game
fails to terminate. This verifies the claim.

Returning to the original game, note that after one complete round, ⌊n−1
2
⌋ players re-

main, each with 2 pennies except for the player to move, who has either 3 or 4 pennies.
Thus by the above argument, the game terminates if and only if ⌊n−1

2
⌋ is a power of 2,

that is, if and only if n = 2m + 1 or n = 2m + 2 for some m.

9. Show that the sequence

√
7,

√
7−

√
7,

√
7−

√
7−

√
7,

√
7−

√
7−

√
7−

√
7, . . .

converges, and find its limit.

Solution: I had intended this to be problem A6 from the 1953 Putnam competition,
but I transcribed it in error.

We claim that the limit is ℓ = −1+
√
29

2
.

The sequence we are working with can be defined recursively by a1 =
√
7 and, for n ≥ 1,

an+1 =
√
7− an.

We first observe that this is a sequence of real numbers (i.e., that we never take the
square root of a negative number). We’ll prove this by induction. Specifically, we prove,
by induction on n, that for all n, 0 ≤ an ≤

√
7. The base case is trivial. For the induction

step, assume that for some n ≥ 1 we have 0 ≤ an ≤
√
7. Then 7−

√
7 ≤ 7− an ≤ 7, so

0 ≤
√

7−
√
7 ≤ an+1 ≤

√
7.

If the sequence tends to a limit, say ℓ, then this limit must also satisfy ℓ ≤
√
7 (by

properties of limits). Then, because the function f(x) =
√
7− x is continuous at and

near ℓ, it follows from an → ℓ that f(an) →
√
7− ℓ. But f(an) = an+1, so from

f(an) →
√
7− ℓ we deduce that an+1 →

√
7− ℓ. Now an+1 → ℓ, so we conclude that

ℓ =
√
7− ℓ, (⋆)

from which we get ℓ = −1+
√
29

2
(the only non-negative solution to (⋆)).

It remains to show that an converges to a limit. We can show this (sketch) by:

• showing that a1, a3, a5, . . . is monotone decreasing (an induction argument) and

tends to limit −1+
√
50

2
, and

• showing that a2, a4, a6, . . . is monotone increasing (an induction argument) and

tends to limit −1+
√
50

2
.

Messy details omitted...
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4 Week three (September 8) — Pigeon-hole principle

“If n+ 1 pigeons settle themselves into a roost that has only n pigeonholes, then there must
be at least one pigeonhole that has at least two pigeons.”

This very simple principle, sometimes called the box principle, and sometimes Dirichlet’s
box principle, can be very powerful.

The proof is trivial: number the pigeonholes 1 through n, and consider the case where ai
pigeons land in hole i. If each ai ≤ 1, then

∑n
i=1 ai ≤ n, contradicting the fact that (since

there are n+ 1 pigeons in all)
∑n

i=1 ai = n+ 1.
Since it’s a simple principle, to get some power out of it it has to be applied cleverly (in the

examples, there will be at least one such clever application). Applying the principle requires
identifying what the pigeons should be, and what the pigeonholes should be; sometimes this
is far from obvious.

The pigeonhole principle has many obvious generalizations. I’ll just state one of them: “if
more than mn pigeons settle themselves into a roost that has no more than n pigeonholes,
then there must be at least one pigeonhole that has at least m+ 1 pigeons”.

Example: 10 points are placed randomly in a 1 by 1 square. Show that there must be some
pair of points that are within distance

√
2/3 of each other.

Solution: Divide the square into 9 smaller squares, each of dimension 1/3 by 1/3. These
are the pigeonholes. The ten randomly chosen points are the pigeons. By the pigeonhole
principle, at least one of the 1/3 by 1/3 squares must have at least two of the ten points in
it. The maximum distance between two points in a 1/3 by 1/3 square is the distance between
two opposite corners. By Pythagoras this is

√
(1/3)2 + (1/3)2 =

√
2/3, and we are done.

Example: Show that there are two people in New York City who have the exactly same
number of hairs on their head.

Solution: Trivial, because surely there are at least two baldies in NYC! But even if we weren’t
sure of that: a quick websearch shows that a typical human head has around 150,000 hairs,
and it is then certainly reasonable to assume that no one has more than 5,000,000 hairs on
their head. Set up 5,000,001 pigeonholes, numbered 0 through 5,000,000, and place a resident
of NYC (a “pigeon”) into bin i if (s)he has i hairs on her head. Another websearch shows
that the population of NYC is around 8,300,000, so there are more pigeons than pigeonholes,
and some pigeonhole must have multiple pigeons in it.

Example: Show that every sequence of nm + 1 real numbers must contain EITHER a de-
creasing subsequence of length n + 1 OR an increasing subsequence of length m + 1. (In a
sequence a1, a2, . . ., an increasing subsequence is a subsequence ai1 , ai2 , . . . [with i1 < i2 < . . .]
satisfying ai1 ≤ ai2 ≤ . . ., and a decreasing subsequence is defined analogously).

Solution: Let the sequence be a1, . . . , anm+1. For each k, 1 ≤ k ≤ nm + 1, let f(k) be the
length of the longest decreasing subsequence that starts with ak, and let g(k) be the length
of the longest increasing subsequence that starts with ak. Notice that f(k), g(k) ≥ 1 always.

If there is a k with either f(k) ≥ n+1 or g(k) ≥ m+1, we are done. If not, then for every
k we have 1 ≤ f(k) ≤ n and 1 ≤ g(k) ≤ m. Set up nm pigeonholes, with each pigeonhole
labeled by a different pair (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m (there are exactly nm such pairs).
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For each k, 1 ≤ k ≤ nm + 1, put ak in pigeonhole (i, j) iff f(k) = i and g(k) = j. There are
nm+ 1 pigeonholes, so one pigeonhole, say hole (r, s), has at least two pigeons in it.

In other words, there are two terms of the sequence, say ap and aq (where without loss of
generality p < q), with f(p) = f(q) = r and g(p) = g(q) = s.

Suppose ap ≥ aq. Then we can find a decreasing subsequence of length r+1 starting from
ap, by starting ap, aq, and then proceeding with any decreasing subsequence of length r that
starts with aq (one such exists, since f(q) = r). But that says that f(p) ≥ r+1, contradicting
f(p) = r.

On the other hand, suppose ap ≤ aq. Then we can find an increasing subsequence of
length s + 1 starting from ap, by starting ap, aq, and then proceeding with any increasing
subsequence of length s that starts with aq (one such exists, since g(q) = s). But that says
that g(p) ≥ s+ 1, contradicting g(p) = s.

So, whether ap ≥ aq or ap ≤ aq, we get a contradiction, and we CANNOT ever be in the
case where there is NO k with either f(k) ≥ n+1 or g(k) ≥ m+1. This completes the proof.

Remark: This beautiful result was discovered by P. Erdös and G. Szekeres in 1935; the
incredibly clever application of pigeonholes was given by A. Seidenberg in 1959.
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4.1 Week three problems

1. (a) Given m integers a1, . . . , am, prove that some nonempty subset of them has sum
divisible by m.

(b) (A stronger statement than the previous part) Given m integers a1, . . . , am, show
that there is a consecutive subsequence whose sum is divisible bym. (A consecutive
subsequence means a subsequence

ai, ai+1, ai+2, . . . ai+j−1

of length j, where j could be as small as one.)

2. (a) 51 different integers are chosen between 1 and 100, inclusive. Show that some two
of them are coprime (have no prime factor in common).

(b) 51 different integers are chosen between 1 and 100, inclusive. Show that there are
some two of them such that one divides the other.

3. Prove that from a set of ten distinct two-digit numbers, it is possible to select two
nonempty disjoint subsets whose members have the same sum.

4. Let A and B be 2 by 2 matrices with integer entries such that A, A+B, A+2B, A+3B
and A + 4B are all invertible matrices whose inverses have integer entries. Show that
A+ 5B is invertible and that its inverse has integer entries.

5. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces;
the faces are congruent equilateral triangles. On each face of a regular icosahedron is
written a nonnegative integer such that the sum of all 20 integers is 39. Show that there
are two faces that share a vertex and have the same integer written on them.

6. Inside a circle of radius 4 are 45 points. Show that you can find two of these points at
most distance

√
2 apart.

7. Show that among any 4n−1 people, there are either some n of them who mutually know
each other, or some n who mutually don’t know each other. (The relation “knowing” is
assumed to be symmetric — if I know you, you know me, and vice-versa.)

8. The Fibonacci numbers are defined by the recurrence f0 = 0, f1 = 1 and fn = fn−1+fn−2

for n ≥ 2. Show that the Fibonacci sequence is periodic modulo any positive integer.
(I.e, show that for each k ≥ 1, the sequence whose nth term is the remainder of fn on
division by k is a periodic sequence).
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4.2 Week three solutions

1. (a) Given m integers a1, . . . , am, prove that some nonempty subset of them has sum
divisible by m.

Solution: This is a classic (as is the second part). I won’t give a solution, since
the solution I give for the second part covers this first part as well.

(b) (A stronger statement than the previous part) Given m integers a1, . . . , am, show
that there is a consecutive subsequence whose sum is divisible bym. (A consecutive
subsequence means a subsequence

ai, ai+1, ai+2, . . . ai+j−1

of length j, where j could be as small as one.)

Solution: Look at the m numbers a1, a1 + a2, etc., up to a1 + . . . + am. If any
one of these is divisible by m, we are done. If not, then these m numbers have
between them at most m−1 remainders on division by m (1 through m−1), so by
pigeon-hole principle, some two of them must have the same remainder on division
by m.

Say those two are a1 + . . . + ak and a1 + . . . + ak + . . . + aℓ for some ℓ > k. Then
the difference of these two, ak+1 + . . .+ aℓ, is divisible by m.

2. (a) 51 different integers are chosen between 1 and 100, inclusive. Show that some two
of them are coprime (have no prime factor in common).

Solution: The two parts to this problem were favorites of Paul Erdős. The
first is often called “Posá’s soup problem”; see http://www.math.uwaterloo.ca/
navigation/ideas/articles/honsberger/index.shtml for an explanation.

Among 51 numbers chosen from between 1 and 100, two must be consecutive, and
so coprime (use pigeon-hole principle with 50 pigeon-holes labelled “1, 2”, “3, 4”,
etc., up to “99, 100”).

(b) 51 different integers are chosen between 1 and 100, inclusive. Show that there are
some two of them such that one divides the other.

Solution: Every positive whole number can be expressed uniquely as n = m2k

where m is odd and k is a non-negative whole number. Create 50 pigeon-holes
labelled “1”, “3”, etc., up to “99”. Place number n in pigeon-hole labelled “m”
if n = m2k for some non-negative whole number k. By the pigeon-hole principle,
there is some odd m such that there are two distinct numbers n1, n2 among the 51
with n1 = m2k1 and n2 = m2k2 . The smaller of these divides the larger.

3. Prove that from a set of ten distinct two-digit numbers, it is possible to select two
nonempty disjoint subsets whose members have the same sum.

Solution: This was problem 1 on the IMO in 1972.

There are 210 − 1 = 1023 non-empty subsets. The smallest sum that any of these sets
can have is 11, and the largest is 99+98+97+96+95+94+93+92+91+90 = 945. So
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there are only 935 possible sums among 1023 non-empty subsets; by PHP some two, A
and B, must have the same sum. These sets might not be disjoint, but A′ := A\ (A∩B)
and B′ := B \ (A ∩B) are disjoint sets. Both are non-empty.

(Justification: it could only happen that A′ is empty if A ⊆ B; but since A and
B are not the same, we would then have B = A∪C for some non-empty C, so
the sum of the elements in B would be greater than that in A, a contradiction.
And similarly we can’t have B empty.)

Also, since we have removed the same set of elements from both A and B to get A′ and
B′, and the sum of the elements of A is the same as that of B, it follows that the sum
of the elements of A′ is the same as that of B′.

4. Let A and B be 2 by 2 matrices with integer entries such that A, A+B, A+2B, A+3B
and A + 4B are all invertible matrices whose inverses have integer entries. Show that
A+ 5B is invertible and that its inverse has integer entries.

Solution: This was Putnam A4, 1994.

The following solution is from Kiran Kedlya:

First recall that an integer matrix A has an integer inverse if and only if det(A) = ±1.

Proof: clearly ifA−1 has integer entries, then 1 = det(AA−1) = det(A)det(A−1)
so det(A) divides 1. Conversely, if det(A) = ±1 then A−1 equals 1/det(A)
times the signed cofactor matrix of A, which has integer entries.

So let f(n) = det(A) + nB. Clearly f is a quadratic polynomial in n with integer
coefficients (just write it out in terms of the entries); our claim is that if f(i) ∈ {1,−1}
for i = 0, 1, 2, 3, 4, then f(n) = ±1 for all n.

Note that since f has integer coefficients, x − y divides f(x) − f(y) for any integers x
and y.

Proof: If f(x) = anx
n+ · · ·+a0, then f(x)−f(y) = an(x

n−yn)+an−1(x
n−1−

yn−1) + . . ., and each term is divisible by x− y.

But if x and y both belong to {0, 1, 2, 3, 4} and |x − y| > 3, then |f(x) − f(y)| ≤
|f(x)| + |f(y)| = 2, so f(x) − f(y) must be 0. Using this, we conclude f(3) = f(0) =
f(4) = f(1) (apply what we just said to the two sides of each equality). Thus the
quadratic polynomial f(n) − f(1) has four zeroes; that’s too many, so it must be the
zero polynomial, and f(n) = f(1) = ±1 for all x.

Aside: A, . . . , A+ 3B is not enough: consider

A =

(
−1 1
1 −2

)
, B =

(
1 0
0 1

)
5. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces;

the faces are congruent equilateral triangles. On each face of a regular icosahedron is

31



written a nonnegative integer such that the sum of all 20 integers is 39. Show that there
are two faces that share a vertex and have the same integer written on them.

Solution: This was problem A1 from the 2013 Putnam competition.

A key fact to know about the icosahedron is how many faces meet at each vertex.
Suppose it is x. The the number of pairs (v, F ) where v is a vertex and F is a face that
has v as a vertex is 12x (each of 12 vertices contributes x to the number); but it is also
3× 20 (each of 20 faces contributes 3 to the number). So x = 5.

Suppose that there are no two faces that share a vertex and have the same integer
written on them. Then, for each vertex, the smallest possible sum of the five numbers
on the faces meeting that vertex is 0 + 1 + 2 + 3 + 4 = 10. Consider the double sum∑

vertices x

∑
faces F touching x

number on F .

We have just argued that for each x, the inner sum is at least 10, so the double sum is
at least 120. But because each face is a triangle, the double sum counts each number
exactly three times, and hence the sum is 3× 39 = 117. This is a contradiction; hence,
there are no two faces that share a vertex and have the same integer written on them.

6. Inside a circle of radius 4 are 45 points. Show that you can find two of these points at
most distance

√
2 apart.

Solution: From Andrei Jorza.

I can do this easily with “45” replaced with “50”. Put the circle on the Cartesian
plane, centered at (0, 0). Either on or inside the circle there are 49 points with integer
co-ordinates

(Justification: there are 81 points with integer co-ordinates on the square
that encloses the circle, with vertices at (±8,±8). Of those 81, 32 are on
the boundary of the square, and of those 32 evidently all but (0,±4) and
(±4, 0) are outside the circle. Of the remaining 49 interior integer points, the
four (±3,±3) are outside the circle, since their distance from the center is√
33 + 32 > 4, and the rest are easily seen to by inside the circle. This means

that 49 of the integer points ither on or inside the circle.)

Draw a disc of radius
√
2/2 around each of these integer points. The union of these 49

discs is easily seen to include the whole of the radius 4 circle and its interior (this is
because the diagonal of each integer square in the grid is

√
2 = 2(

√
2/2)). So among 50

points chosen inside the circle, two must land inside a single circle of radius
√
2/2, and

so be distance at most
√
2 apart.

I’m not sure how to easily bring “50” down to “45”. One possibility is to put the circle
at the center of the triangular grid where all triangles have all side lengths

√
6/2. This

length is exactly chosen to ensure that the whole large circle is covered by circles of
radius

√
2/2 whose centers are at the corners of the triangles that cover the circle. One

then needs to count how many such circles there are; if it is fewer than 44, we are done.
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Update: Here’s a solution presented in class, by Chang Zhou:

Suppose that it is possible to put down 45 points in the circle of radius 4, with no two
of them at distance

√
2 apart or nearer. Draw a circle of radius

√
2/2, so area pi/2,

around each point. These circles are disjoint (if any two of them overlapped, the two
centers would be within

√
2 of each other). So they cover an area of exactly (45/2)π.

But, these 45 circles all fit inside a circle of radius 4+(
√
2/2) (the extra

√
2/2 is to allow

for the possibility that some of the 45 points may be on or near the boundary of the
circle of radius 4). This large circle has area (4 + (

√
2/2))2π = (16.5 + 4

√
2)π < 22.2π

(using
√
2 < 1.42).

It is impossible for disjoint circles with total area 22.5π to fit inside a circle of area less
than 22.2π. This contradiction proves that if 45 points are chosen in the circle of radius
4, some two of them must be within

√
2 of each other.

7. Show that among any 4n−1 people, there are either some n of them who mutually know
each other, or some n who mutually don’t know each other. (The relation “knowing” is
assumed to be symmetric — if I know you, you know me, and vice-versa.)

Solution: This is (a version of) Ramsey’s theorem, a central theorem in combinatorics.

Note that 4n−1 = 22n−2. Pick a person a1 arbitrarily. Of the remaining 22n−2−1 people,
it must be the case that either a1 knows at least 2

2n−3 of them, or doesn’t know at least
22n−3 of them (this is pigeon-hole principle, essentially; if she knows fewer than 22n−3,
and doesn’t know fewer than 22n−3, this accounts for fewer than 22n−2 − 1 people).

If a1 knows at least 2
2n−3 people, then label a1 with a “K”, and select arbitrarily a subset

of the people she knows of size 22n−3. Remove all other people from consideration. If
she doesn’t know at least 22n−3 people, then label her with a “D”, and select arbitrarily
a subset of the people she doesn’t know of size 22n−3. Remove all other people from
consideration.

Repeat: select an arbitrary person a2 from among the 22n−3 people left under consider-
ation after a1 has been dealt with; among the 22n−3− 1 people that a2 may know or not
know (not counting a1), she either knows at least 22n−4 of them, or doesn’t know this
many; in the former case, label a2 “K” and select a subset of size 22n−4 of people (other
than a1) that she knows, removing all others from consideration; in the latter case, label
a2 “D” and select a subset of size 22n−4 of people (other than a1) that she doesn’t know,
removing all others from consideration.

Iterate this process until we have selected a1, a2, . . . , a2n2 . Notice that when we consider
a2n−2, there is one person left unconsidered (if a2n−2 knows this person, she gets label
“K”; if not, label “D”). Call this last person a2n−1.

Two labels have been used to label a1 through a2n−2, so, by pigeon-hole, one of the labels
must be used at least n − 1 times [note that we could have said the same thing if we
had only up to a2n−3; so the “4n−1” at the beginning of the problem could be replaced
by “4n−1/2”]. Say that that label is “K”. Then any collection of n − 1 of the ai’s with
label “K”, together with a2n−1, form a collection of n people who mutually know each
other (that ai knows aj for i < j follows from the fact that ai has label “K”). On the
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other hand, if that label is “D” then any collection of n− 1 of the ai’s with label “D”,
together with a2n−1, form a collection of n people who mutually don’t know each other.

8. The Fibonacci numbers are defined by the recurrence f0 = 0, f1 = 1 and fn = fn−1+fn−2

for n ≥ 2. Show that the Fibonacci sequence is periodic modulo any positive integer.
(I.e, show that for each k ≥ 1, the sequence whose nth term is the remainder of fn on
division by k is a periodic sequence).

Solution: I found this on the Northwestern Putnam prep class webpage.

Consider the sequence obtained from the Fibonacci sequence by taking the remainder
of each term on division by k (so the result is a sequence, all terms in {0, . . . , k − 1}).
Suppose that there are two consecutive terms in this sequence, say themth and (m+1)st,
taking values a, b, and two other consecutive terms , say the nth and n+1st, taking the
same values a, b (with m < n). Then the (m+2)nd and (n+2)nd terms of the reduced
sequence agree.

[WHY? Because the (m+2)nd term is the remainder of Fm+2 on division by k, which is
the remainder of Fm + Fm+1 on division by k, which is the remainder of Fm on division
by k PLUS the remainder of Fm+1 on division by k, which is the remainder of a on
division by k PLUS the remainder of b on division by k, which is the remainder of Fn

on division by k PLUS the remainder of Fn+1 on division by k, which is the remainder
of Fn + Fn+1 on division by k, which is the remainder of Fn+2 on division by k.]

The same argument shows that the reduced sequence is periodic beyond the mth terms,
with period (at most) n−m.

So all we need to do to find periodicity is to find two consecutive terms in the sequence,
that agree with two other consecutive terms. There are only k2 possibilities for a pair of
consecutive values in the sequence, and infinitely many consecutive values, so by PHP
there has to be a coincidence of the required kind.
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5 Week four (September 17) — Binomial coefficients

Binomial coefficients crop up quite a lot in Putnam problems. This handout presents some
ways of thinking about them.

Introduction

The binomial coefficient
(
n
k

)
, with n ∈ N and k ∈ Z, can be defined many ways; possibly the

most helpful definition from the point of view of problem-solving is the following combinatorial
one: (

n

k

)
is the number of subsets of size k of a set of size n.

In particular, this definition immediately tells us that for all n ≥ 0 we have
(
n
k

)
= 0 if k > n

or if k < 0, and that
(
n
0

)
=
(
n
n

)
= 1 (and so in particular

(
0
0

)
= 1).

The binomial coefficients can also be defined by a recurrence relation: for n ≥ 1, and all
k ∈ Z, we have the recurrence(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, (Pascal’s identity)

with initial conditions
(
0
k

)
= 0 if k ̸= 0, and

(
0
0

)
= 1. To see that this recurrence does indeed

generate the binomial coefficients, think about the combinatorial interpretation: the subsets
of {1, . . . , n} of size k (

(
n
k

)
of them) partition into those that don’t include element n (

(
n−1
k

)
of them) and those that do include element n (

(
n−1
k−1

)
of them). The recurrence allows us

to quickly compute small binomial coefficients via Pascal’s triangle: the zeroth row of the
triangle has length one, and consists just of the number 1. Below that, the first row has two
1’s, one below and to the left of the 1 in the zeroth row, and one below and to the right of
the 1 in the zeroth row. The second row has three entries, a 1 below and to the left of the
leftmost 1 in the first row, a 1 below and to the right of the rightmost 1 in the first row, and in
the center a 2. Each subsequent row contains one more entry than the previous row, starting
with a 1 below and to the left of the leftmost 1 in the previous row, ending with a 1 below
and to the right of the rightmost 1 in the previous row, and with all other entries being the
sum of the two entries in the previous row above to the left and to the right of the entry being
considered (see the picture below).
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

etc.

Pascal’s triangle in numbers

The kth entry in row k (counting from 0 rather than 1 both down and across) is then
(
n
k

)
(this is just a restatement of Pascal’s identity) (see the picture below).(

0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
etc.

Pascal’s triangle symbolically

Finally, there is an algebraic expression for
(
n
k

)
, that makes sense for all n, k ≥ 0, using

the factorial function (defined combinatorially as the number of ways of arranging n distinct
objects in order, and algebraically by n! = n(n−1)(n−2) . . . (3)(2)(1) for n ≥ 1, with 0! = 1):(

n

k

)
=

n(n− 1) . . . (n− (k − 1))

k!
=

n!

k!(n− k)!
.

To see this, note that n(n− 1) . . . (n− (k − 1)) is fairly evidently the number of ordered lists
of k distinct elements from {1, . . . , n} (often referred to in textbooks as “permutations of n
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items taken k at a time” — ugh). When the ordered lists are turned into (unordered) subsets,
each subset appears k! times (once for each of the k! ways of putting k distinct objects into
an ordered list), so we need to divide the ordered count by k! to get the unordered count.

When dealing with binomial coefficients, it is very helpful to bear all three definitions in
mind, but in particular the first two.

Identities

The binomial coefficients satisfy a staggering number of identities. The simplest of these are
easily understood using either the combinatorial or algebraic definitions; for the more involved
ones, that include sums, the algebraic definition is usually next to useless, and often the easiest
way to prove the identity is combinatorially, by showing that both sides of the identity count
the same thing in different ways (illustration below), though it is often possible also to prove
these identities by induction, using the recurrence relation. Another approach that is helpful
is that of generating functions.

Here are some of the basic binomial coefficient identities:

1. (Symmetry) (
n

k

)
=

(
n

n− k

)
(Proof: trivial from the algebraic definition; combinatorially, left-hand side counts selec-
tion of subsets of size k from a set of size n, by naming the selected elements; right-hand
side also counts selection of subsets of size k from a set of size n, this time by naming
the unselected elements).

2. (Lower summation)
n∑

k=0

(
n

k

)
= 2n

(Proof: close to impossible using the algebraic definition; combinatorially, very straight-
forward: left-hand side counts the number of subsets of a set of size n, by first deciding
the size of the subset, and then choosing the subset itself; right-hand side also counts
the number of subsets of a set of size n, by going through the n elements one-by-one
and deciding whether they are in the subset or not).

3. (Upper summation)
n∑

m=k

(
m

k

)
=

(
n+ 1

k + 1

)
.

4. (Parallel summation)
n∑

k=0

(
m+ k

k

)
=

(
n+m+ 1

n

)
.

5. (Square summation)
n∑

k=0

(
n

k

)2

=

(
2n

n

)
.
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6. (Vandermonde identity, or Vandermonde convolution)

r∑
k=0

(
m

k

)(
n

r − k

)
=

(
n+m

r

)
.

The binomial theorem

This is the most important identity involving binomial coefficients: for all real x and y, and
n ≥ 0,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

This can be proved by induction using Pascal’s identity, but the proof is quite awkward. Here’s
a nice combinatorial proof. First, note that the identity is trivial if either x = 0 or y = 0, so
we may assume x, y ̸= 0. Dividing through by xn, the identity is the same as

(1 + z)n =
n∑

k=0

(
n

k

)
zk.

We will prove this combinatorially when z is a positive integer. The left-hand side counts the
number of words of length n from alphabet {0, 1, 2, . . . , z}, by deciding on the letters one after
the other. The right-hand side also counts the number of words of length n from alphabet
{0, 1, 2, . . . , z}, as follows: first decide how many of the letters of the word are from {1, . . . , z}
(this is the k of the summation). Next, decide the location of these k letters (this is the

(
n
k

)
).

Finally, decide what specific letters go into those spots, one after another (this is the zk) (note
that the remaining n− k letters must all be 0’s).

This only shows the identity for positive integer z. But now we use the fact that both the
right-hand and left-hand sides are polynomials of degree n, so if they agree at n+ 1 different
values of z, they must agree at all values of z (otherwise, their difference is a not-identically-
zero polynomial of degree at most n with n+ 1 distinct roots, an impossibility). And indeed,
the two sides agree not just at n+ 1 different values of z, but at infinitely many (all positive
integers z). So from the combinatorial argument that shows that the two sides are equal for
positive integers z, we infer that they are equal for all real z. This argument is often called
the polynomial principle.

There is a version of the binomial theorem also for non-positive-integral exponents: for all
real α,

(1 + z)α =
∑
k≥0

(
α

k

)
zk

where
(
α
k

)
is defined in the obvious way:(

α

k

)
=

α(α− 1) . . . (α− k + 1)

k!
(for k ≥ 1;

(
α
0

)
= 1),

and the equality is valid for all real |z| < 1. (Check: when α is a positive integer, this reduces
to the standard binomial theorem).
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For example, if ℓ > 0 is a positive integer, then(
−ℓ

k

)
=

(−ℓ)(−ℓ− 1) . . . (−ℓ− k + 1)

k!
= (−1)k

(
ℓ+ k − 1

k

)
,

and so
1

(1− z)ℓ
=
∑
k≥0

(
ℓ+ k − 1

k

)
zk.

This generalizes the familiar identity

1

1− z
= 1 + z + z2 + . . . .

Modulo the convergence analysis, the proof of the binomial theorem for general exponents is
fair easy: the coefficient of xk in the Taylor series Taylor series of (1 + z)α is

1

k!

dk

dxk
(1 + z)α|z=0 =

(
α

k

)
.

Compositions and weak compositions

A composition of a positive integer n into k parts is a vector (x1, x2, . . . , xk), with each entry a
strictly positive integer, and with

∑k
i=1 xi = n. For example, (2, 1, 1, 3) is a composition of 7,

as is (1, 3, 1, 2); and, because a composition is a vector (ordered list), these two are considered
different compositions.

A weak composition of a positive integer n into k parts is a vector (x1, x2, . . . , xk), with
each entry a non-negative (possibly 0) integer, and with

∑k
i=1 xi = n. For example, (2, 0, 1, 3)

is a weak composition of 6, but not a composition.
How many weak compositions of n are there, into k parts? Put down n + k − 1 stars in

a row. Choose k − 1 of them to turn into bars. The resulting arrangement of stars-and-bars
encodes a weak composition of n into k parts — the number of stars before the first bar is
x1, the number of stars between the first and second bar is x2, and so on, up to the number
of stars after the last bar, which is xk (notice that only k − 1 bars are needed to determine
k intervals of stars). Conversely, every weak composition of n into k parts is encoded by one
such selection of k−1 bars from the initial list of n+k−1 stars. For example, the configuration
⋆⋆ ||⋆ |⋆⋆⋆ encodes the weak composition (2, 0, 1, 3) of 6 into 4 parts. So, the number of weak
compositions of n into k parts is a binomial coefficient,

(
n+k−1
k−1

)
.

How many compositions of n are there, into k parts? Each such composition (x1, x2, . . . , xk)
gives rise to a weak composition (x1− 1, x2− 1, . . . , xk − 1) of n− k into k parts, and all weak
composition of n−k into k parts are achieved by this process. So, the number of compositions
of n into k parts is the same as the number of weak compositions of n− k into k parts, which
is
(
(n−k)+k−1

k−1

)
=
(
n−1
k−1

)
.

For example: I like plain cake, chocolate cake, blueberry cake and pumpkin cake donuts
from Dunkin’ Donuts. In how many different ways can I buy a dozen donuts that I like? I
must buy x1 plain, x2 chocolate, x3 blueberry and x4 pumpkin, with x1 + x2 + x3 + x4 = 12,
and with each xi a non-negative integer (possibly 0). So the number of different purchases I
can make is the number of weak compositions of 12 into 4 parts, so

(
15
4

)
= 1365.
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5.1 Warm-up problems

1. Give a combinatorial proof of the upper summation identity.

2. Give a combinatorial proof of the parallel summation identity.

3. Give a combinatorial proof of the square summation identity.

4. Give a combinatorial proof of the Vandermonde identity.

5. Evaluate
n∑

k=0

(−1)k
(
n

k

)
for n ≥ 1.

6. (a) Let an be the number of 0-1 strings of length n that do not have two consecutive 1’s.
Find a recurrence relation for an (starting with initial conditions a0 = 1, a1 = 2).

(b) Let an,k be the number of 0-1 strings of length n that have exactly k 1’s and that
do not have two consecutive 1’s. Express an,k as a (single) binomial coefficient.

(c) Use the results of the previous two parts to give a combinatorial proof (showing
that both sides count the same thing) of the identity

Fn =
∑
k≥0

(
n− k − 1

k

)
where Fn is the nth Fibonacci number (F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for
n ≥ 3).
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5.2 Week four problems

1. Show that the coefficient of xk in (1 + x+ x2 + x3)n is

k∑
j=0

(
n

j

)(
n

k − 2j

)
.

2. Find a simple expression (not involving a sum) for

12
(
n

1

)
+ 22

(
n

2

)
+ 32

(
n

3

)
+ · · ·+ n2

(
n

n

)
.

3. n points are arranged on a circle. All possible diagonals are drawn. Assuming that no
three of the diagonals meet at a single point, how many intersections of diagonals are
there inside the circle?

4. (a) The kth falling power of x is xk = x(x− 1)(x− 2) . . . (x− (k − 1)). Prove that for
all real x, y, and all n ≥ 1,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

(b) The kth rising power of x is xk = x(x + 1)(x + 2) . . . (x + (k − 1)). Prove that for
all real x, y, and all n ≥ 1,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

5. Evaluate
n∑

k=0

Fk+1

(
n

k

)
for n ≥ 0, where F1, F2, F3, F4, F5, . . . are the Fibonacci numbers 1, 1, 2, 3, 5, . . ..

6. Evaluate
2n∑
k=0

(−1)kkn

(
2n

k

)
for n ≥ 1.

7. Show that for all k ≥ 0, ∫ π/2

0

(2 sinx)2k dx =
π

2

(
2k

k

)
.
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5.3 Solutions to warm-up problems

1. Give a combinatorial proof of the upper summation identity.

Solution: RHS is number of subsets of {1, . . . , n + 1} of size k + 1, counted directly.
LHS counts same, by first specifying largest element in subset (if largest element is
k+1, remaining k must be chosen from {1, . . . , k},

(
k
k

)
ways; if largest element is k+2,

remaining k must be chosen from {1, . . . , k + 1},
(
k+1
k

)
ways; etc.).

2. Give a combinatorial proof of the parallel summation identity.

Solution: RHS is number of subsets of {1, . . . , n +m + 1} of size n, counted directly.
LHS counts same, by first specifying the smallest element not in subset (if smallest
missed element is 1, all n elements must be chosen from {2, . . . , n+m+1},

(
m+n
n

)
ways,

the k = n term; if smallest missed element is 2, then 1 is in subset and remaining n− 1
elements must be chosen from {3, . . . , n+m+1},

(
m+n−1
n−1

)
ways, the k = n−1 term; etc.,

down to: if smallest missed element is n+ 1, then {1, . . . , n} is in subset and remaining
0 elements must be chosen from {n+ 2, . . . , k + 1},

(
m+0
0

)
ways, the k = 0 term).

3. Give a combinatorial proof of the square summation identity.

Solution: RHS is number of subsets of {±1, . . . ,±n} of size n, counted directly. LHS
counts same, by first specifying k, the number of positive elements chosen, then selecting
k positive elements (

(
n
k

)
ways), then selecting the k negative elements that are not chosen

(so the n− k that are, for n in total) (
(
n
k

)
ways).

4. Give a combinatorial proof of the Vandermonde identity.

Solution: Let A = {x1, . . . , xm} and B = {y1, . . . , yn} be disjoint sets. RHS is number
of subsets of A ∪ B of size r, counted directly. LHS counts same, by first specifying k,
the number of elements chosen from A, then selecting r elements from A (

(
m
k

)
ways),

then selecting the remaining r − k elements from B (
(

n
r−k

)
ways).

5. Evaluate
n∑

k=0

(−1)k
(
n

k

)
for n ≥ 1.

Solution: Applying the binomial theorem with x = 1, y = 1 get

0 = (1− 1)n =
n∑

k=0

(
n

k

)
1n−k(−1)k =

n∑
k=0

(−1)k
(
n

k

)
so the sum is 0.

6. (a) Let an be the number of 0-1 strings of length n that do not have two consecutive 1’s.
Find a recurrence relation for an (starting with initial conditions a0 = 1, a1 = 2).

Solution: By considering whether the last term is a 0 or a 1, get the Fibonacci
recurrence: an = an−1 + an−2.
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(b) Let an,k be the number of 0-1 strings of length n that have exactly k 1’s and that
do not have two consecutive 1’s. Express an,k as a (single) binomial coefficient.

Solution: Add a 0 to the beginning and end of such a string. By reading off a1,
the number of 0’s before the first 1, then a2, the number of 0’s between the first 1
and the second, and so on up to ak+1, the number of 0’s after the last 1, we get a
composition (a1, . . . , ak+1) of n+2− k into k+1 parts; and each such composition
can be encoded (uniquely) by such a string. So an,k is the number of compositions
of n+ 2− k into k + 1 parts, and so equals

(
n+1−k

k

)
.

(c) Use the results of the previous two parts to give a combinatorial proof (showing
that both sides count the same thing) of the identity

Fn =
∑
k≥0

(
n− k − 1

k

)
where Fn is the nth Fibonacci number (F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for
n ≥ 3).

Solution: From the recurrence in the first part, we get an = Fn+2, so Fn counts
the number of 0-1 strings of length n−2 with no two consecutive 1’s. We can count
such strings by first deciding on k, the number of 1’s, and by the second part, the
number of such strings is

(
n−1−k

k

)
. Summing over k we get the result.

5.4 Week four solutions

1. Show that the coefficient of xk in (1 + x+ x2 + x3)n is

k∑
j=0

(
n

j

)(
n

k − 2j

)
.

Solution: The was on the 1992 Putnam competition, problem B2.

We have

(1 + x+ x2 + x3)n = (1 + x)n(1 + x2)n

=

(∑
i≥0

(
n

i

)
xi

)(∑
i′≥0

(
n

2i′

)
x2i′

)
.

We get an xk term in the product by pairing each
(
n
i

)
xi from the first sum with

(
n

k−2i

)
xk−2i

from the second; so the coefficient of xk in the product is

k∑
i=0

(
n

i

)(
n

k − 2i

)
,

as claimed.
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2. Find a simple expression (not involving a sum) for

12
(
n

1

)
+ 22

(
n

2

)
+ 32

(
n

3

)
+ · · ·+ n2

(
n

n

)
.

Solution: This was on the Putnam in 1962. It was question A5. These days, A5 is
typically a much more involved question!

We claim that the (or at least an) answer is n(n+ 1)2n−2.

From the binomial theorem

(1 + x)n =
n∑

k=0

(
n

k

)
xk. (⋆)

Differentiating both sides with respect to x twice, get

n(n− 1)(1 + x)n−2 =
n∑

k=0

k(k − 1)

(
n

k

)
xk−2 =

n∑
k=0

(k2 − k)

(
n

k

)
xk−2,

and evaluating at x = 1 get

n(n− 1)2n−2 = (12 − 1)

(
n

1

)
+ (22 − 2)

(
n

2

)
+ (32 − 3)

(
n

3

)
+ · · ·+ (n2 − n)

(
n

n

)
. (⋆⋆)

Differentiating both sides of (⋆) with respect to x once, get

n(1 + x)n−1 =
n∑

k=0

k

(
n

k

)
xk−1,

and evaluating at x = 1 get

n2n−1 = 1

(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · ·+ n

(
n

n

)
. (⋆ ⋆ ⋆).

Adding (⋆⋆) and (⋆ ⋆ ⋆) get

12
(
n

1

)
+ 22

(
n

2

)
+ 32

(
n

3

)
+ · · ·+ n2

(
n

n

)
= n(n− 1)2n−2 + n2n−1

= n(n+ 1)2n−2.

3. n points are arranged on a circle. All possible diagonals are drawn. Assuming that no
three of the diagonals meet at a single point, how many intersections of diagonals are
there inside the circle?

Solution: This is an old classic.

We claim that the answer is
(
n
4

)
.
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Each intersection inside the circle determines a unique collection of four of the points
on the circle, by: two lines meet at each intersection, and each of the two lines has two
endpoints. Conversely, each set of four points on the circle determines a unique point of
intersection, by: if the four points are, in clockwise order, a, b, c, d, then the associated
point of intersection is the intersection of the lines ac and bd.

It follows that there are exactly as many intersections of diagonals inside the circle, as
there are sets of points on the circle; and there are

(
n
4

)
such sets of points.

4. (a) The kth falling power of x is xk = x(x− 1)(x− 2) . . . (x− (k − 1)). Prove that for
all real x, y, and all n ≥ 1,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Solution: This part and the next are standard Binomial coefficient identities. This
problem was B1 on the 1962 Putnam competition.

An argument by induction is possible. But there is also a combinatorial argument:

Let x and y be positive integers. The number of words in alphabet {1, . . . , x} ∪
{x1, . . . , x + y} of length n with no two repeating letters, counted by selecting
letter-by-letter, is (x + y)n. If instead we count by first selecting k, the number
of letters from {x + 1, . . . , x + y} used, then locate the k positions in which those
letters appear, then selecting the n − k letters from {1, . . . , x} letter-by-letter in
the order that they appear in the word, and finally selecting the k letters from
{x+1, . . . , x+ y} letter-by-letter in the order that they appear in the word, we get
a count of

∑n
k=0

(
n
k

)
xn−kyk. So the identity is true for positive integers x, y.

The LHS and RHS are polynomials in x and y of degree n, so the difference is a
polynomial in x and y of degree at most n, which we want to show is identically 0.
Write the difference as P (x, y) = p0(x)+p1(x)y+ . . .+pn(x)y

n where each pi(x) is a
polynomial in x of degree at most n. Setting x = 1 we get a polynomial P (1, y) in y
of degree at most n. This is 0 for all integers y > 0 (by our combinatorial argument),
so by the polynomial principle5 it is identically 0. So each pi(x) evaluates to 0 at
x = 1. But the same argument shows that each pi(x) evaluates to 0 at any positive
integer x. So again by the polynomial principle, each pi(x) is identically 0 and so
P (x, y) is. This proves the identity for all real x, y.

(b) The kth rising power of x is xk = x(x + 1)(x + 2) . . . (x + (k − 1)). Prove that for
all real x, y, and all n ≥ 1,

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Solution: This can be derived from the result of the previous part.

5The polynomial principle: If a polynomial of degree at most n has n+1 or more zeroes, then it is identically
0.
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Set x′ = −x and y′ = −y; we have

(x+ y)n = (−x′ − y′)n = (−1)n(x′ + y′)n

and

n∑
k=0

(
n

k

)
xn−kyk =

n∑
k=0

(
n

k

)
(−x′)n−k(−y′)k

=
n∑

k=0

(
n

k

)
(−1)n−k(x′)n−k(−1)k(y′)k

= (−1)n
n∑

k=0

(
n

k

)
(x′)n−k(y′)k,

so the identity follows from the falling power binomial theorem (the previous part).

5. Evaluate
n∑

k=0

Fk+1

(
n

k

)
for n ≥ 0, where F1, F2, F3, F4, F5, . . . are the Fibonacci numbers 1, 1, 2, 3, 5, . . ..

Solution: This is a well-known binomial coefficient identity.

We claim that the answer is F2n+1.

When n = 0 we get a sum of 1; when n = 1 we get a sum of 2; when n = 2 we get a
sum of 5; when n = 3 we get a sum of 13; when n = 4 we get a sum of 34; this suggests
strongly

n∑
k=0

Fk+1

(
n

k

)
= F2n+1.

One way to prove this is to iterative apply the Fibonacci recurrence to F2n+1: on the
zeroth iteration,

F2n+1 =

(
0

0

)
F2n+1.

The first iteration leads to

F2n+1 = F2n + F2n−1 =

(
1

0

)
F2n +

(
1

0

)
F2n−1.

The second leads to

F2n+1 = F2n + F2n−1

= (F2n−1 + F2n−2) + (F2n−2 + F2n−3)

=

(
2

0

)
F2n−1 +

(
2

1

)
F2n−2 +

(
2

2

)
F2n−3.
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This suggest that we prove to more general statement, that for each 0 ≤ s ≤ n,

F2n+1 =
s∑

j=0

(
s

j

)
F2n+1−s−j. (⋆)

The case s = n yields

F2n+1 =
n∑

j=0

(
n

j

)
Fn+1−j,

which is the same as what we have to prove (by the symmetry relation
(
n
j

)
=
(

n
n−j

)
).

We can prove (⋆) by induction on s (for each fixed n), with the case s = 0 trivial. For
larger s, we begin with the s−1 case of the induction hypothesis, then use the Fibonacci
recurrence to break each Fibonacci number into the sum of two earlier ones, then use
Pascals identity to gather together terms involving the same Fibonacci number. (Details
omitted.)

6. Evaluate
2n∑
k=0

(−1)kkn

(
2n

k

)
for n ≥ 1.

Solution: I don’t know where I first saw this.

We claim that the sum is 0.

It’s not easy to deal with this sum in isolation. But, we can generalize: define, for each
n, r ≥ 1, ar,n =

∑2n
k=0(−1)kkr

(
2n
k

)
. We claim that ar,n = 0 (and so in particular an,n, our

sum of interest, is 0.

We prove the claim for each n by induction on r. It will be helpful to define

fn(x) =
2n∑
k=0

xk

(
2n

k

)
= (1 + x)2n.

Differentiating,

f ′
n(x) =

2n∑
k=0

kxk−1

(
2n

k

)
= 2n(1 + x)2n−1.

Evaluating at x = −1 we get

2n∑
k=0

(−1)k−1k1

(
2n

k

)
= 0,

and multiplying by −1 gives a1,n = 0. This is the base case of the induction.

For the induction step, assume that aj,n = 0 for all 1 ≤ j < r (with r ≥ 2). The rth
derivative of fn(x) is

f (r)
n (x) =

2n∑
k=0

k(k−1) . . . (k−(r−1))xk−r

(
2n

k

)
= 2n(2n−1) . . . (2n−(r−1))(1+x)2n−r.
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Now k(k− 1) . . . (k− (r− 1)) is a polynomial in k, of degree r, whose leading coefficient
is 1, and for which all other terms are polynomials in r; in other words,

k(k − 1) . . . (k − (r − 1)) = kr + c1(r)k
r−1 + . . .+ cr(r),

and so

f (r)
n (x) =

2n∑
k=0

xk−rkr

(
2n

k

)
+

r∑
j=1

cj(r)
2n∑
k=0

xk−rkr−j

(
2n

k

)
.

Evaluating at x = −1, and recalling that f
(r)
n (x) = 2n(2n−1) . . . (2n−(r−1))(1+x)2n−r,

we get
2n∑
k=0

(−1)k−rkr

(
2n

k

)
+

r∑
j=1

cj(r)
2n∑
k=0

(−1)k−rkr−j

(
2n

k

)
= 0.

The sum corresponding to j = r is

cj(r)
2n∑
k=0

(−1)k−r

(
2n

k

)
= (−1)−rcj(r)

2n∑
k=0

(−1)k
(
2n

k

)
= (−1)−rcj(r)(1− 1)2n = 0.

The sum corresponding to each j, 1 ≤ j < r is cj(r)(−1)−rar,n, so is 0 by induction. So
we conclude

2n∑
k=0

(−1)k−rkr

(
2n

k

)
= 0,

which gives ar,n = 0 on multiplying by (−1)r.

7. Show that for all k ≥ 0, ∫ π/2

0

(2 sinx)2k dx =
π

2

(
2k

k

)
.

Solution: This is a classic calculus exercise that appears in most calculus textbooks. I
saw it on the UMass Putnam preparation website.

Using integration by parts (u = (sinx)n−1, dv = sinx dx, so that du = (n−1)(sinx)n−2 cosx dx
and v = − cosx dx) we get that for n ≥ 2,∫

(sinx)n dx = −(sinx)n−1 cosx+ (n− 1)

∫
(sinx)n−2(cosx)2 dx

= −(sinx)n−1 cosx+ (n− 1)

∫
(sinx)n−2(1− (sinx)2) dx

= −(sinx)n−1 cosx− (n− 1)

∫
(sinx)n dx+ (n− 1)

∫
(sinx)n−2 dx.

Rearranging yields the “reduction formula”∫
(sinx)n dx = − 1

n
(sinx)n−1 cosx+

n− 1

n

∫
(sinx)n−2 dx.
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Applying this to the definite integral, we obtain∫ π/2

0

(sinx)n dx =
n− 1

n

∫ π/2

0

(sinx)n−2 dx. (1)

Noting that ∫ π/2

0

(sinx)0 dx =
π

2
,

we iteratively apply (1) to obtain∫ π/2

0

(sinx)2k dx =
2k − 1

2k
· 2k − 3

2k − 2
· . . . 3

4
· 1
2
· π
2
,

and so ∫ π/2

0

(2 sinx)2k dx = 22k
2k − 1

2k
· 2k − 3

2k − 2
· . . . 3

4
· 1
2
· π
2
.

Now

22k
2k − 1

2k
· 2k − 3

2k − 2
· . . . 3

4
· 1
2
· π
2

= 2k
(2k − 1)(2k − 3) . . . (3)(1)

k!

π

2

= 2k
(2k − 1)(2k − 3) . . . (3)(1)k!

k!k!

π

2

= 2k
[k](2k − 1)[k − 1](2k − 3)[k − 2] . . . [2](3)[1](1)

k!k!

π

2

=
[2k](2k − 1)[2k − 2](2k − 3)[2k − 4] . . . [4](3)[2](1)

k!k!

π

2

=
(2k)!

k!k!

π

2

=
π

2

(
2k

k

)
,

as required.
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6 Week five (September 24) — Calculus

Calculus is a rich source for competition problems. The Putnam problem setters try to assume
minimal mathematical background, so the the topics from Calculus that come up will tend to
focus on material from Calc 1 & 2. Here are the things you should for sure be familiar with:

• The definitions of limits, continuity and derivative. Some questions will ask to compute
interesting limits, or make certain continuity assumptions, or give some information
about the values of derivatives of a function, and of course it will be helpful to be
comfortable with these concepts!

• The three basic theorems of continuity and differentiability:

– The intermediate value theorem: if continuous f : [a, b] → R is negative at a and
positive at b it must be 0 at some point between a and b.

– The extreme value theorem: a continuous function f defined on a closed interval
[a, b] is bounded, and there are numbers c, d such that f(c) = max{f(x) : x ∈ [a, b]}
and f(d) = min{f(x) : x ∈ [a, b]} (i.e., not only is f bounded, but it reaches its
bounds).

– The mean value theorem: if f : [a, b] → R is differentiable (and so, necessarily,

continuous) then there is some c ∈ (a, b) with f ′(c) = f(b)−f(a)
b−a

(i.e., the average
slope is matched at some point by the exact slope).

• The meaning of first and second derivates, in terms of local maxima and minima of
functions.

• The idea of approximating am integral via a Riemann sum, and recognizing a sum as a
Riemann sum — sometimes a complicated sum becomes very easy to understand if you
realize that it is a Riemann sum for some integral.

• The fundamental theorem of calculus, which has two distinct parts:

– if new function g is defined from old continuous function f by g(x) =
∫ x

a
f(t)dt

(some fixed a), then g is differentiable, and g′(x) = f(x), and

– if for some continuous f , the function g has the property that g′(x) = f(x) (i.e., g

is an antiderivative of f) then
∫ b

a
f(x)dx = g(b)− g(a).

• Taylor’s theorem, with remainder term: suppose f is infinitely differentiable at and near
a. Then

f(x) ≈ f(a) + (x− a)f ′(a) + (x− a)2
f ′′(a)

2!
+ · · ·+ (x− a)n

f (n)(a)

n!
.

More precisely, there is some number c between a and x for which

f(x) = f(a)+ (x−a)f ′(a)+ (x−a)2
f ′′(a)

2!
+ · · ·+(x−a)n

f (n)(a)

n!
+ (x−a)n+1f

(n+1)(c)

(n+ 1)!
.
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• All the basic integrals, and all the basic integration techniques — integration by parts,
u-substitutions, trigonometric substitutions, et cetera.

Paraphrasing my colleague Andrei Jorza: “you will rarely need any new calculus technique
that you haven’t seen before; the difficulty is to patch together all the things you know to
obtain a solution. While cleverness will take you a long way in problem solving calculus, this
is no place for being squeamish about algebraic manipulations.”

The book Putnam and Beyond (available online) has a huge number of Putnam-style cal-
culus problems. You’ll also find a fair number at https://www3.nd.edu/~ajorza/courses/
2018f-m43900/handouts/lecture3.pdf (Andrei Jorza’s 43900 page from Fall 2018). Many
of this week’s problems come from that list.
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6.1 Week five problems

1. Find, with explanation, the maximum value of f(x) = x3 − 3x on the set of all real
numbers satisfying x4 + 36 ≤ 13x2.

2. Suppose f : R → R is a continuous function satisfying |f(x) − f(y)| ≥ |x − y| for all
x, y. Show that f is both injective and surjective.

3. Given 0 < α < β, find

lim
λ→0

(∫ 1

0

(βx+ α(1− x))λdx

)1/λ

.

4. Curves A,B,C,D are defined in the plane as follows:

A =

{
(x, y) : x2 − y2 =

x

x2 + y2

}
B =

{
(x, y) : 2xy +

y

x2 + y2
= 3

}
C =

{
(x, y) : x3 − 3xy2 + 3y = 1

}
D =

{
(x, y) : 3x2y − 3x− y3 = 0

}
.

Prove that A ∩B = C ∩D.

5. Compute ∫
x+ sinx− cosx− 1

x+ ex + sinx
dx.

6. Let f : R → R be a continuous function. Define g(x) = f(x)
∫ x

0
f(t)dt. Show that if g

is non-increasing then f must be the identically 0 function.

7. Compute ∫ π/2

0

dx

1 + tan
√
2(x)

.

8. Let A and B be points on the same branch of the hyperbola xy = 1. Let P be a point on
the chord AB such that the triangle APB has largest area. Show that the area bounded
by the hyperbola and the chord AP is the same as the area bounded by the hyperbola
and the chord BP .

9. Compute

lim
n→∞

(
1√

4n2 − 12
+

1√
4n2 − 22

+ · · ·+ 1√
4n2 − n2

)
.

10. Let f : [0, 1] → R be a continuous function. Show that for every x ∈ [0, 1], the series

∞∑
n=1

f(xn)

2n

converges.
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6.2 Week five solutions

1. Find, with explanation, the maximum value of f(x) = x3 − 3x on the set of all real
numbers satisfying x4 + 36 ≤ 13x2.

Solution: This was from the 1986 Putnam competition, question A1.

The answer is 18.

x4+36 ≤ 13x2 is equivalent to x4−13x2+36 ≤ 0, which is equivalent to (x2−4)(x2−9) ≤
0, which is equivalent to 4 ≤ x2 ≤ 9, which is equivalent to

−3 ≤ x ≤ −2 and 2 ≤ x ≤ 3.

Now f(x) = x3−3x is a continuous function with critical points (points of zero derivative)
at 3x2 − 3 = 0, or x = ±1. Neither of these are in the range of interest, so to find the
maximum on the range of interest, we need only evaluate f(x) at x = −3,−2, 2 and 3.
It’s an easy check that f(3) = 18 and this is the largest value among f(−3), f(−2), f(2)
and f(3).

2. Suppose f : R → R is a continuous function satisfying |f(x) − f(y)| ≥ |x − y| for all
x, y. Show that f is both injective and surjective.

Solution: This is from Putnam and beyond by Gelca and Andreescu.

Injectivity: Suppose that x ̸= y. Then it must be the case that f(x) ̸= f(y); for if not,
then 0 = |f(x)− f(y)| ≥ |x− y| > 0, a contradiction.

Surjectivity: For any y > 0, we have |f(0)− f(y)| ≥ y, so

either f(y) ≥ f(0) + y or f(y) ≤ f(0)− y,

and similarly we have |f(0)− f(−y)| ≥ y, so

either f(−y) ≥ f(0) + y or f(−y) ≤ f(0)− y.

Suppose we have f(y) ≥ f(0)+y and f(−y) ≥ f(0)+y. By intermediate value theorem,
somewhere in (0, y) f takes on the value f(0) + y/2, and somewhere in (−y, 0) it also
takes on the value f(0)+y/2. This contradicts injectivity. We get a similar contradiction
if f(y) ≤ f(0)− y and f(−y) ≤ f(0)− y.

So either
f(y) ≥ f(0) + y and f(−y) ≤ f(0)− y,

or
f(y) ≤ f(0)− y and f(−y) ≥ f(0) + y.

In either case, by intermediate value theorem f takes on all values in the interval [f(0)−
y, f(0) + y] (and in particular takes them on as the argument runs between −y and y).
Since f(0)+y can be made arbitrarily large, and f(0)−y arbitrarily small, by appropriate
choice of y > 0, we conclude that f takes on all real values.
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3. Given 0 < α < β, find

lim
λ→0

(∫ 1

0

(βx+ α(1− x))λdx

)1/λ

.

Solution: This was problem B2 of the 1979 Putnam competition.

Solution due to John Scholes: Making the substitution t = βx + α(1 − x), so dt =
(β − α)dx, the integral becomes

1

β − α

∫ β

α

tλ dt =

(
1

1 + λ

)(
βλ+1 − αλ+1

β − α

)
.

So we need to compute

lim
λ→0

((
1

1 + λ

)(
βλ+1 − αλ+1

β − α

))1/λ

Now

lim
λ→0+

1

(1 + λ)1/λ
= lim

k→∞

1(
1 + 1

k

)k =
1

e
,

and

lim
λ→0−

1

(1 + λ)1/λ
= lim

k→−∞

1(
1 + 1

k

)k = lim
ℓ→+∞

(
1− 1

ℓ

)ℓ

=
1

e
,

so

lim
λ→0

1

(1 + λ)1/λ
=

1

e
.

For the the other part of the limit, write

(
βλ+1 − αλ+1

β − α

)1/λ

= e
log

(
βλ+1−αλ+1

β−α

)
λ .

The exponent is an indeterminate of the form 0/0 at λ = 0, so we evaluate the limit of
the exponent as λ → 0 by an application of L’Hôpital’s rule; it is

lim
λ→0

((
β − α

βλ+1 − αλ+1

)(
(λ+ 1)βλ − (λ+ 1)αλ

β − α

))
=

1

β − α
.

So by continuity,

lim
λ→0

(
βλ+1 − αλ+1

β − α

)1/λ

= e1/(β−α).

It follows that

lim
λ→0

(∫ 1

0

(βx+ α(1− x))λdx

)1/λ

= (1/e)e1/(β−α).
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4. Curves A,B,C,D are defined in the plane as follows:

A =

{
(x, y) : x2 − y2 =

x

x2 + y2

}
B =

{
(x, y) : 2xy +

y

x2 + y2
= 3

}
C =

{
(x, y) : x3 − 3xy2 + 3y = 1

}
D =

{
(x, y) : 3x2y − 3x− y3 = 0

}
.

Prove that A ∩B = C ∩D.

Solution: This was problem A1 on the 1987 Putnam competition.

Solution by John Scholes: Plotting the curves and actually identifying the points of
intersection seems hopeless! It’s necessary to manipulate the equations so that whenever
the first two are simultaneously satisfied, the last two are, and vice-versa.

Write the equations as:

1 x2 − y2 = x
x2+y2

2 2xy − 3 = − y
x2+y2

3 x3 − 3xy2 + 3y = 1 and

4 3yx2 − 3x− y3 = 0.

Then it is easily checked that x1 − y2 gives 3, and y1 + x2 gives 4, so definitely it is
the case that A ∩B ⊆ C ∩D.

Similarly, (x3+ y4)/(x2 + y2) gives 1 and (−y3+ x4)/(x2 + y2) gives 2, so anything in
C ∩ D is also in A ∩ B, except possibly (0, 0). But it is easily checked that (0, 0) does
not satisfy 4, so is not in C ∩D.

We conclude that A ∩B = C ∩D.

Note (given in the official Putnam solutions): Consider the equations in the complex
plane by z2 = 3i+ 1/z and z3 = 3iz + 1. The complex z = 0 is not a solution to either
equation (it doesn’t satisfy the second, and makes no sense for the first). So, dividing
the second equation by z, we see that the two equations are defining the same three
numbers x+ iy in the complex plane (three numbers — solutions to a cubic). But if we
substitute in z = x + iy, expand, and equate real parts with real parts and imaginary
parts with imaginary parts, we find that the solution set to the first equation is exactly
A ∩ B, and the solution set to the second equation is exactly C ∩D. This gives a hint
as to how the problem was constructed!

5. Compute ∫
x+ sinx− cosx− 1

x+ ex + sinx
dx.

Solution: This was from Putnam and Beyond by Gelca and Andreescu.
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We have ∫
x+ sinx− cosx− 1

x+ ex + sinx
dx =

∫
x+ ex + sinx− cosx− ex − 1

x+ ex + sinx
dx

=

∫ (
1−

(
1 + ex + cosx

x+ ex + sinx

))
dx

= x−
∫ (

1 + ex + cosx

x+ ex + sinx

)
dx

= x−
∫

du

u
where u = x+ ex + sinx

= x− log |u|
= x− log |x+ ex + sinx|.

6. Let f : R → R be a continuous function. Define g(x) = f(x)
∫ x

0
f(t)dt. Show that if g

is non-increasing then f must be the identically 0 function.

Solution: This was from the book Putnam and Beyond by Gelca and Andreescu.

Define h : R → R by

h(x) =
1

2

(∫ x

0

f(t)dt

)2

.

Notice that, by the fundamental theorem of calculus, h is differentiable and

h′(x) = g(x).

Now g(x) is non-increasing and g(0) = 0, so g(x) is non-negative on (−∞, 0) and non-
positive on (0,∞). But g = h′, so this implies that h is non-decreasing on (−∞, 0), and
non-increasing on (0,∞). And h(0) = 0, while h(x) ≥ 0 for all x, so it must be the case
that h(x) = 0 for all x. This tells us that∫ x

0

f(t)dt = 0

for all real x; and differentiating with respect to x tells us that f(x) = 0 for all x.

7. Compute ∫ π/2

0

dx

1 + tan
√
2(x)

.

Solution: This was problem A3 of the Putnam Competition from 1980.

Solution due to John Scholes: The integral evaluates to π/4.

For any positive real α, set fα(x) = 1/(1 + tanα x). We have

fα(π/2− x) =
1

1 + tanα(π/2− x)
=

1

1 + cotα x
=

tanα x

1 + tanα x
= 1− fα(x).
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So ∫ π/2

0

fα(x) dx =

∫ π/4

0

fα(x) dx+

∫ π/2

π/4

fα(x) dx

= (⋆)

∫ π/4

0

fα(x) dx+

∫ π/4

0

fα(π/2− x) dx

=

∫ π/4

0

fα(x) dx+

∫ π/4

0

(1− fα(x)) dx

=

∫ π/4

0

1 dx

=
π

4
.

In particular, when α =
√
2 the result is π/2.

Explanation of (⋆): we calculate ∫ π/4

0

fα(π/2− x) dx

by making the substitution u = π/2 − x. We have du = −dx, so dx = −du; at x = 0,
u = π/2; at x = π/4, u = π/4; and the integrand fα(π/2− x) becomes fα(u). So:∫ π/4

0

fα(π/2− x) dx = −
∫ π/4

π/2

fα(u) du =

∫ π/2

π/4

fα(u) du =

∫ π/2

π/4

fα(x) dx.

Note that the
√
2 was a complete red herring(!), just introduced to make sure that the

integrand does not have an elementary antiderivative.

8. Let A and B be points on the same branch of the hyperbola xy = 1. Let P be a point on
the chord AB such that the triangle APB has largest area. Show that the area bounded
by the hyperbola and the chord AP is the same as the area bounded by the hyperbola
and the chord BP .

Solution: This was problem A1 on the 2015 Putnam.

Solution by Kiran Kedlaya: Without loss of generality, assume that A and B lie in the
first quadrant with A = (t1, 1/t1), B = (t2, 1/t2), and t1 < t2. If P = (t, 1/t) with
t1 ≤ t ≤ t2, then the area of triangle APB is

1

2

∣∣∣∣∣∣
1 1 1
t1 t t2
1/t1 1/t 1/t2

∣∣∣∣∣∣ = t2 − t1
2t1t2

(t1 + t2 − t− t1t2/t).

When t1, t2 are fixed, this is maximized when t+ t1t2/t is minimized, which by AM-GM
exactly holds when t =

√
t1t2.
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The line AP is given by y = t1+t−x
tt1

, and so the area of the region bounded by the
hyperbola and AP is∫ t

t1

(
t1 + t− x

tt1
− 1

x

)
dx =

t

2t1
− t1

2t
− log

(
t

t1

)
,

which at t =
√
t1t2 is equal to t2−t1

2
√
t1t2

− log(
√

t2/t1). Similarly, the area of the region

bounded by the hyperbola and PB is t2
2t

− t
2t2

− log t2
t
, which at t =

√
t1t2 is also

t2−t1
2
√
t1t2

− log(
√

t2/t1), as desired.

Second solution: For any λ > 0, the map (x, y) 7→ (λx, λ−1y) preserves both areas
and the hyperbola xy = 1. We may thus rescale the picture so that A,B are symmetric
across the line y = x, with A above the line. As P moves from A to B, the area of
APB increases until P passes through the point (1, 1), then decreases. Consequently,
P = (1, 1) achieves the maximum area, and the desired equality is obvious by symmetry.
Alternatively, since the hyperbola is convex, the maximum is uniquely achieved at the
point where the tangent line is parallel to AB, and by symmetry that point is P .

9. Compute

lim
n→∞

(
1√

4n2 − 12
+

1√
4n2 − 22

+ · · ·+ 1√
4n2 − n2

)
.

Solution: This was from Putnam and Beyond by Gelca and Andreescu.

The limit is π/6. We have

n∑
k=1

1√
4n2 − k2

=
n∑

k=1

1

n
√
4− (k/n)2

=
n∑

k=1

1

n

1√
4− (k/n)2

.

This is a Riemann sum, specifically for the function f(x) = 1/
√
4− x2, on the interval

[0, 1], with n partitions each of length 1/n, and evaluating at the right-hand end of each
interval. Since f is integrable on [0, 1], and indeed∫ 1

0

dx√
4− x2

=
π

6
,

we get that the limit is π/6.

10. Let f : [0, 1] → R be a continuous function. Show that for every x ∈ [0, 1], the series

∞∑
n=1

f(xn)

2n

converges.

Solution: I found this on Andrei Jorza’s Putnam prep class page.
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Since f is a continuous function on a bounded closed interval, there is M > 0 such that
f |(x)| ≤ M for all x ∈ [0, 1]. So

∞∑
n=1

|f(xn)|
2n

(a sum of positive terms) converges — the partial sums form an increasing sequence,
bounded above by

∞∑
n=1

M

2n
= 2M.

So, for all x,
∑∞

n=1
f(xn)
2n

is absolutely convergent, and so convergent.
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7 Week six (October 1) — Modular arithmetic and the

greatest common divisor

Modular arithmetic is something that everyone (not just mathematicians), are familiar with
from a very early age, though maybe not in a formal way. For example, whenever you observe
something like “it is 11 o’clock now, so in three hours time it will two o’clock”, you are
performing addition modulo 12, saying “11+3 = 2”. In this section we will formalize modular
arithmetic, and present numerous properties and applications that highlight its usefulness.

Modular arithmetic

For integers a and b, and positive integer k, say that a is congruent to b (modulo k), written
“a ≡ b (mod k)”, if a and b leave the same remainder on division by k, or equivalently if a−b is
a multiple of k, or equivalently if a−b = mk for some integer m. Congruence (modulo k) is an
equivalence relation on the integers, that partitions Z into k classes, called residue classes. For
example, when k = 3 the three classes are {. . . ,−6,−3, 0, 3, 6, . . .}, {. . . ,−5,−2, 1, 4, 7, . . .}
and {. . . ,−4,−1, 2, 5, 8, . . .}.

Many of the standard arithmetic operations go through unchanged to modular arithmetic.
For example, it is easy to establish that if

a ≡ b (mod k) and c ≡ d (mod k)

then each of

a+ c ≡ b+ d (mod k)

a− c ≡ b− d (mod k)

ac ≡ bd (mod k)

hold. Repeated application of this last relation also quickly gives that for all positive numbers
n,

an ≡ bn (mod k).

Modular arithmetic can be a great time-saver when working with problems concerning
divisibility. We give a quick and useful example.

Claim: The remainder of any integer, on division by 9, is the same as the remainder of the
sum of its digits on division by 9.

Proof: Write the number in decimal form as
∑n

i=0 ai10
i (with each ai ∈ {0, . . . , 9}). Since

10 ≡ 1 (mod 9), we immediately have 10i ≡ 1i ≡ 1 (mod 9), and so ai10
i ≡ ai (mod 9), and

so
∑n

i=0 ai10
i ≡

∑n
i=0 ai(mod 9), which is exactly what we wanted to show.

Here are three more quick examples illustrating how modular arithmetic can make life
easy:

Question: What are the last two digits of 372?
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Answer: We are being asked: what number x between 0 and 99 is such that 372 ≡ x (mod 100)?
By repeated squaring we have

3 ≡ 3 (mod 100)

32 ≡ 32 ≡ 9 (mod 100)

34 ≡ 92 ≡ 81 (mod 100)

38 ≡ 812 ≡ 6561 ≡ 61 (mod 100)

316 ≡ 612 ≡ 3721 ≡ 21 (mod 100)

332 ≡ 212 ≡ 441 ≡ 41 (mod 100)

364 ≡ 412 ≡ 1681 ≡ 81 (mod 100)

and so
372 ≡ 36438 ≡ 81 · 61 ≡ 4941 ≡ 41 (mod 100),

so the last two digits of 372 are 41.

Problem: Prove that 270 + 370 is divisible by 13.

Solution: We could use the same technique as above to discover that 270 ≡ 10 (mod 13) and
370 ≡ 3 (mod 13) so that 270 + 370 ≡ 10 + 3 ≡ 0 (mod 13). But there is a much easier way:
22 ≡ −32 (mod 13), so 270 ≡ (−1)35370 ≡ −370 (mod 13), so 270 + 370 ≡ 0 (mod 13).

Problem: Find all integers x, y satisfying x2 − 5y2 = 6.

Solution: Some experimentation shows that no small numbers x and y work. We might
suspect, then, that the equation has no integer solutions. One way to verify this is to work
modulo 4. If there was an x and y with x2 − 5y2 = 6, then for that x and y we would have
x2 − 5y2 ≡ 6 (mod 4).

If x ≡ 0, 1, 2, 3 (mod 4) then x2 ≡ 0, 1, 0, 1 (mod 4), and if y ≡ 0, 1, 2, 3 (mod 4) then
5y2 ≡ 0, 1, 0, 1 (mod 4). So, modulo 4, x2 − 5y2 is equivalent to one of −1, 0, 1, or one of
0, 1, 3, and so we cannot have x2 − 5y2 ≡ 6 (mod 4).

Hence the equation indeed has no solutions.

The greatest common divisor

Closely related to modular arithmetic is the greatest common divisor function in number
theory. Here is a brief introduction to some ideas around the greatest common divisor.

1. Divisibility: For integers a, b, a|b (a divides b) if there is an integer k with ak = b.

For positive integers a and b, the greatest common divisor of a, b, gcd(a, b) (sometimes
just written (a, b)) is the largest positive number that is a divisor of both a and b (this
exists, since 1 is a common divisor, and all common divisors are at most the minimum
of a and b). This means that if d = gcd(a, b), and e is any positive number with e|a and
e|b, then e ≤ d; but in fact it turns out that moreover e|d. This very useful fact follows
easily from looking at the prime factorizations of a and b, see below.

The least common multiple of a, b, lcm(a, b) is the smallest positive number f such that
a|f and and b|f ; for any positive number g with a|g and b|g we have f ≤ g; but in fact,
as with gcd, it turns out that we even have f |g in this case.
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If gcd(a, b) = 1 (so no factors in common other that 1) then a and b are said to be
coprime or relatively prime.

2. Primes: If p > 1 only has 1 and p as divisors, it is said to be prime; otherwise it is
composite.

The fundamental fact about prime numbers (other that there are infinitely many of
them!) is that every number n > 1 has a prime factorization:

n = pa11 . . . pakk

with each pi a prime, and each ai > 0. Moreover, the factorization is unique if we assume
that p1 < . . . < pk.

The prime factorization gives one way (not the most computationally efficient way) of
accessing gcd(a, b) and lcm(a, b). Indeed, if

a = pa11 . . . pakk and b = pb11 . . . pbkk

(with some of the ai and bi possibly 0), then

gcd(a, b) = p
min(a1,b1)
1 . . . p

min(ak,bk)
k and lcm(a, b) = p

max(a1,b1)
1 . . . p

max(ak,bk)
k .

Using min(x, y) + max(x, y) = x+ y, we get the nice identity

ab = gcd(a, b)lcm(a, b).

Since any common divisor of a and b must be of the form
∏k

i=1 p
γi
i for some γi’s satisfying

γi ≤ min(a1, b1), we quickly get the fact, alluded to earlier, that if d = gcd(a, b) and e is
a common divisor of a and b, then not only do we we have e ≤ d but also e|d.

3. Euclidean algorithm: Euclid described a simple way to compute gcd(a, b). Assume
a > b. Write

a = kb+ j

where 0 ≤ j < b. If j = 0, then gcd(a, b) = b. If j > 0, then it is fairly easy to check that
gcd(a, b) = gcd(b, j). Repeat the process with the smaller pair b, j, and keep repeating
as long as necessary. For example, suppose I want gcd(63, 36):

63 = 1.36 + 27

36 = 1.27 + 9

27 = 3.9.

We conclude 9 = gcd(27, 9) = gcd(36, 27) = gcd(63, 36).

4. Bézout’s Theorem: Given a, b, there are integers x, y such that ax + by = gcd(a, b).
Moreover, the set of numbers that can be expressed in the form ax′+by′ = c for integers
x′, y′ is exactly the set of multiples of gcd(a, b).
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The proof comes from working the Euclidean algorithm backwards. I’ll just do an
example, with the pair 63, 36. We have

9 = 36− 1.27

= 36− 1(63− 1.36)

= −1.63 + 2.36

so we can take x = −1 and y = 2.

Once we have found an x and y, the rest is easy. Suppose c = kgcd(a, b) is a multiple
of gcd(a, b); then (kx)a + (ky)b = cgcd(a, b). On the other hand, if ax′ + by′ = c then
since gcd(a, b)|a and gcd(a, b)| we have gcd(a, b)|c, so c is a multiple of gcd(a, b).

The most common form of Bézout’s Theorem is that if (a, b) = 1 then every integer
k can be written as a linear combination of a and b; in particular there is x, y with
ax+ by = 1.

In the language of modular arithmetic, this says that if (a, k) = 1, then there is a number
x such that ax ≡ 1 (mod k). We may think of x as an inverse of a (modulo k); this is a
starting point for thinking about division in modular arithmetic.

5. Useful facts/theorems concerning modular arithmetic:

(a) Inverses (repeating a previous observation): If p is a prime, and a ̸≡ 0 (mod p),
then there is a whole number b such that ab ≡ 1 (mod p); more generally if a and
k are coprime then there is a whole number b such that ab ≡ 1 (mod k).

(b) Fermat’s theorem: If p is a prime, and a ̸≡ 0 (mod p), then ap−1 ≡ 1 (mod p).

More generally, for arbitrary m (prime or composite) define φ(m) to be the number
of numbers in the range 1 through m that are coprime with m. If (a,m) = 1 then
aφ(m) ≡ 1 (mod m). (When m = p this reduces to Fermat’s Theorem.)

We refer to φ as Euler’s totient function. A quick way to calculate its value: if m
has prime factorization m = pa11 . . . pakk , then

φ(m) = m
k∏

i=1

(
1− 1

pi

)
.

(c) Chinese Remainder Theorem: Suppose n1, n2, . . . , nk are pairwise relatively
prime. If a1, a2, . . . , ak are any integers, there is a number x that simultaneously
satisfies x ≡ ak (mod nk). Moreover, modulo n1n2 . . . nk, this solution is unique.
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7.1 Week six problems

1. Prove that the product of three consecutive integers is divisible by 504 if the middle one
is a perfect cube.

2. Find all integers n such that (2n + n)|(8n + n).

3. Compute the sum of the digits of the sum of the digits of the sum of the digits of the
number 44444444.

4. Prove that the expression
gcd(m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

5. Let a ≥ b ≥ 0 be integers and let p be a prime number. Show that
(
pa
pb

)
and

(
a
b

)
are

congruent modulo p.

6. Several positive integers are written on a chalk board. One can choose two of them,
erase them, and replace them with their greatest common divisor and least common
multiple. Prove that eventually the numbers on the board do not change.

7. Is it possible to place 2019 integers on a circle such that for every pair of adjacent
numbers the ratio of the larger one to the smaller one is a prime?

8. How many primes numbers have the following (decimal) form: digits alternating between
1’s and 0’s, beginning and ending with 1?

9. Define a sequence recursively by: u1 = 1, u2 = 2, u3 = 24 and

un =
6u2

n−1un−3 − 8un−1u
2
n−2

un−2un−3

.

(a) Solve for un, and show that un is always an integer.

(b) Show moreover that un is always a multiple of n.
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7.2 Week six solutions

1. Prove that the product of three consecutive integers is divisible by 504 if the middle one
is a perfect cube.

Solution: I found this problem on the Putnam prep page at Kenyon College.

Let the middle integer be m3 where m is an integer. Then the product of the three
integers is

(m3 − 1)m3(m3 + 1) = (m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1).

The prime factorization of 504 is 504 = 23 × 32 × 7.

We first show that 7|(m−1)(m2+m+1)m3(m+1)(m2−m+1) by looking at m modulo
7.

• If m ≡ 0 (modulo 7) then clearly 7|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1).

• If m ≡ 1 (modulo 7) then m−1 ≡ 0 (modulo 7) and 7|(m−1)(m2+m+1)m3(m+
1)(m2 −m+ 1).

• If m ≡ 2 (modulo 7) then m2 + m + 1 ≡ 0 (modulo 7) and 7|(m − 1)(m2 + m +
1)m3(m+ 1)(m2 −m+ 1).

• If m ≡ 3 (modulo 7) then m2 − m + 1 ≡ 0 (modulo 7) and 7|(m − 1)(m2 + m +
1)m3(m+ 1)(m2 −m+ 1).

• If m ≡ 4 (modulo 7) then m2 + m + 1 ≡ 0 (modulo 7) and 7|(m − 1)(m2 + m +
1)m3(m+ 1)(m2 −m+ 1).

• If m ≡ 5 (modulo 7) then m2 − m + 1 ≡ 0 (modulo 7) and 7|(m − 1)(m2 + m +
1)m3(m+ 1)(m2 −m+ 1).

• If m ≡ 6 (modulo 7) then m+1 ≡ 0 (modulo 7) and 7|(m−1)(m2+m+1)m3(m+
1)(m2 −m+ 1).

Next we show that 32|(m − 1)(m2 + m + 1)m3(m + 1)(m2 − m + 1) by looking at m
modulo 3.

• If m ≡ 0 (modulo 3) then 32|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1) because
of the m3 factor.

• If m ≡ 1 (modulo 3) then m− 1 ≡ 0 (modulo 3) and m2 +m+ 1 ≡ 0 (modulo 3),
so 32|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1).

• If m ≡ 2 (modulo 3) then m+ 1 ≡ 0 (modulo 3) and m2 −m+ 1 ≡ 0 (modulo 3),
so 7|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1).

Finally we show that 23|(m− 1)(m2 +m + 1)m3(m + 1)(m2 −m + 1) by looking at m
modulo 2, and modulo 4.

• If m ≡ 0 (modulo 2) then 23|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1) because
of the m3 factor.
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• If m ≡ 1 (modulo 2) and m ≡ 1 (modulo 4) then m − 1 ≡ 0 (modulo 4) and
m+ 1 ≡ 0 (modulo 2), so 23|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1).

• If m ≡ 1 (modulo 2) and m ≡ 3 (modulo 4) then m − 1 ≡ 0 (modulo 2) and
m+ 1 ≡ 0 (modulo 4), so 23|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1).

We conclude that 23327|(m− 1)(m2 +m+ 1)m3(m+ 1)(m2 −m+ 1), as required.

2. Find all integers n such that (2n + n)|(8n + n).

Solution: This was on a Putnam prep page from Northwestern.

The solutions are n = 0, 1, 2, 4 and 6.

We may assume n ≥ 0: note that for n ≤ −1, neither 2n + n nor 8n + n are integers;
and also 2n+n and 8n+n are both positive, with 2n+n > 8n+n, so even with a broad
interpretation of “divides”, no integer below 0 will work.

We have 8n + n = 2n4n + n = (2n + n)4n − n4n + n, so if 2n + n divides 8n + n, then

(2n + n)|(n4n − n).

We have n4n − n = n2n2n − n = (2n + n)n2n − n22n − n, so if 2n + n divides n4n − n,
then

(2n + n)|(n22n + n).

We have n22n + n = (2n + n)n2 − n3 + n, so if 2n + n divides n22n + n, then

(2n + n)|(n3 − n).

It is an easy (but slightly tedious, so omitted) induction that for n ≥ 10, 2n+n > n3−n,
so we conclude that if 2n + n divides 8n + n, then n ≤ 9.

It is another tedious but easy check that n = 0, 1, 2, 4 and 6 all lead to integers, but not
any other n ≤ 9.

3. Compute the sum of the digits of the sum of the digits of the sum of the digits of the
number 44444444.

Solution: International Mathematical Olympiad 1975, problem 4. Appropriately enough,
if you had gotten this question fully correct at the IMO, you would have scored 7 points!

The answer is 7.

We start with
44444444 < 1000010000 = 1040000.

Among all numbers below 1040000, none has a larger sum of digits than 1040000 − 1 (a
string of 40000 9’s). So the sum of the digits of 44444444 is at most 9×40000 < 1000000.
Among all numbers below 1000000, none has a larger sum of digits than 999999. So the
sum of the digits of the sum of the digits of 44444444 is at most 54. Among all numbers
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at most 54, none has a larger sum of digits than 49. So the sum of the digits of the sum
of the digits of the sum of the digits of 44444444 is at most 13.

Now we use a useful fact: the remainder of a number, on division by 9, is the same as
the remainder of the sum of the digits on division by 9. . This fact implies that the sum
of the digits of the sum of the digits of the sum of the digits of 44444444 leaves the same
remainder on division by 9 as 44444444 itself does.

To calculate the remainder of 44444444 on division by 9, we can use a repeated multipli-
cation trick. It’s easy that

4444 ≡ 7 (mod 9)

and so

44442 ≡ 49 ≡ 4 (mod 9)

44444 ≡ 16 ≡ 7 (mod 9)

44448 ≡ 49 ≡ 4 (mod 9)

444416 ≡ 16 ≡ 7 (mod 9)

444432 ≡ 49 ≡ 4 (mod 9)

444464 ≡ 16 ≡ 7 (mod 9)

4444128 ≡ 49 ≡ 4 (mod 9)

4444256 ≡ 16 ≡ 7 (mod 9)

4444512 ≡ 49 ≡ 4 (mod 9)

44441024 ≡ 16 ≡ 7 (mod 9)

44442048 ≡ 49 ≡ 4 (mod 9)

44444096 ≡ 16 ≡ 7 (mod 9).

It follows that

44444444 = 4444409644442564444644444164444844444 ≡ 7.7.7.7.4.7 ≡ 7 (mod 9).

So 44444444 leaves a remainder of 7 on division by 9, and also the sum of the digits of the
sum of the digits of the sum of the digits of 44444444 leaves a remainder of 7 on division
by 9; but we’ve calculated that this last is at most 13. The only number at most 13 that
leaves a remainder of 7 on division by 9 is 7 it self; so the sum of the digits of the sum
of the digits of the sum of the digits of 44444444 must be 7.

4. Prove that the expression
gcd(m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1.

Solution: This was from the 2000 Putnam competition, problem B2.

We know that gcd(m,n) = am+ bn for some integers a, b; but then

gcd(m,n)

n

(
n

m

)
= a

(
m

n

(
n

m

))
+ b

(
n

n

(
n

m

))
.
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Since (
n

m

)
=

n

m

(
n− 1

m− 1

)
(the “committee-chair” identity, or easy algebra), we get

gcd(m,n)

n

(
n

m

)
= a

(
n− 1

m− 1

)
+ b

(
n

m

)
,

and so (since a, b,
(
n−1
m−1

)
and

(
n
m

)
are all integers) we get the desired result.

5. Let a ≥ b ≥ 0 be integers and let p be a prime number. Show that
(
pa
pb

)
and

(
a
b

)
are

congruent modulo p.

Solution: This was from the 1977 Putnam competition, Problem A5.

Solution from John Scholes. Denote by f(n) the highest power of p dividing n (so,
e.g., f(2358p7) = p7, if p ̸= 2, 5). The multiples of p in (pa)! are pa, p(a − 1), . . ., 2p,
and p. Hence f((pa)!) = paf(a!). Similarly, f((pb)!) = pbf(b!) and f((p(a − b))!) =
pa−bf((a− b)!). Hence

f

((
a

b

))
= f

((
pa

pb

))
.

This says that
(
pa
pb

)
−
(
a
b

)
can be expressed as xpy where x and y are non-negative integers,

and x is not divisible by p. If y > 0, this gives the result.

I’m not sure what happens for this line of attack if y = 0.

Here is the solution as posted in the American Mathematical Monthly shortly after the
1977 competition:

6. Several positive integers are written on a chalk board. One can choose two of them,
erase them, and replace them with their greatest common divisor and least common
multiple. Prove that eventually the numbers on the board do not change.

Soution: I found this problem on a Stanford Putnam prep class page.
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Here’s a very quick, slick solution shown to me by Do Trong Thanh: If you pick two
numbers a, b with a|b or b|a, then since gcd(a, b) = min{a, b} and lcm(a, b) = max{a, b}
in this case, the numbers do not change. In general gcd(a, b)|lcm(a, b), so if it is not the
case that a|b or b|a, then after the swap it is the case for that particular pair. Initially
there are only finitely many pairs (a, b) with a ̸ |b and b ̸ |a; either eventually we replace
all these pairs with pairs of which one divides to other (in which case we are done), or
we eventually commit to avoiding all remaining such pairs (in which case we are done).

Here’s my laborious solution: When we take a pair of numbers (a, b), and replace them
with (gcd(a, b), lcm(a, b)), we preserve something, namely the product of the pair of
numbers (that ab = gcd(a, b)lcm(a, b) is easily seen from the prime factorization of a
and b: if

a =
n∏

i=1

paii , b =
n∏

i=1

pbii

(with maybe some of the ai, bi zero) then

ab =
n∏

i=1

pai+bi
i ,

gcd(a, b) =
n∏

i=1

p
min{ai,bi}
i , lcm(a, b) =

n∏
i=1

p
max{ai,bi}
i ,

so

gcd(a, b)lcm(a, b) =
n∏

i=1

p
min{ai,bi}+max{ai,bi}
i .

Thus ab = gcd(a, b)lcm(a, b) follows from x + y = min{x, y} +max{x, y}, valid for any
positive integers x, y.)

For any fixed positive number, there are only finitely many ways to write it as the
product of a fixed number of positive numbers (if the target of the product is N , and
we are using d numbers, then each of the d numbers must be a divisor of N , so the
number of ways of writing N as a product of d terms is at most a(N)d, where a(N) is
the number of divisors of N). This shows that there are only finitely many possibilities
for the numbers written on the board.

Consider the sum of the numbers. How does this change with the swap operation? It
depends on how a+ b compares to gcd(a, b) + lcm(a, b). Experimentation suggests that
gcd(a, b) + lcm(a, b) ≥ a + b, with equality iff the pair (a, b) coincides (in some order)
with the pair (lcm(a, b), gcd(a, b)). To prove this, first consider a = b, for which the
result is trivial. For all other cases, assume without loss of generality that a > b. We
have

lcm(a, b) ≥ a > b ≥ gcd(a, b).

If any one of a = lcm(a, b), b = gcd(a, b) holds then by the conservation of product the
other must too, and the result we are trying to prove is true. So now we may assume

lcm(a, b) > a > b > gcd(a, b),
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and what we want to show is that this implies gcd(a, b) + lcm(a, b) > a + b. Let
n = ab = gcd(a, b)lcm(a, b), so

gcd(a, b) + lcm(a, b) = gcd(a, b) +
n

gcd(a, b)
and a+ b = b+

n

b
.

A little calculus shows that the function f(x) = x + n/x is decreasing on the interval
(0,

√
n]. Since gcd(a, b) < b <

√
n, this shows that

gcd(a, b) +
n

gcd(a, b)
> b+

n

b

which is exactly what we want to show.

So, suppose we have the bunch of numbers in front of us, and we perform the swap
operation infinitely often. All swaps preserve the product. Some swaps also preserve the
sum; these swaps are exactly the swaps that don’t change the set of numbers. All other
swaps increase the sum. We can only increase the sum finitely many times (there are only
finitely many different configurations of numbers). Therefore there must be some point
(curiously, not boundable as a function of the original numbers!) after which we make
no more sum-increasing swaps; from that point on, the numbers remain unchanged.

7. Is it possible to place 2019 integers on a circle such that for every pair of adjacent
numbers the ratio of the larger one to the smaller one is a prime?

Solution: I found this on Andrei Jorza’s webpage, from his 2018 Putnam prep class.

No. We argue by contradiction.

Suppose it were possible. Consider two consecutive numbers on the circle, a and b.
Either b = pa for some prime p, in which case label the arc of the circle between a and
b “p” (and call the arc an UP arc), or a = pb, in which case label the arc “1/p” (and
call it a DOWN arc).

Starting from a particular (arbitrarily chosen) number, A, say, on the circle, the number
one step away clockwise from A is A multiplied by the label on the arc of the circle
between A and that number one step away clockwise. In general, the number k steps
away from A (clockwise) is A multiplied by all the labels encountered along those k arcs.
So the number 2019 steps away from A (clockwise) is A multiplied by all the labels on
the arcs (since 2019 steps takes us all the way around the circle).

But this last number is A itself. So we have an equation:

A = A× product of bunch of primes — the primes on the UP arcs

productofbunchofprimes−−− theprimesontheDOWNarcs

or
product of primes on UP arcs = product of primes on DOWN arcs.

But there are 2019 arcs, and odd number, so one side of the above equation has an
odd number of primes in it, and the other side has an even number, contradicting the
fundamental theorem of arithmetic.

Notice that all we used here was that 2019 is odd.
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8. How many primes numbers have the following (decimal) form: digits alternating between
1’s and 0’s, beginning and ending with 1?

Solution: This was from an NYU Putnam prep class webpage.

The only prime of this form is 101.

The number xn = 1010 . . . 101, with n 0’s, can be written as

1 + 100 + 1000 + 1000000 + . . .+ 1000 . . . 000 = 1 + (100) + (100)2 + . . .+ (100)n,

in other words, xn = Pn(100) where Pn(x) is the polynomial 1 + x+ x2 + . . .+ xn.

We want to know for which n the polynomial Pn(x) is prime for x = 100.

For n = 0, it is not (P0(100) = 1), and for n = 1 it is (P1(100) = 101). So we assume
n ≥ 2.

Since (x− 1)(1 + x+ x2 + . . .+ xn) = (xn+1 − 1), we have

99Pn(100) = 100n+1 − 1 = 102(n+1) − 1 =
(
10n+1

)2 − 1 =
(
10n+1 − 1

) (
10n+1 + 1

)
.

What happens if Pn(100) is prime? It must divide one of 10n+1 − 1, 10n+1 + 1. But, for
n ≥ 2,

Pn(100) = 1 + (100) + (100)2 + . . .+ (100)n > 1 + 102n > 1 + 10n+1,

so Pn(100) is too big to divide either 10n+1 + 1 or 10n+1 − 1. Hence for n ≥ 2, Pn(100)
can’t be prime.

The conclusion is that the only prime of the given form is 101.

9. Define a sequence recursively by: u1 = 1, u2 = 2, u3 = 24 and

un =
6u2

n−1un−3 − 8un−1u
2
n−2

un−2un−3

.

(a) Solve for un, and show that un is always an integer.

(b) Show moreover that un is always a multiple of n.

Solution: This was from the 1999 Putnam competition, problem A6.

Here is a screenshot of a solution by Prof. W. Kahan, UC Berkeley:
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8 Week seven (October 8) — Graphs

A graph G = (V,E) consists of a set V of vertices and a set E of edges, each of which is a
two-element subset of V . Think of the vertices as points put down on a piece of paper, and
of the edges as arcs joining pairs of points. There is no inherent geometry to a graph — all
that matters is which pairs of points are joined, not the exact position of the points, or the
nature of the arcs joining them.

Thinking about the data of a problem as a graph can sometimes be helpful. Although some
Putnam problems in the past have been non-trivial results from graph theory in disguise, there
is no real need to know much graph theory, so in this discussion I’ll just mention some basic
ideas that might be useful. A little more background on graph theory can be found, for
example, at http://www.math.ucsd.edu/~jverstra/putnam-week6.pdf.

Problem: n people go to a party, and each one counts up the number of other people she
knows at the party. Show that there are an even number of people who come up with an
answer that is an odd number. (Assuming that “knowing” is a two-way relation; I know you
if and only if you know me.)

Solution: Model the problem as a graph. V is the set of n party goers, and E consists of
all pairs of people who know each other. For person i, denote by di the number of edges that
involve i (di is the degree of vertex i). We have

n∑
i=1

di = 2|E|

since as we run over all vertices and count degrees, each edge gets counted exactly twice (once
for each vertex in that edge). So the sum of degrees is even. But if there were an odd number
of vertices with odd degree, the sum would be odd; so there are indeed an even number of
people who know an odd number of people.

The useful fact that is true about all graphs that lies at the heart of the solution is this:
in any graph G = (V,E),

n∑
i=1

di = 2|E|.

Problem: Show that two of the people at the party have the same number of friends.

Solution: The possible values for di are 0 through n − 1, n of them, so the pigeon-hole
principle doesn’t immediately apply. But: it’s not possible for there to be one vertex with
degree 0, and another with degree n − 1. So the possible values of di are either 1 through
n − 1, n − 1 of them, or 0 through n − 2, n − 1 of them, and in either case the pigeon-hole
principle gives that there are two people with the same number of friends.

The useful fact that is true about all graphs that lies at the heart of the solution is this:
in any graph G = (V,E), there must be two vertices with the same degree.

A walk in a graph from vertex u to vertex v is list of (not necessarily distinct) edges, with
u in the first, v in the last, and every pair of consecutive edges sharing a vertex in common
— graphically, a walk is a way to trace a path from u to v, always using complete arcs of the
drawing, and never taking pencil of paper.
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Problem: How many different walks are there from u to v, that use k edges?

Solution: Form the adjacency matrix of the graph: rows and columns indexed by vertices,
entry (a, b) is 1 if {a, b} is an edge, and 0 otherwise. Then form the matrix Ak. The (u, v)
entry of this matrix is exactly the number of different walks from u to v, that use k edges.
The proof uses induction of k, and the definition of matrix multiplication. The key point is
that the number of walks from u to v that use k edges is the sum, over all neighbours w of
u (i.e., vertices w such that {u,w} is an edge), of the number of walks from w to v that use
k − 1 edges. I’ll skip the details.

The relation “there is a walk between” is an equivalence relation on vertices, so any graph
can be partitioned into equivalence classes, with each class having the property that between
any two vertices in the class, there is a walk, but there is no walk between any two vertices
in different classes. These classes are called components of the graph. If a graph has just one
component, meaning that between any two vertices in the graph, there is a walk, it is said to
be connected.

Problem: Given a graph G, under what circumstances is it possible to take a walk that uses
every edge of the graph exactly once, and ends up at the same vertex that it started at?

Solution: Such a walk is called an Euler circuit, after the man who first studied them (google
“Bridges of Konigsberg”). Such a circuit is a tracing of the graphical representation of the
graph, with each arc traced out exactly once, the pencil never leaving the paper, ending where
it started. Two fairly obvious necessary conditions for the existence of an Euler circuit are:

• the graph is connected, and

• every degree is even (because each time an Euler circuit visits a vertex, it eats up two
edges — one going in and one coming out).

Euler proved that these necessary conditions are sufficient: a connected graph has an Euler
circuit if and only if all vertex degrees are even. The details are given in any basic graph
theory textbook.

What if we don’t require the tracing to end at the same vertex it began?

Problem: Given a graph G, and two distinct vertices u and v, under what circumstances is
it possible to take a walk from u to v that uses every edge of the graph exactly once?

Solution: Such a walk is called an Euler trail. Euler proved that a connected graph has an
Euler trail from u to v if and only if all vertex degrees are even except the degrees of u and v,
which must be odd. It follows easily from his result on Euler circuits: just add an edge from
u to v, apply the Euler trails theorem, and delete the added edge.

Problem: Given a graph G with n vertices, under what circumstances is it possible to list the
vertices in some order v1, . . . , vn, in such a way that each of {v1, v2}, {v2, v3}, . . ., {vn−1, vn},
{vn, v1} are all edges?

Solution: Such a list is called a Hamiltonian cycle, after the man who first studied them
(google “icosian game”). Unlike with Eulerian trials, there is no simple set of necessary-and-
sufficient conditions known to allow one to determine whether such a thing exists in a given
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graph. There is one useful sufficient condition, due to Dirac, that has an elementary but
involved proof that can be found in any graph theory textbook.

Dirac’s theorem: A graph G with n vertices has a Hamiltonian cycle if all vertices have
degree at least n/2.

A connected graph with the fewest possible number of edges is called a tree. It turns out
that all trees on n vertices have the same number of edges, namely n− 1. One way to see this
is to imagine building up the tree from a set of n totally disconnected vertices, edge-by-edge.
At each step, you should add an edge that bridges two components, since adding an edge
within a component does not help; in the end such an edge can be removed without hurting
connectivity. Since two components get merged each time an edge is added, exactly n− 1 are
needed to get to a single component.

A characterization of trees is that they are connected, but have no cycles — a cycle in
a graph is a list of distinct vertices u1, u2, . . . , uk such that each of {u1, u2}, {u2, u3}, . . .,
{uk−1, uk}, {uk, u1} are all edges.

A planar graph is a graph that can be drawn in the plane with no two arcs meeting except
at a vertex (if they have one in common). A planar drawing of a graph partitions the plane
into connected regions, called faces. Euler discovered a remarkable formula that relates the
number of vertices, edges and faces in a planar graph:

Euler’s formula: Let G be a planar graph with V vertices, E edges and F faces. Then

V − E + F = 2.

Proof sketch: By induction on F . If F = 1 then the graph has only one face, so it must be
a tree. A tree on V vertices has V − 1 edges, and so fits the formula.

Now suppose F > 1. Then the graph contains a cycle. If we remove an edge e of that
cycle then F drops by one, V stays the same, and E drops by 1. Now by induction, V − (E−
1) + (F − 1) = 2 and this gives V − E + F = 2.

Problem: Show that five points can’t be connected up with arcs in the plane in such a way
that no two arcs meet each other except at a vertex (if they have one in common).

Solution: Suppose such a connection was possible. The resulting planar graph would have
5 vertices and

(
5
2

)
= 10 edges, so by Euler’s formula would have 7 faces. The sum, over the

faces, of the number of edges bounding the faces, is then at least 21, since each faces has at
least three bounding edges. But this sum is at most twice the number of edges, since each
each edge can be on the boundary of at most two faces; so it is at most 20, a contradiction.

A bipartite graph is a graph whose vertex set can be partitioned into two classes, X and Y ,
such that the graph only has edges that go from X to Y (and so none that are entirely within
X or entirely within Y ). It’s fairly easy to see that any odd-length cycle is not bipartite, so
any graph that has an odd-length cycle sitting inside it is also not bipartite. This turns out
to be a characterization of bipartite graphs; the proof can be found in any textbook on graph
theory.

Theorem: A graph is bipartite if an only if it has no odd cycle.

75



A matching in a graph is a set of edges, no two of which share a vertex. A perfect matching
is a matching that involves all the edges. A famous result, whose proof can be found in any
graph theory textbook, is Hall’s marriage theorem. A consequence of it says that if there are
n women and n men, each women likes exactly d men, and each man is liked by exactly d
women, then it is possible to pair the men and women off into n pairs, such that each women
is paired with a man she likes. Here’s the statement in graph-theory language:

Theorem: Let G be a bipartite graph that is regular (all vertices have the same degree). G
has a perfect matching.
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8.1 Week seven problems

1. In a town there are three new houses, and each needs to be connected by a line to the
gas, water, and electricity factories. The lines are only allowed to run along the ground.
Is there a way to make all nine connections without any of the lines crossing each other?

2. n teams play each other in a round-robin tournament (so each team plays each of the
other teams exactly once). There are no ties. Show that there exists an ordering of the
teams, (a1, a2, a3, . . . , an), such that team a1 beats team a2, team a2 beats team a3, . . .,
team an−1 beats team an.

3. An airline operates flights out of 2n airports. In all, the airline operates n2 +1 different
routes (all there-and-back: South Bend to Chicago is considered the same route as
Chicago to South Bend). Prove that there are three airports a, b, c such that it is
possible to fly directly from a to b, then b to c, then c back to a.

4. An airline operates flights out of n airports. In all, the airline operates at least 3n/2
different routes (all there-and-back, as in the last question). Prove that it is possible
the find a collection of 2k airports a1, a2, . . . , a2k−1, a2k (for some k ≥ 2), such that it is
possible to fly directly from a1 to a2, then a2 to a3, wt cetera, then a2k−1 to a2k, and
then close the loop by flying from a2k back to a1.

5. The complete graph Kn on vertex set {1, . . . , n} is the graph in which all
(
n
2

)
possible

edges are present. Suppose that the edges of Kn are colored with two colors, say Red
and Blue (meaning, each edge is either assigned the color Red or the color Blue, but
not both). Prove that is possible to partition {1, . . . , n} as A ∪ B, such that there is a
Red path that covers all the vertices in A and a Blue path that covers all the vertices in
B. (By this is meant: the elements of A can be ordered as (a1, a2, . . . , aℓ) in such a way
that each of the edges a1a2, a2a3, . . . , aℓ−1aℓ are all colored Red, and similarly for B.)

6. Is there a way to list the 2n subsets of {1, . . . , n} (with each subset appearing on the
list once and only once) in such a way that the first element of the list is the empty set,
and every element on the list is obtained from the previous element either by adding an
element or deleting an element?

7. Let G be a finite group of order n generated by a and b. Prove or disprove: there is
a sequence g1, g2, g3, . . . , g2n such that every element of G occurs exactly twice in the
sequence, and, for each i = 1, 2, . . . , 2n, gi+1 equals gia or gib. (Interpret g2n+1 as g1.)

8. Let n be an even positive integer. Write the numbers 1, 2, . . . , n2 in the squares of an n by
n grid so that the k-th row, from left to right, is (k−1)n+1, (k−1)n+2, . . . , (k−1)n+n.
(So you are writing the numbers in order, starting at the top left and moving left to
right along each row, then continuing at the left of the next row down, and so on.)

Color the squares of the grid so that half of the squares in each row are red (and the
other half are black), and half of the squares in each column are red (and the other half
are black). (A checkerboard coloring is one possibility, but there are many others).

Prove that for each such coloring, the sum of the numbers on the red squares is equal
to the sum of the numbers on the black squares.
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8.2 Week seven solutions

1. In a town there are three new houses, and each needs to be connected by a line to the
gas, water, and electricity factories. The lines are only allowed to run along the ground.
Is there a way to make all nine connections without any of the lines crossing each other?

Solution: This is a standard result in graph theory.

The question is asking whether the graph on six vertices, 1, 2, . . . , 6, with an edge from
i to j if and only if 1 ≤ i ≤ 3 and 4 ≤ j ≤ 6, can be drawn in the plane without crossing
edges. It has 6 vertices and 9 edges, so if it could, any representation would have 5 faces
(Euler’s formula). Each face is bounded by at least 4 edges (note that the graph we are
working with clearly has no triangles), so summing “#(bounding edges)” over all faces,
get at least 20. But this sum counts each edge at most twice, so we get at most 18, a
contradiction that reveals that there is no such planar representation.

2. n teams play each other in a round-robin tournament (so each team plays each of the
other teams exactly once). There are no ties. Show that there exists an ordering of the
teams, (a1, a2, a3, . . . , an), such that team a1 beats team a2, team a2 beats team a3, . . .,
team an−1 beats team an.

Solution: This was on the 1958 Putnam competition, but is also a standard result in
graph theory.

Proof by induction on n, with n = 1, and indeed n = 2, trivial. So assume n ≥ 3. Fix
an arbitrary vertex x. By induction there exists an ordering of the remaining teams,
(a1, a2, a3, . . . , an−1), such that team a1 beats team a2, team a2 beats team a3, . . ., team
an−2 beats team an−1.

If x beats a1, then the ordering (x, a1, . . . , an−1) works. If x looses to everyone, then the
ordering (a1, . . . , an−1, x) works. If neither of these things happen, then there must be an
i such that x looses to ai, but beats ai+1, and then the ordering (a1, . . . , ai, x, ai+1, . . . , an−1)
works.

3. An airline operates flights out of 2n airports. In all, the airline operates n2 +1 different
routes (all there-and-back: South Bend to Chicago is considered the same route as
Chicago to South Bend). Prove that there are three airports a, b, c such that it is
possible to fly directly from a to b, then b to c, then c back to a.

Solution: This is Mantel’s theorem, one of the first results proved in the vast area of
extremal graph theory.

Suppose there were no such three cities a, b, c. For each city x, denote by d(x) the
number of cities with direct connection to x. If there is a connection between cities x
and y, then there cannot be a third city y directly connected to both (or we would have
a triangle), so

(d(x)− 1) + (d(y)− 1) ≤ 2n− 2, d(x) + d(y) ≤ 2n.
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Now in the sum of d(x) + d(y) over all pairs of connected cites, for each x we have that
d(x) appears exactly d(x) times (once for each city directly connected to x), so∑

(d(x) + d(y)) =
∑
x

d2(x) ≤ (n2 + 1)2n.

Now use the Cauchy-Schwarz-Bunyakovski inequality to bound:

2n

(∑
x

d2(x)

)
≥

(∑
x

d(x)

)2

= (2(n2 + 1))2

(note that in
∑

x d(x), each route gets counted exactly twice, once for each endpoint).
We conclude that

4(n2 + 1)2 ≤ 4n2(n2 + 1),

which fails to hold for any n ≥ 0.

Here’s an alternate solution taken from https://mks.mff.cuni.cz/kalva/putnam/

psoln/psol5612.html: Model the problem as one about graphs: we are given a graph
on 2n vertices with n2 + 1 edges, and we want to find a triangle.

Induction. For n = 2, the result is obviously true, because there is only one graph with
4 points and 5 edges and it certainly contains a triangle. Suppose the result is true for
some n ≥ 2. Consider a graph G with 2n+ 2 vertices and n2 + 2n+ 2 edges. Take any
two vertices x and y joined by an edge. We consider two cases. If there are fewer than
2n + 1 other edges joined to either x or y (or both), then if we remove x and y we get
a graph with 2n vertices and at least n2 + 1 edges, which must contain a triangle (by
induction), so G does also. If there are at least 2n+ 1 other edges joined to either x or
y (or both) then by pigeon-hole principle there is at least one vertex joined to both, and
that gives a triangle.

4. An airline operates flights out of n airports. In all, the airline operates at least 3n/2
different routes (all there-and-back, as in the last question). Prove that it is possible
the find a collection of 2k airports a1, a2, . . . , a2k−1, a2k (for some k ≥ 2), such that it is
possible to fly directly from a1 to a2, then a2 to a3, wt cetera, then a2k−1 to a2k, and
then close the loop by flying from a2k back to a1.

Solution: This is a standard result in graph theory; I was reminded of it by looking at
a UCSD Putnam prep class webpage

In the language of graph theory, we want to show that a graph on n vertices with at
least 3n/2 edges must have an even-length cycle.

Let G be a graph on n vertices with at least 3n/2 edges must but with no even-length
cycle. We will argue a contradiction.

We may assume that G is connected. For if it has components, C1, . . . , Cm say, with
n1, . . . , nm vertices, then at least one of the components, Ci say, must have at least 3ni/2
edges (if Cj has strictly less than 3nj/2 edges, for each j, then the graph would have
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strictly fewer than 3n/2 edges, since
∑n

j=1 nj = n). We can then run the argument we
are about to describe on Cj.

Since G is connected, it has a spanning tree (a tree that touches all the vertices), that
uses n− 1 edges. Each of the remaining at least 3n/2− (n− 1) edges must belong to at
least one cycle (the remaining edges of the cycle being from the spanning tree).

Now, note that no edge in the graph can belong to more than one cycle. For suppose an
edge e is in two cycles, both, by assumption, odd. Unioning together these two cycles
and removing e we get a circuit (vertices and edges allowed to repeat) that is even. But
then the graph has an even cycle (contradiction), since a minimal length even circuit is
a cycle.

So, consider each of the at least 3n/2 − (n − 1) edges that are not on the spanning
tree. Each is involved in exactly one cycle, which must use at least two edges from the
spanning tree (cycles have length at least 3). But no edge from the spanning tree can
be used more than once (else it would be an edge of the graph involved in more than
one cycle). So we can draw on the spanning tree to create cycles (that the non-spanning
tree edges are involved in) at most (n− 1)/2 times. So

3n/2− (n− 1) ≤ (n− 1)/2,

or n < n− 1, a contradiction.

5. The complete graph Kn on vertex set {1, . . . , n} is the graph in which all
(
n
2

)
possible

edges are present. Suppose that the edges of Kn are colored with two colors, say Red
and Blue (meaning, each edge is either assigned the color Red or the color Blue, but
not both). Prove that is possible to partition {1, . . . , n} as A ∪ B, such that there is a
Red path that covers all the vertices in A and a Blue path that covers all the vertices in
B. (By this is meant: the elements of A can be ordered as (a1, a2, . . . , aℓ) in such a way
that each of the edges a1a2, a2a3, . . . , aℓ−1aℓ are all colored Red, and similarly for B.)

Solution: I learned of this problem in a recent paper of András Gyárfás , at http:

//arxiv.org/pdf/1509.05539.pdf.

Let A and B be disjoint subsets of {1, . . . , n}, with a Red path covering A and a Blue
path covering B, and with A ∪ B as large as possible subject to this condition. If
A ∪ B = {1, . . . , n} then we are done. If not, then we may assume that both A and B
are not empty, since if one of them, B say, was empty, then we could replace B by {x}
where x is any vertex not in A, and the result would be a valid pair (A,B) with the size
of the union one larger, a contradiction of maximality (note that a Blue path covers a
single vertex).

Let A be covered by the Red path given by the ordering (a1, a2, . . . , aℓ), and let B be
covered by the Blue path given by the ordering (b1, b2, . . . , bk). Let x be any vertex not
in A ∪ B. If either the edge aℓx is Red or the edge bkx is Blue, then we can either add
x to A or add x to B and get a valid pair that covers more vertices, a contradiction. So
we may assume that aℓx is Blue and bkx is Red.

Now look at edge aℓbk. If this is Red, then we can replace A by {a1, . . . , aℓ, bk, x} and
replace B by {b1, . . . , bk−1} and get a valid pair that covers more vertices, a contradiction.
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If aℓbk is Blue, then we can replace A by {a1, . . . , aℓ−1} and replace B by {b1, . . . , bk, aℓ, x}
and again get a valid pair that covers more vertices, a contradiction.

We conclude that A ∪B = {1, . . . , n}.

6. Is there a way to list the 2n subsets of {1, . . . , n} (with each subset appearing on the
list once and only once) in such a way that the first element of the list is the empty set,
and every element on the list is obtained from the previous element either by adding an
element or deleting an element?

Solution: I learned of this problem from Imre Leader.

We’ll prove by induction on n that it is possible, and that moreover it is possible to
do so in such a way that the last element listed is a singleton (so that the list can be
considered a cycle). In fact, the question is asking for a Hamiltonian path (a walk that
visits every vertex once) in the graph whose vertex set in the power set of {1, . . . , n},
with two vertices adjacent if they have symmetric difference of size exactly 1; this graph
is called the n-dimensional hypercube (when n = 2 it is just a square, when n = 3 it is
the usual 3-cube). We’ll prove by induction on n ≥ 2 that the n-dimensional hypercube
has a Hamiltonian cycle, from which we can clearly construct a Hamiltonian path of the
required kind by deleting an edge out of ∅.
The case n = 2 is trivial: ∅, {1}, {1, 2}, {2}, ∅ works.

For n ≥ 2, start with a Hamiltonian cycle C, ∅, {1}, . . . , {2}, ∅, of the (n−1)-dimensional
hypercube (we known there’s one by induction), and then also consider the sequence
C ′, {n}, {1, n}, . . . , {2, n}, {n}, obtained by unioning every term of C with {n}. C ′ has
the property that it is a cycle list of the elements of the n-dimensional hypercube that
are not listed in C, and also has the property that adjacent elements have symmetric
difference of size exactly 1. A Hamiltonian cycle of the n dimensional hypercube is now
obtained by starting with all the elements of C except the final ∅, then going to the
second-from-last element of C ′, and then listing the remaining element of C ′ (except for
the final ∅) in reverse order.

7. Let G be a finite group of order n generated by a and b. Prove or disprove: there is
a sequence g1, g2, g3, . . . , g2n such that every element of G occurs exactly twice in the
sequence, and, for each i = 1, 2, . . . , 2n, gi+1 equals gia or gib. (Interpret g2n+1 as g1.)

Solution: This was from the 1990 Putnam competition. It is (an instance of) a very
basic result in graph theory, probably the first ever result proved, namely the necessary
and sufficient conditions for the existence of an Eulerian circuit in a directed graph.

See https://mks.mff.cuni.cz/kalva/putnam/psoln/psol9010.html for a solution.

8. Let n be an even positive integer. Write the numbers 1, 2, . . . , n2 in the squares of an n by
n grid so that the k-th row, from left to right, is (k−1)n+1, (k−1)n+2, . . . , (k−1)n+n.
(So you are writing the numbers in order, starting at the top left and moving left to
right along each row, then continuing at the left of the next row down, and so on.)
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Color the squares of the grid so that half of the squares in each row are red (and the
other half are black), and half of the squares in each column are red (and the other half
are black). (A checkerboard coloring is one possibility, but there are many others).

Prove that for each such coloring, the sum of the numbers on the red squares is equal
to the sum of the numbers on the black squares.

Solution: This was problem B1 on the 2001 Putnam competition.

Here is a solution due to Kiran Kedlaya:

Let R (resp. B) denote the set of red (resp. black) squares in such a coloring, and
for s ∈ R ∪ B, let f(s)n + g(s) + 1 denote the number written in square s, where
0 ≤ f(s), g(s) ≤ n− 1. Then it is clear that the value of f(s) depends only on the row
of s, while the value of g(s) depends only on the column of s. Since every row contains
exactly n/2 elements of R and n/2 elements of B,∑

s∈R

f(s) =
∑
s∈B

f(s).

Similarly, because every column contains exactly n/2 elements of R and n/2 elements
of B, ∑

s∈R

g(s) =
∑
s∈B

g(s).

It follows that ∑
s∈R

f(s)n+ g(s) + 1 =
∑
s∈B

f(s)n+ g(s) + 1,

as desired.

Note: Richard Stanley points out a theorem of Ryser (see Ryser, Combinatorial Math-
ematics, Theorem 3.1) that can also be applied. Namely, if A and B are 0− 1 matrices
with the same row and column sums, then there is a sequence of operations on 2 × 2
matrices of the form (

0 1
1 0

)
→
(
1 0
0 1

)
or vice versa, which transforms A into B. If we identify 0 and 1 with red and black,
then the given coloring and the checkerboard coloring both satisfy the sum condition.
Since the desired result is clearly true for the checkerboard coloring, and performing the
matrix operations does not affect this, the desired result follows in general.
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9 Week eight (October 15) — Inequalities

Many Putnam problem involve showing that a particular inequality between two expressions
holds always, or holds under certain circumstances. There are a huge variety of general
inequalities between sets of numbers satisfying certain conditions, that are quite reasonable
for you to quote as “well-known”. I’ve listed some of them here, mostly without proofs,
with stars next to the most important ones. If you are interested in knowing more about
inequalities, consider looking at the book Inequalities by Hardy, Littlewood and Pólya (QA
303 .H223i at the math library).

Squares are positive ⋆⋆

Surprisingly many inequalities reduce to the obvious fact that x2 ≥ 0 for all real x, with
equality iff x = 0. I’ll highlight one example in what follows.

The triangle inequality

For real or complex x and y, |x+ y| ≤ |x|+ |y| (called the triangle inequality because it says
that the distance travelled along the line in going from x to −y — |x+y| — does not decrease
if we demand that we go through the intermediate point 0).

Arithmetic mean — Geometric mean — Harmonic mean inequality
⋆⋆

For positive a1, . . . , an

n
1
a1

+ . . .+ 1
a1

≤ n
√
a1 . . . an ≤ a1 + . . .+ an

n

with equalities in both inequalities iff all ai are equal. The three expressions above are the
harmonic mean, the geometric mean and the arithmetic mean of the ai.

For n = 2, here’s a proof of the second inequality:
√
a1a2 ≤ (a1+a2)/2 iff 4a1a2 ≤ (a1+a2)

2

iff a21−2a1a2+a22 ≥ 0 iff (a1−a2)
2 ≥ 0, which is true by the “squares are positive” inequality;

there’s equality all along iff a1 = a2.
For n = 2 the first inequality is equivalent to

√
a1a2 ≤ (a1 + a2)/2.

Power means inequality

For a non-zero real r and positive a1, . . . , an define

M r(a1, . . . , an) =

(
ar1 + . . .+ arn

n

)1/r

,

and set M0(a1, . . . , an) = n
√
a1 . . . an. For real numbers r < s,

M r(a1, . . . , an) ≤ M s(a1, . . . , an)

83



with equality iff all ai are equal.
Notice that M−1(a1, . . . , an) is the harmonic mean of the ai’s, and M1(a1, . . . , an) is their

geometric mean, so this inequality generalizes the Arithmetic mean — Geometric mean —
Harmonic mean inequality.

There is a weighted power means inequality: let w1, . . . , wn be positive reals that add to
1, and define

M r
w(a1, . . . , an) = (w1a

r
1 + . . .+ wna

r
n)

1/r

for non-zero real r, with M0
w(a1, . . . , an) = aw1

1 . . . awn
n . For real numbers r < s,

M r
w(a1, . . . , an) ≤ M s

w(a1, . . . , an).

(This reduces to the power means inequality when all wi = 1/n.)

Cauchy-Schwarz-Bunyakovsky inequality ⋆⋆

Let x1, . . . , xn and y1, . . . , yn be real numbers. We have

(x1y1 + . . .+ xnyn)
2 ≤

(
x2
1 + . . .+ x2

n

) (
y21 + . . .+ y2n

)
.

Equality holds if one of the sequences (x1, . . . , xn), (y1, . . . , yn) is identically zero. If both are
not identically zero, then there is equality iff there is some real number t0 such that xi = t0yi
for each i.

Here’s a quick proof: If either sequence is identically 0, both sides are zero. So assume
that neither is identically 0. For any real t we have

n∑
i=1

(xi − tyi)
2 ≥ 0.

But also,
n∑

i=1

(xi − tyi)
2 =

n∑
i=1

x2
i − 2t

n∑
i=1

xiyi + t2
n∑

i=1

y2i ,

so for all real t, so
n∑

i=1

x2
i − 2t

n∑
i=1

xiyi + t2
n∑

i=1

y2i ≥ 0.

This means that viewed as a polynomial in t, the expression above must have either complex
roots or a repeated real root, i.e., that(

2
n∑

i=1

xiyi

)2

≤ 4

(
n∑

i=1

x2
i

)(
n∑

i=1

y2i

)
,

which is exactly the inequality we wanted. (Notice the key point — squares are positive!). If
the inequality is an equality, then the polynomial has a repeated root, which means there is
some real t0 at which the polynomial evaluates to 0. But the polynomial at this point is equal
to
∑n

i=1(xi − t0yi)
2, and the only way this can happen is if each xi − t0yi is 0, as claimed.
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This is really a very general inequality: if you are familiar with inner products from linear
algebra, the Cauchy-Schwarz-Bunyakovsky inequality really says that if x, y are vectors in an
inner product space over the reals then

|⟨x,y⟩|2 ≤ ⟨x,x⟩⟨y,y⟩.

Equivalently
|⟨x,y⟩| ≤ ||x|| ||y||.

There is equality iff x and y are linearly dependent.

Hölder’s inequality

Fix p > 1 and define q by 1/p + 1/q = 1. Let x1, . . . , xn and y1, . . . , yn be real numbers. We
have

|x1y1 + . . .+ xnyn| ≤ (|x1|p + . . .+ |xn|p)1/p (|y1|q + . . .+ |yn|q)1/q .
Notice that Hölder becomes Cauchy-Schwarz-Bunyakovsky in the case p = 2.

Chebyshev’s sum inequality

If a1 ≥ . . . ≥ an and b1 ≥ . . . ≥ bn are sequences of reals, then

a1b1 + . . .+ anbn
n

≥
(
a1 + . . .+ an

n

)(
b1 + . . .+ bn

n

)
.

The same holds if a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn; if either a1 ≥ . . . ≥ an and b1 ≤ . . . ≤ bn
or a1 ≤ . . . ≤ an and b1 ≥ . . . ≥ bn, then

a1b1 + . . .+ anbn
n

≤
(
a1 + . . .+ an

n

)(
b1 + . . .+ bn

n

)
.

The rearrangement inequality

If a1 ≤ . . . ≤ an and b1 ≤ . . . ≤ bn are sequences of reals, and aπ(1), . . . , aπ(n)is a permutation
(rearrangement) of a1 ≤ . . . ≤ an, then

anb1 + . . .+ a1bn ≤ aπ(1)b1 + . . .+ aπ(n)bn ≤ a1b1 + . . .+ anbn.

If a1 < . . . < an and b1 < . . . < bn, then there is equality in the first inequality iff π is the
reverse permutation π(i) = n+1− i, and there is equality in the second inequality iff π is the
identity permutation π(i) = i.

Jensen’s inequality ⋆⋆

A real function f(x) is convex on the interval [c, d] if for all c ≤ a < b ≤ d, the line segment
joining (a, f(a)) to (b, f(b)) lies entirely above the graph y = f(x) on the interval (a, b), or
equivalently, if for all 0 ≤ t ≤ 1 we have

f((1− t)a+ tb) ≤ (1− t)f(a) + tf(b).
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If f(x) is convex on the interval [c, d], and c ≤ a1 ≤ . . . ≤ an ≤ d, then

f

(
a1 + . . .+ an

n

)
≤ f(a1) + . . .+ f(an)

n

(note that when n = 2, this is just the definition of convexity).
We say that f(x) is concave on [c, d] if for all c ≤ a < b ≤ d, and for all 0 ≤ t ≤ 1, we have

f((1− t)a+ tb) ≥ (1− t)f(a) + tf(b).

If f(x) is concave on the interval [c, d], and c ≤ a1 ≤ . . . ≤ an ≤ d, then

f

(
a1 + . . .+ an

n

)
≥ f(a1) + . . .+ f(an)

n
.

As an example, consider the convex function f(x) = x2; for this function Jensen says that(
a1 + . . .+ an

n

)2

≤ a21 + . . .+ a2n
n

,

which is equivalent to the powers means inequality M1(a1, . . . , an) ≤ M2(a1, . . . , an); and
when f(x) = − lnx we get

n
√
a1 . . . an ≤ a1 + . . .+ an

n
,

the AM-GM inequality.

Four miscellaneous comments

1. Maximization/minimization problems are often problems about inequalities in disguise.
For example, to find the minimum of f(a, b) as (a, b) ranges over a set R, it is enough to
first guess that the minimum is m, then find an (a, b) ∈ R with f(a, b) = m, and then
use inequalities to show that f(a, b) ≥ m for all (a, b) ∈ R.

2. If an expression is presented as a sum of n squares, it is sometimes helpful to think of
it as the (square of the) distance between two points in n dimensional space, and then
think of the problem geometrically.

3. Sometimes a little calculus is all that is needed. For example, here is a very useful
inequality:

1 + x ≤ ex for all x ∈ R.
To prove this for x ≥ 0 note that both sides are equal at x = 0, and the derivative of
1 + x, which is 1, is smaller than the derivative of ex, which is ex, for all x ≥ 0; so
the two sides start together but always the right-hand side is growing faster than the
left-hand side, so the right-hand side is always bigger. A similar argument proves the
inequality for x ≤ 0: 1 + x, with derivative 1, falls faster as we move along the x-axis
negatively away from 0, than does ex, which has derivative positive but strictly less than
1 for x < 0. (To formalize this second half of the argument, consider f(y) = 1− y and
g(y) = e−y, defined for y ≥ 0. We have f(0) = g(0), and f ′(y) = −1 ≤ −e−y = g′(y) for
y ≥ 0, so f(y) ≤ g(y) for y ≥ 0. It follows that for x ≤ 0, 1− x ≤ e−x.)
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4. If f(x) is a positive, increasing function on (0,∞), then by considering Riemann sums
we have ∫ n

0

f(x) dx ≤
n∑

k=1

f(k) ≤
∫ n+1

1

f(x) dx

(assuming the left-hand integral converges). For example, consider f(x) = xk for k > 0.
We have ∫ n

0

xk dx =
nk+1

k + 1

and ∫ n+1

1

xk dx =
(n+ 1)k+1

k + 1
− 1

k + 1
.

It easy to check that(
(n+ 1)k+1

k + 1
− 1

k + 1

)
/

(
nk+1

k + 1

)
→ 1 as n → ∞,

so we have a quick proof that for each fixed k > 0 (not necessarily an integer)

lim
n→∞

1k + . . .+ nk

nk+1
=

1

k + 1
;

in other words, the sum of the first n perfect kth powers grows like nk+1/(k + 1).

Some warm-up problems

You should find that these are all fairly easy to prove by direct applications of an appropriate
inequality from the list above.

1. n! <
(
n+1
2

)n
for n = 2, 3, 4, . . ..

2.
√
3(a+ b+ c) ≥

√
a+

√
b+

√
c for positive a, b, c.

3. Minimize x1 + . . .+ xn subject to xi ≥ 0 and x1 . . . xn = 1.

4. Minimize
x2

y + z
+

y2

z + x
+

z2

x+ y

subject to x, y, z ≥ 0 and xyz = 1.

5. If triangle has side lengths a, b, c and opposite angles (measured in radians) A,B,C,
then

aA+ bB + cC

a+ b+ c
≥ π

3
.

6. Identify which is bigger:
1999!(2000) or 2000!(1999).

(Here n!(k) indicates iterating the factorial function k times, so for example 4!(2) = 24!.)
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7. Identify which is bigger:
19991999 or 20001998.

8. Minimize
sin3 x

cosx
+

cos3 x

sinx

on the interval 0 < x < π/2.
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9.1 Week eight problems

1. Let T be an acute triangle. Inscribe a rectangle R in T with one side along a side of T .
Then inscribe a rectangle S in the triangle formed by the side of R opposite the side on
the boundary of T , and the other two sides of T , with one side along the side of R. For
any polygon X, let A(X) denote the area of X. Find the maximum value, or show that
no maximum exists, of

A(R) + A(S)

A(T )
,

where T ranges over all triangles and R, S over all rectangles as above.

2. Show that for non-negative reals a1, . . . , an and b1, . . . , bn,

(a1 . . . an)
1/n + (b1 . . . bn)

1/n ≤ ((a1 + b1) . . . (an + bn))
1/n .

3. Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y+1) ≤ (x+1)2, then
y(y − 1) ≤ x2.

4. For positive integers m,n, show

(m+ n)!

(m+ n)m+n
<

m!

mm

n!

nn
.

5. Minimize

(u− v)2 +

(√
2− u2 − 9

v2

)2

in the range 0 ≤ u ≤
√
2, v ≥ 0.

6. Given that {x1, . . . , xn} = {1, . . . , n} (i.e., the numbers x1, . . . , xn are 1 through n in
some order), find (with proof!) the maximum value of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.

7. Show that for every positive integer n,(
2n− 1

e

) 2n−1
2

≤ 1 · 3 · 5 · . . . · (2n− 1) <

(
2n+ 1

e

) 2n+1
2

.

8. Suppose that f(x) is a polynomial with all real coefficients, satisfying f(x) + f ′(x) > 0
for all x. Show that f(x) > 0 for all x.

9. Show that in a triangle with side lengths a, b, c and area A one has

a2 + b2 + c2 ≥ 4
√
3A.
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Solutions to the warm-up problems

All of these problems were all taken from a Northwestern Putnam prep problem set.

1. n! <
(
n+1
2

)n
for n = 2, 3, 4, . . ..

Solution: Use the geometric mean — arithmetic mean inequality, with (a1, . . . , an) =
(1, . . . , n).

2.
√
3(a+ b+ c) ≥

√
a+

√
b+

√
c for positive a, b, c.

Solution: Use the power means inequality, with (a1, a2, a3) = (a, b, c) and r = 1/2, s =
1.

3. Minimize x1 + . . .+ xn subject to xi ≥ 0 and x1 . . . xn = 1.

Solution: Guess: the minimum is n, achieved when all x1 = 1. Then use geometric
mean - arithmetic mean inequality to show(

x1 + . . .+ xn

n

)
≥ n

√
x1 . . . xn = 1

for positive xi satisfying x1 . . . xn = 1.

4. Minimize
x2

y + z
+

y2

z + x
+

z2

x+ y

subject to x, y, z ≥ 0 and xyz = 1.

Solution: Apply Cauchy-Schwartz with the vectors
(√

y + z,
√
z + x,

√
x+ y

)
and(

x√
y + z

,
y√
z + x

,
z√
x+ y

)
to get

(x+ y + z)2 ≤
(

x2

y + z
+

y2

z + x
+

z2

x+ y

)
2 (x+ y + z) ,

leading to
x2

y + z
+

y2

z + x
+

z2

x+ y
≥ x+ y + z

2
.

By the AM-GM inequality,
x+ y + z

3
≥ 3

√
xyz = 1,

so
x2

y + z
+

y2

z + x
+

z2

x+ y
≥ 3

2
.

This lower bound can be achieved by taking x = y = z = 1, so the minimum is 3/2.
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5. If triangle has side lengths a, b, c and opposite angles (measured in radians) A,B,C,
then

aA+ bB + cC

a+ b+ c
≥ π

3
.

Solution: Assume, without loss of generality, that a ≤ b ≤ c. Then also A ≤ B ≤ C,
so by Chebychev,

aA+ bB + cC

3
≥
(
a+ b+ c

3

)(
A+B + C

3

)
=

(
a+ b+ c

3

)
π

3
,

from which the result follows.

6. Identify which is bigger:
1999!(2000) or 2000!(1999).

(Here n!(k) indicates iterating the factorial function k times, so for example 4!(2) = 24!.)

Solution: For n ≥ 1, n! is increasing in n (1 ≤ n < m implies n! < m!). So, starting
from the easy

1999! > 2000,

apply the factorial function 1999 more times to get

1999!(2000) > 2000!(1999).

7. Identify which is bigger:
19991999 or 20001998.

Solution: Consider f(x) = (1999 − x) ln(1999 + x). We have ef(0) = 19991999 and
ef(1) = 20001998, so we want to see what f does on the interval [0, 1]: increase or
decrease? The derivative is

f ′(x) = − ln(1999 + x) +
1999− x

1999 + x
,

which is negative on [0, 1] (since, for example,

1999− x

1999 + x
≤ 1 = ln e < ln(1999 + x)

on that interval). So
20001998 < 19991999.

8. Minimize
sin3 x

cosx
+

cos3 x

sinx

on the interval 0 < x < π/2.
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Solution: We can use the rearrangement inequality on the pairs
(
sin3 x, cos3 x

)
(which

satisfies sin3 x ≤ cos3 x on [0, π/4], and sin3 x ≥ cos3 x on [π/4, π/2]), and (1/ cosx, 1/ sinx)
(which also satisfies 1/ cosx ≤ 1/ sinx on [0, π/4], and 1/ cosx ≥ 1/ sinx on [π/4, π/2]),
to get

sin3 x

cosx
+

cos3 x

sinx
≥ sin3 x

sinx
+

cos3 x

cosx
= sin2 x+ cos2 x = 1

on the whole interval. Since 1 can be achieved (at x = π/4) the minimum is 1.
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9.2 Week eight solutions

1. Let T be an acute triangle. Inscribe a rectangle R in T with one side along a side of T .
Then inscribe a rectangle S in the triangle formed by the side of R opposite the side on
the boundary of T , and the other two sides of T , with one side along the side of R. For
any polygon X, let A(X) denote the area of X. Find the maximum value, or show that
no maximum exists, of

A(R) + A(S)

A(T )
,

where T ranges over all triangles and R, S over all rectangles as above.

Solution: This problem was on the 1985 Putnam Competition, Problem A2.

Here’s a pictorial version of the problem:

We claim that the answer is 2/3.

Assume, without loss of generality, that the horizontal base of T has length 1. Let the
base of R have length x, and the base of S have base y, where 0 < y < x < 1.

We have
A(S)

A(T )
= 2y(x− y)

and
A(R)

A(T )
= 2x(1− x),

so the quantity we want to maximize is

2y(x− y) + 2x(1− x),

subject to the constraint 0 < y < x < 1.
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For each fixed x, as y varies over 0 < y < x the quantity 2y(x− y) + 2x(1− x) achieves
its maximum at y = x/2, where it takes value x2/22x(1 − x) = (4x − 3x2)/2. This
achieves its maximum over 0 < x < 1 at x = 2/3, where it takes the value 2/3.

2. Show that for non-negative reals a1, . . . , an and b1, . . . , bn,

(a1 . . . an)
1/n + (b1 . . . bn)

1/n ≤ ((a1 + b1) . . . (an + bn))
1/n .

Solution: This was from the 2003 Putnam competition, problem A2.

If any ai is 0, the result is trivial, so we may assume all ai > 0. Dividing through by
(a1 . . . an)

1/n, the inequality becomes

1 + (c1 . . . cn)
1/n ≤ ((1 + c1) . . . (1 + cn))

1/n

for ci ≥ 0. Raising both sides to the power n, this is the same as

n∑
k=0

(
n

k

)
(c1 . . . cn)

k/n ≤
n∑

k=0

ek

where ek is the sum of the products of the ci’s, taken k at a time. So it is enough to
show that for each k, (

n

k

)
(c1 . . . cn)

k/n ≤
∑

A⊆{1,...,n}, |A|=k

∏
i∈A

ci.

We apply the AM-GM inequality to the numbers
∏

i∈A ci as A ranges over all subsets of
size k of {1, . . . , n}. Note that each ai appears exactly

(
n−1
k−1

)
times in all these numbers.

So we we get

(c1 . . . cn)
(n−1
k−1)/(

n
k) ≤

∑
A⊆{1,...,n}, |A|=k

∏
i∈A ci(

n
k

) .

Since
(
n−1
k−1

)
/
(
n
k

)
= k/n, this is the same as

(c1 . . . cn)
k/n ≤

∑
A⊆{1,...,n}, |A|=k

∏
i∈A ci(

n
k

) ,

which is exactly what we wanted to show.

Much quicker solution, shown to me by Jonathan Sheperd: If there is any i for
which ai + bi = 0, then the inequality trivially holds. If not, divide both sides by the
right-hand side to get the equivalent inequality(

n∏
i=1

(
ai

ai + bi

)) 1
n
(

n∏
i=1

(
bi

ai + bi

)) 1
n

≤ 1.
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Applying the arithmetic mean – geometric mean inequality to both terms on the left-
hand side, we find that the left-hand side is at most

1

n

(
n∑

i=1

ai
ai + bi

)
+

1

n

(
n∑

i=1

bi
ai + bi

)
which is the same as

1

n

(
n∑

i=1

ai + bi
ai + bi

)
,

which is indeed at most (in fact exactly) 1.

3. Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y+1) ≤ (x+1)2, then
y(y − 1) ≤ x2.

Solution: This was from the 1988 Putnam competition, Problem B2.

Here is a solution written by John Scholes:

The claimed inequality (y(y − 1) ≤ x2) is true. We consider 3 cases.

Case 1: Suppose first that x ≥ 0, and that y(y+1) = (x+1)2. Since (x+1/2)(x+3/2) =
(x+1)2−1/4, we have y > x+1/2. Hence y(y−1) = y(y+1)−2y < (x+1)2−2(x+1/2) =
x2.

Case 2: If x ≥ 0 and y(y + 1) < (x + 1)2, then take y′ > y with y′(y′ + 1) = (x + 1)2.
Clearly y − 1 < y′ − 1 and since y is positive, y(y − 1) < y(y′ − 1) < y′(y′ − 1), which
(by the analysis of Case 1) is < x2.

So it just remains to consider the case x < 0. But in this case −|x|−1 < x+1 < |x|+1,
so (x+ 1)2 < (|x|+ 1)2 and x2 = |x|2, and the result follows from the result for y, |x|.

4. For positive integers m,n, show

(m+ n)!

(m+ n)m+n
<

m!

mm

n!

nn
.

Solution: This was from the 2004 Putnam competition, Problem B2.

Rearranging, this is the same as(
m+ n

m

)(
m

m+ n

)m(
n

m+ n

)n

< 1.

This suggests looking at the binomial expansion(
m

m+ n
+

n

m+ n

)m+n

.

The whole binomial expansion sums to 1; one term of the expansion is(
m+ n

m

)(
m

m+ n

)m(
n

m+ n

)n

.

Since all terms are strictly positive, we get the required inequality.
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5. Minimize

(u− v)2 +

(√
2− u2 − 9

v2

)2

in the range 0 ≤ u ≤
√
2, v ≥ 0.

Solution: This was on the Putnam competition 1984 problem B2.

The expression to be minimized is the (square of the) distance between a point of the
form (u,

√
2− u2) on 0 < u <

√
2, and a point of the form (v, 9/v) on v > 0; in other

words, we are looking for the (square of the) distance between the circle x2 + y2 = 2
in the first quadrant and the hyperbola xy = 9 in the same quadrant. By symmetry, it
strongly seems that the two closed points are (3, 3) on the hyperbola and (1, 1) on the
circle (squared distance 8). To prove that this is the minimum, note that the tangent
lines to the two curves at those two points are parallel, that the distance between them
at these points is the perpendicular distance between the two tangent lines, and that the
hyperbola (in the first quadrant) lies completely above its tangent line, while the circle
(in the first quadrant) lies completely below its tangent line; so the distance between
any other two points is at least the distance between the two tangent lines.

6. Given that {x1, . . . , xn} = {1, . . . , n} (i.e., the numbers x1, . . . , xn are 1 through n in
some order), find (with proof!) the maximum value of

x1x2 + x2x3 + · · ·+ xn−1xn + xnx1.

Solution: This was from the 1996 Putnam Competition, problem B3

Here is a solution written by Kiran Kedlaya:

View x1, . . . , xn as an arrangement of the numbers 1, 2, . . . , n on a circle. We prove that
the optimal arrangement is

. . . , n− 4, n− 2, n, n− 1, n− 3, . . .

To show this, note that if a, b is a pair of adjacent numbers and c, d is another pair (read
in the same order around the circle) with a < d and b > c, then the segment from b to
c can be reversed, increasing the sum by

ac+ bd− ab− cd = (d− a)(b− c) > 0.

Now relabel the numbers so they appear in order as follows:

. . . , an−4, an−2, an = n, an−1, an−3, . . .

where without loss of generality we assume an−1 > an−2. By considering the pairs
an−2, an and an−1, an−3 and using the trivial fact an > an−1, we deduce an−2 > an−3.
We then compare the pairs an−4, an−2 and an−1, an−3, and using that an−1 > an−2, we
deduce an−3 > an−4. Continuing in this fashion, we prove that an > an−1 > · · · > a1
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and so ak = k for k = 1, 2, . . . , n, i.e. that the optimal arrangement is as claimed. In
particular, the maximum value of the sum is

1 · 2 + (n− 1) · n+ 1 · 3 + 2 · 4 + · · ·+ (n− 2) · n
= 2 + n2 − n+ (12 − 1) + · · ·+ [(n− 1)2 − 1]

= n2 − n+ 2− (n− 1) +
(n− 1)n(2n− 1)

6

=
2n3 + 3n2 − 11n+ 18

6
.

Alternate solution: We prove by induction that the value given above is an upper bound;
it is clearly a lower bound because of the arrangement given above. Assume this is the
case for n − 1. The optimal arrangement for n is obtained from some arrangement for
n− 1 by inserting n between some pair x, y of adjacent terms. This operation increases
the sum by nx+ ny− xy = n2 − (n− x)(n− y), which is an increasing function of both
x and y. In particular, this difference is maximal when x and y equal n− 1 and n− 2.
Fortunately, this yields precisely the difference between the claimed upper bound for n
and the assumed upper bound for n− 1, completing the induction.

7. Show that for every positive integer n,(
2n− 1

e

) 2n−1
2

≤ 1 · 3 · 5 · . . . · (2n− 1) <

(
2n+ 1

e

) 2n+1
2

.

Solution: This was from the 1996 Putnam Competition, problem B2.

We estimate the integral of lnx, which is convex and hence easy to estimate. Take the
integral from 1 to 2n − 1. This is less than 2(ln 3 + ln 5 + . . . + ln(2n − 1)). But the
antiderivative of lnx is x lnx−x, so the integral evaluates to (2n−1) ln(2n−1)−2n+2.
Hence (2n − 1) ln(2n − 1) − (2n − 1) < (2n − 1) ln(2n − 1) − 2n + 2 < 2(ln 3 + ln 5 +
. . .+ ln(2n− 1)). Exponentiating gives the right-hand inequality.

Similarly, the integral from e to 2n+ 1 is greater than 2(ln 3 + ln 5 + . . .+ ln(2n− 1)),
and an explicit evaluation of the antiderivative here leads to the right-hand side of the
inequality. The choice of lower bound e for the integral here is just the right thing to
make the computations work out nicely.

8. Suppose that f(x) is a polynomial with all real coefficients, satisfying f(x) + f ′(x) > 0
for all x. Show that f(x) > 0 for all x.

Solution: Source: I got this problem from a Northwestern Putnam preparation class.

f(x) and f(x) + f ′(x) have the same leading coefficient, so the same limiting behavior
as x goes to ±∞, namely they both tend to +∞ (since f(x) + f ′(x) > 0 always, the
limits cannot be −∞).
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f(x) cannot have a repeated root: at a repeated root, the derivative is also 0, so f(x) +
f ′(x) = 0 at this point. So all of f(x)’s real roots (if it has any) are simple. Since f(x)
goes to +∞ as x approaches both ±∞, it must thus have an even number of real zeroes.

Suppose it has any. Let x1 and x2 be the first two. Between x1 and x2, at some point the
derivative is 0 (Rolle’s theorem); at that point f(x)+f ′(x) must be negative (since f(x)
negative here). This contradiction shows that f(x) has no real roots, so can’t change
sign, so must be always positive.

Remark: The example of f(x) = −e−2x shows that the hypothesis that f(x) is a
polynomial is crucial here.

9. Show that in a triangle with side lengths a, b, c and area A one has

a2 + b2 + c2 ≥ 4
√
3A.

Solution: I saw this on Andrei Jorza’s 2018 ND Putnam Prep class; it was also on
International Mathematical Olympiad problem from 1961.

The inequality is Weitzenböck’s inequality. See

https://en.wikipedia.org/wiki/Weitzenb%C3%B6ck%27s_inequality

for many solutions!
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10 Week nine (October 29) — Writing solutions

This week’s handout is concerned with the art of writing — presenting — solutions. I’ve made
a few notes myself, but I also strongly recommend that you also look at both of these essays:

• (short, with very practical advice and a few examples): http://web.evanchen.cc/

handouts/english/english.pdf

• (long, with lots of examples of both good and bad writing): https://artofproblemsolving.
com/news/articles/how-to-write-a-solution

In what follows, I’m going to repeat some of the advice I’ve given on a previous handout. I
encourage you to look over this carefully, and bear it in mind as you go over this week’s prob-
lems and (more importantly) as you take the Putnam competition. I have shamelessly appro-
priate much of this from Ravi Vakil’s Stanford Putnam Preparation website (http://math.
stanford.edu/~vakil/putnam05/05putnam7.pdf), and from Ioana Dumitriu’s UWashing-
ton’s “The Art of Problem Solving” website (http://www.math.washington.edu/~putnam/
index.html). Both of these websites are filled with what I think is great advice.

This weeks problem set is the 2019 Virginia Tech Regional Math Contest, which took place
last Saturday (October 26). For next Tuesday, fully write up a solution to at least one of the
problems, after you have read the handout and (at the very least) the 4-page essay by Evan
Chen (http://web.evanchen.cc/handouts/english/english.pdf).

Some general problem-solving tips

Remember that problem solving is a full-contact sport: throw everything you know at the
problem you are tackling! Sometimes, the solution can come from an unexpected quarter.
Here are some slogans to keep in mind when solving problems:

• Try small cases!

• Plug in small numbers!

• Do examples!

• Look for patterns!

• Draw pictures!

• Write lots!

• Talk it out!

• Choose good notation!

• Look for symmetry!

• Break into cases!

• Work backwards!
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• Argue by contradiction!

• Consider extreme cases!

• Modify the problem!

• Make a generalization!

• Don’t give up after five minutes!

• Don’t be afraid of a little algebra!

• Take a break!

• Sleep on it!

• Ask questions!

And above all:

• Enjoy!

Some specific mathematical tips

Here are some very simple things to remember, that can be very helpful, but that people tend
to forget to do.

1. Try a few small cases out. Try a lot of cases out. Remember that the three hours of
the Putnam competition is a long time — you have time to spare! If a question asks
what happens when you have n things, or 2015 things, try it out with 1, 2, 3, 4 things,
and try to form a conjecture. This is especially valuable for questions about sequences
defined recursively.

2. Don’t be afraid to use lots and lots of paper.

3. Don’t be afraid of diving into some algebra. (Again, three hours is a long time . . ..) You
shouldn’t waste that much time, thanks to the 15-minute rule.

4. If a question asks to determine whether something is true or false, and the direction
you initially guess doesn’t seem to be going anywhere, then try guessing the opposite
possibility.

5. Be willing to try (seemingly) stupid things.

6. Look for symmetries. Try to connect the problem to one you’ve seen before. Ask yourself
“how would [person X] approach this problem”? (It’s quite reasonable here for [Person
X] to be [Chuck Norris]!)

7. Putnam problems always have slick solutions. That leads to a helpful meta-approach:
“The only way this problem could have a nice solution is if this particular approach
worked out, unlikely as it seems, so I’ll try it out, and see what happens.”

8. Show no fear. If you think a problem is probably too hard for you, but you have an
idea, try it anyway. (Three hours is a long time.)
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Some specific writing tips

You’re working hard on a problem, focussing all your energy, applying all the good tips above,
and all of a sudden a bulb lights above your head: you have figured out how to solve one
of the problems! Awesome! But here’s the hard, unforgiving truth: that warm tingle you’re
feeling is no guarantee

• that you have actually solved the problem (are you sure you have all the cases covered?
Are you sure that all the little details work out? . . .)

and

• that you will get any or all credit for it.

Solving the problem is only half the battle. Now you have launch into the other half, convincing
the grader that you have actually done so.

Life is tough, and Putnam graders may be even tougher. But here’s a list of things which,
when done properly, will yield a nice write-up which will appease any reasonable grader.

1. All that scrap paper, filled with your musings on the problem to date? Put it aside; you
must write a clean, coherent solution on a fresh piece of paper.

2. Before you start writing, organize your thoughts. Make a list of all steps to the solution.
Figure out what intermediary results you will need to prove. For example, if the problem
involves induction, always start with the base case, and continue with proving that “true
for n implies true for n+ 1”. Make sure that the steps follow from each other logically,
with no gaps.

3. After tracing a “road to proof” either in your head or (preferably) on scratch paper,
start writing up the solution on a fresh piece of paper. The best way to start this is by
writing a quick outline of what you propose to do. Sometimes, the grader will just look
at this outline, say “Yes, she knows what she is doing on this problem!”, and give the
credit.

4. Lead with a clear statement of your final solution.

5. Complete each step of the “road” before you continue to the next one.

6. When making statements like “it follows trivially” or “it is easy to see”, listen for quiet,
nagging doubts. If you yourself aren’t 100% convinced, how will you convince someone
else? Even if it seems to follow trivially, check again. Small exceptions may not be
obvious. The strategy “I am sure it’s true, even if I don’t see it; if I state that it’s
obvious, maybe the grader will believe I know how to prove it” has occasionally led its
user to a score of 0 out of 10.

7. Organize your solution on the page; avoid writing in corners or perpendicular to the
normal orientation. Avoid, if possible, post-factum insertion (if you discover you’ve
missed something, rather than making a mess of the paper by trying to write it over,
start anew. You have the time!)
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8. Before writing each phrase, formulate it completely in your mind. Make sure it expresses
an idea. Starting to write one thing, then changing course in mid-sentence and saying
another thing is a sure way to create confusion.

9. Be as clear as possible. Avoid, if possible, long-winded phrases. Use as many words as
you need – just do it clearly. Also, avoid acronyms.

10. If necessary, state intermediary results as “claims” or “lemmas” which you can prove
right after stating them. If you cannot prove one of these results, but can prove the
problem’s statement from it, state that you will assume it, then show the path from it
to the solution. You may get partial credit for it.

11. Rather than using vague statements like “and so on” or “repeating this process”, for-
mulate and prove by induction.

12. When you’re done writing up the solution, go back and re-read it. Put yourself in the
grader’s shoes: can someone else read your write-up and understand the solution? Must
one look for things in the corners? Are there “miraculous” moments?, etc..
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10.1 Week nine problems

Here are the problems from this year’s Virginia Tech Regional Math Contest:
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11 Week ten (November 5) — Polynomials

This week’s problem are all about polynomials, which come up in virtually every Putnam
competition.

Things to know about polynomials

• Fundamental Theorem of Algebra: Every polynomial p(x) = xn+a1x
n−1+a2x

n−2+
. . .+ an−1x+ an, with real or complex coefficients, has a root in the complex numbers,
that is, there is c ∈ C such that p(c) = 0.

• Factorization: In fact, every polynomial p(x) = xn+a1x
n−1+a2x

n2 + . . .+an−1x+an,
with real or complex coefficients, has exactly n roots, in the sense that there is a vector
(c1, . . . , cn) (perhaps with some repetitions) such that

p(x) = (x− c1)(x− c2) . . . (x− cn).

If a c appears in this vector exactly k times, it is called a root or zero of multiplicity k.
The next bullet point gives a very useful consequence of this.

• Two different polynomials of the same degree can’t agree too often: If p(x)
and q(x) (over R or C) both have degree at most n, and there are n+1 distinct numbers
x1, . . . , xn+1 such that p(xi) = q(xi) for i = 1, . . . , n + 1, then p(x) and q(x) are equal
for all x. [Because then p(x) − q(x) is a polynomial of degree at most n with at least
n+ 1 roots, so must be identically zero].

• Complex conjugates: If the coefficients of p(x) = xn+a1x
n−1+a2x

n2+. . .+an−1x+an
are all real, then the complex roots occur in complex-conjugate pairs: if s+ it (with s, t
real, and i =

√
−1) is a root, then s− it is also a root.

• Coefficients in terms of roots: If (c1, . . . , cn) is the vector of roots of a polynomial
p(x) = xn+a1x

n−1+a2x
n2 + . . .+an−1x+an (over R or C), then each of the coefficients

can be expressed simply in terms of the roots: a1 is the negative of the sum of the ci’s;
a2 is the sum of the products of the ci’s, taken two at a time, a3 is the negative of the
sum of the products of the ci’s, taken three at a time, etc. Concisely:

ak = (−1)k
∑

A⊆{1,...,n}, |A|=k

∏
i∈A

ci.

• Elementary symmetric polynomials: The kth elementary symmetric polynomial in
variables x1, . . . , xn is

σk =
∑

A⊆{1,...,n}, |A|=k

∏
i∈A

xi

(these polynomials have already appeared in the last bullet point). A polynomial
p(x1, . . . , xn) in n variables is symmetric if for every permutation π of {1, . . . , n}, we
have

p(x1, . . . , xn) ≡ p(xπ(1), . . . , xπ(n)).
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(For example, x2
1 + x2

2 + x2
3 + x2

4 is symmetric, but x2
1 + x2

2 + x2
3 + x1x4 is not.) Every

symmetric polynomial in variables x1, . . . , xn can be expressed as a linear combination
of the σk’s.

• Some special values tell things about the coefficients: (Rather obvious, but worth
keeping in mind) If p(x) = a0x

n + a1x
n−1 + a2x

n2 + . . .+ an−1x+ an, then

p(0) = an

p(1) = a0 + a1 + a2 + . . .+ an

p(−1) = an − an−1 + an−2 − an−3 + . . .+ (−1)na0.

• Intermediate value theorem: If p(x) is a polynomial with real coefficients (or in fact
any continuous real function) such that for some a < b, p(a) and p(b) have different
signs, then there is some c, a < c < b, with p(c) = 0.

• Lagrange interpolation: Suppose that p(x) is a real polynomial of degree n, whose
graph passes through the points (x0, y0), (x1, y1), . . ., (xn, yn). Then we can write

p(x) =
n∑

i=0

yi
∏
j ̸=i

x− xj

xi − xj

.

• The Rational Roots theorem: Suppose that p(x) is a polynomial of degree n with
integer coefficients, and that x is a rational root a/b with a and b having no common
factors. Then the leading coefficient of p(x) (the coefficient of xn) is a multiple of b, and
the constant term is a multiple of a. An immediate corollary of this is that if p(x) is
a monic polynomial (integer coefficients, leading coefficient 1), then any rational root
must in fact be an integer; conversely, if a real number x is a root of a monic polynomial
but is not an integer, it must be irrational (for example,

√
2 is a root of monic x2 − 2,

but is clearly not an integer, so it must be irrational)!

• Gauss’ lemma: Here is a weak form of Gauss’ lemma, but one that is very useful: if
c is an integer root of a monic polynomial p(x) (integer coefficients, leading coefficient
1), then p(x) factors as (x− c)q(x), where q(x) is also a monic polynomial (the surprise
being not that q(x) has leading coefficient 1, but that it has all integer entries).

• One more fact about integer polynomials: Let p(x) be a (not necessarily monic)
polynomial of degree n with integer coefficients. For any integers a, b,

(a− b)|(p(a)− p(b)).

(So also,
(p(a)− p(b))|(p(p(a))− p(p(b))),

etc.)
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11.1 Week ten problems

1. For which real values of p and q are the roots of the polynomial x3− px2+11x− q three
consecutive integers? Give the roots in these cases.

2. Let p(x) be a polynomial with integer coefficients, for which p(0) and p(1) are odd. Can
p(x) have any integer zeroes?

3. (a) Determine all polynomials p(x) such that p(0) = 0 and p(x+ 1) = p(x) + 1 for all
x.

(b) Determine all polynomials p(x) such that p(0) = 0 and p(x2 + 1) = (p(x))2 + 1 for
all x.

4. Does there exist a non-zero polynomial f(x) for which xf(x − 1) = (x + 1)f(x) for all
x?

5. Let p(x) = xn + an−1x
n−1 + . . . + a1x + a0 be a polynomial with integer coefficients.

Suppose that there exist four distinct integers a, b, c, d with p(a) = p(b) = p(c) = p(d) =
5. Prove that there is no integer k with p(k) = 8.

6. Is there an infinite sequence a0, a1, a2, . . . of nonzero real numbers such that for n =
1, 2, 3, . . . the polynomial

pn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

has exactly n distinct real roots?
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11.2 Week ten solutions

1. For which real values of p and q are the roots of the polynomial x3− px2+11x− q three
consecutive integers? Give the roots in these cases.

Solution: From a Harvey Mudd Putnam prep class.

A polynomial with roots being three consecutive integers is of the form

(x− (a− 1))(x− a)(x− (a+ 1)) = x3 − 3ax2 + (3a2 − 1)x− (a3 − a)

for some integer a. So, matching coefficients, we must have 3a2 − 1 = 11, or a = ±2.
When a = 2 we get roots 1, 2, 3 and p = 6, q = 6; when a = −2 we get roots −3,−2,−1
and p = −6, q = −6.

2. Let p(x) be a polynomial with integer coefficients, for which p(0) and p(1) are odd. Can
p(x) have any integer zeroes?

Solution: From a Northwestern Putnam prep class.

No. If k is an even integer we have p(k) ≡ p(0) ≡ 1 (mod 2) (Why? Suppose a ≡ b (mod
m). Then aℓ ≡ bℓ (mod m) for any ℓ, so caℓ ≡ cbℓ (mod m) for any c, so (summing),
p(a) ≡ p(b) (mod m) for any polynomial p). By the same token, if k is odd then
p(k) ≡ p(1) ≡ 1 (mod 2). So we never have p(k) ≡ 0 (mod 2), and never have p(k) = 0.

3. (a) Determine all polynomials p(x) such that p(0) = 0 and p(x+ 1) = p(x) + 1 for all
x.

(b) Determine all polynomials p(x) such that p(0) = 0 and p(x2 + 1) = (p(x))2 + 1 for
all x.

Solution: Both parts are modified from the Putnam competition, 1971 problem A2.

For part (a), the only such polynomial is the identity polynomial.

By induction, p(x) = x for all positive integers x, so p(x) − x is a polynomial with
infinitely many zeros, so must be identically 0. We conclude that p(x) = x is the only
possible polynomial satisfying the given conditions.

For part (b), again, the only such polynomial is the identity polynomial.

We have p(0) = 0, p(1) = p(0)2 + 1 = 1, p(2) = p(1)2 + 1 = 2, p(5) = p(2)2 + 1 = 5,
p(26) = p(5)2 + 1 = 26 and in general, by induction, if the sequence (an) is defined
recursively by a0 = 0 and an+1 = a2n + 1, then p(an) = an. Since the sequence (an)
is strictly increasing, we find that there are infinitely many distinct values x for which
p(x) = x; as in the last part, this tells us that p(x) = x is the only possible polynomial
satisfying the given conditions.
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4. Does there exist a non-zero polynomial f(x) for which xf(x − 1) = (x + 1)f(x) for all
x?

Solution: From a Northwestern Putnam prep class.

No. For positive integer n we have

f(n) =
n

n+ 1
f(n− 1) =

n− 1

n+ 1
f(n− 2) = . . . = 0f(−1) = 0.

Hence f(x) has infinitely many zeros, and must be identically zero; f(x) ≡ 0.

5. Let p(x) = xn + an−1x
n−1 + . . . + a1x + a0 be a polynomial with integer coefficients.

Suppose that there exist four distinct integers a, b, c, d with p(a) = p(b) = p(c) = p(d) =
5. Prove that there is no integer k with p(k) = 8.

Solution: From a Northwestern Putnam prep class.

Set q(x) = p(x) − 5. We have q(a) = q(b) = q(c) = q(d) = 0 and so q(x) = r(x)(x −
a)(x− b)(x− c)(x− d), where r(x) is some rational polynomial; but in fact (by Gauss’
Lemma), r(x) is a polynomial over integers.

Aside: Why is r(k) above a polynomial over integers? Suppose xn + an−1x
n−1 + . . . +

a1x+a0 (call this expression 1), with all ai integers, factors as (x− c)(xn−1+ rn−2x
n−2+

. . .+ r1x+ r0) (call this expression 2), where c is an integer. Then necessarily the ri are
rational numbers; but in fact, we can show that they are all integers. This is obvious
when c = 0, so assume c ̸= 0. Expanding out the factorization and equating coefficients,
we get

an−1 = rn−2 − c

an−2 = rn−3 − crn−2

an−3 = rn−4 − crn−3

· · ·
a2 = r1 − cr2

a1 = r0 − cr1

a0 = −cr0.

Now evaluating both expression 1 and expression 2 at x = c, we get

cn + an−1c
n−1 + . . .+ a2c

2 + a1c+ a0 = 0.

plugging in a0 = −cr0 yields

c
(
cn−1 + an−1c

n−2 + . . .+ a2c+ a1 − r0
)
= 0.

Utilizing c ̸= 0, we conclude that

cn−1 + an−1c
n−2 + . . .+ a2c+ a1 = r0
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and so, since the left-hand side is clearly an integer, so is the right-hand side, r0. Now
plugging a1 = r0 − cr1 into this last inequality, and dividing by c, we get

cn−2 + an−1c
n−3 + . . .+ a2 = r1

so r1 is also an integer. Continuing in this manner we get, for general k,

cn−(k+1) + an−1c
n−(k+2) + . . .+ ak+1 = rk

for k ≤ n− 2 (this could be formally proved by induction), which allows us to conclude
that all of the ri’s are integers.

Back to solution: Now suppose there is an integer k with p(k) = 8. Then q(k) = 3,
so r(k)(k− a)(k− b)(k− c)(k− d) = 3. Since r(k), (k− a), (k− b), (k− c) and (k− d)
are all integers, and 3 is prime, one of the five must be ±3 and the remaining four must
be ±1. It follows that at least three of (k− a), (k− b), (k− c) and (k− d) must be ±1,
and so at least two of them must take the same value; this contradicts the fact that a,
b, c and d are distinct.

6. Is there an infinite sequence a0, a1, a2, . . . of nonzero real numbers such that for n =
1, 2, 3, . . . the polynomial

pn(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

has exactly n distinct real roots?

Solution: Putnam competition, 1990 problem B5.

We can explicitly construct such a sequence. Start with a0 = 1 and a1 = −1 (so case n =
1 works fine). We’ll construct the ai’s inductively, always alternating in sign. Suppose
we have a0, a1, . . . , an−1. The polynomial pn−1(x) = a0+a1x+a2x

2+ . . .+an−1x
n−1 has

real distinct roots x1 < . . . < xn−1. Choose y1, . . . , yn so that

y1 < x1 < y2 < x2 < . . . < yn−1 < xn−1 < yn.

The sequence pn−1(y1), pn−1(y2), . . . , pn−1(yn) alternates in sign (think about the graph of
y = pn−1(x)). As long as we choose an sufficiently close to 0, the sequence pn(y1), pn(y2), . . . , pn(yn)
alternates in sign (this is by continuity). So, choose such an an. Now choose a yn+1 suf-
ficiently large that pn(yn+1) has the opposite sign to pn(yn) (this is where alternating
the signs of the ai’s comes in — such a yn+1 exists exactly because an and an−1 have
opposite signs). We get that the sequence pn(y1), pn(y2), . . . , pn(yn+1) alternates in sign.
Hence pn(x) has n distinct real roots: one between y1 and y2, one between y2 and y3,
etc., up to one between yn and yn+1. This accounts for all its roots, and we are done.
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12 Week eleven (November 12) — Probability

Discrete probability may be thought about along the following lines: an experiment is per-
formed, with a set S, the sample space, of possible observable outcomes (e.g., roll a dice and
note the uppermost number when the dice lands; then S would be {1, 2, 3, 4, 5, 6}). S may
be finite or countable for our purposes. An event is a subset A of S; the event occurs if the
observed outcome is one of the elements of A (e.g., if A = {2, 4, 6}, which we might describe
as the event that an even number is rolled, then we would say that A occurred if we rolled a
4, and that it did not occur if we rolled a 5). The compound event A∪B is the event that at
least one of A, B occur; A∩B is the event that both A and B occur, and Ac (= S \A) is the
event that A did not occur.

A probability function is a function P that assigns to each event a real number, which is
intended to measure how likely A is to occur, or, in what proportion of a very large numbers
of independent repetitions of the experiment does A occur. P should satisfy the following
three rules:

1. P (A) ≥ 0 always (events occur with non-negative probability);

2. P (S) = 1 (something always happens); and

3. if A and B are disjoint events (no outcomes in common) then P (A∪B) = P (A)+P (B);
more generally, if A1, A2, . . . is a countable collection of mutually disjoint events, then

P (UiAi) =
∑
i

P (Ai).

Three consequences of the rules are the following relations that one would expect:

1. If A ⊆ B then P (A) ≤ P (B);

2. P (∅) = 0; and

3. P (Ac) = 1− P (A).

Usually one constructs the probability function in the following way: intuitition/experiment/some
underlying theory suggests that a particular s ∈ S will occur a proportion ps of the time, when
the experiment is repeated many times; a reality check here is that ps should be non-negative,
and that

∑
s∈S ps = 1. One then sets

P (A) =
∑
s∈A

ps;

it is readily checked that this function satisfies all the axioms.
In the particular case when S is finite and intuition/experiment/some underlying theory

suggests that all outcomes s ∈ S are equally likely to occur, we get the classical “definition”
of the probability of an event:

P (A) =
|A|
|S|

,
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and calculating probabilities comes down to counting.

Example: I toss a coin 100 times. How likely is it that I get exactly 50 heads?

Solution: All 2100 lists of outcomes of 100 tosses are equally likely, so each one should occur
with probability 1/2100. The number of outcomes in which there are exactly 50 heads is

(
100
50

)
,

so the required probability is (
100
50

)
2100

.

A random variableX is a function that assigns to each outcome of an experiment a (usually
real) numerical value. For example, if I toss a coin 100 times, I may not be interested in the
particular list of heads and tails I get, just in the total number of heads, so I could define X
to be the function that takes in a string of 100 heads and tails, and returns as the numerical
value the number of heads in the string. The density function of the random variable X is
the function pX(x) = P (X = x), where “P (X = x)” is shorthand for the event “the set of all
outcomes for which X evaluates to x”. For tossing a coin 00 times and counting the number
of heads, the density function is

pX(x) =

{ (
100
x

)
2−100 if x = 0, 1, 2, . . . , 100

0 otherwise.

More generally, we have the following:

Binomial distribution: I toss a coin n times, and each time it comes up heads with some
probability p. Let X be the number of heads that comes up. The random variable X is called
the binomial distribution with parameters n and p, and has density function

pX(x) =

{ (
n
x

)
px(1− p)n−x if x = 0, 1, 2, . . . , n

0 otherwise.

Note that by the binomial theorem.

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1.

The expected value of a probability distribution/random variable is a measure of the average
value of a long sequence of readings from that distribution; it is calculated as a weighted
average:

E(X) =
∑
x

xpX(x)

with reading x being given weight pX(x). For example, if X is the binomial distribution with
parameters n and p, then E(X) is

n∑
k=0

k

(
n

k

)
pk(1− p)n−k = np

n∑
k=0

(
n− 1

k − 1

)
pk−1(1− p)n−k

= np(p+ (1− p))n−1

= np,
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as we would expect.
It is worth knowing that expectation is a linear function:

Linearity of expectation: If a probability distribution/random variable X can be written
as the sum X1 + . . . +Xn of n (usually simpler) probability distributions/random variables,
then

E(X) = E(X1) + . . .+ E(Xn)

Example: n boxes have labels 1 through n. n cards with numbers 1 through n written
on them (one number per card) are distributed among the n boxes (one card per box). On
average how many boxes get the card whose number is the same as the label on the box?

Solution: Let Xi be the random variable that takes the value 1 if card i goes into box i, and 0
otherwise; pXi

(1) = 1/n, pXi
(0) = 1− (1/n) and pXi

(x) = 0 for all other x’s, so E(Xi) = 1/n.
Let X be the random variable that counts the number of boxes that get the right card; since
X = X1 + . . . Xn we have

E(X) = E(X1) + . . .+ E(Xn) = n(1/n) = 1

(independent of n!) [This is the famous problem of derrangements.]

One of the rules of probability is that for disjoint events A, B, we have P (A ∪ B) =
P (A) + P (B). If A and B have overlap, this formula overcounts by including outcomes in
A ∩B twice, so should be corrected to

P (A ∪B) = P (A) + P (B)− P (A ∩B).

For three events A,B,C, a Venn diagram readily shows that

P (A ∪ ∪C) = P (A) + P (B) + P (C)− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C).

There is a natural generalization:

Inclusion-exclusion (also called the sieve formula):

P (∪n
i=1Ai) =

n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩ Aj)

+
∑
i<j<k

P (Ai ∩ Aj ∩ Ak) + . . .

+(−1)ℓ−1
∑

i1<i2<...<iℓ

P (Ai1 ∩ Ai2 ∩ Aiℓ) + . . .

+(−1)n−1P (A1 ∩ A2 ∩ An).

Inclusion-exclusion is often helpful because calculating probabilities of intersections is eas-
ier than calculation probabilities of unions.

Example: In the problem of derrangements discussed above, what is the exact probability
that no box gets the correct card?
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Solution: Let Ai be the event that box i gets the right card. We have P (Ai) = 1/n, and
more generally for i1 < i2 < . . . < iℓ we have

P (Ai1 ∩ Ai2 ∩ Aiℓ) =
(n− ℓ)!

n!

(there are n! distributions of cards, and to make sure that boxes i1 through iℓ get the right card,
we are forced to place these ℓ cards each in a predesignated box; but the remaining n−ℓ cards
can be completely freely distributed among the remaining boxes). By inclusion-exclusion,

P (∪n
i=1Ai) =

n∑
ℓ=1

(−1)ℓ−1

(
n

ℓ

)
(n− ℓ)!

n!
,

the binomial term coming from selecting i1 < i2 < . . . < iℓ. We want the probability of none
of the boxes getting the right card, which is the complement of ∪n

i=1Ai:

P ((∪n
i=1Ai)

c) = 1−
n∑

ℓ=1

(−1)ℓ−1

(
n

ℓ

)
(n− ℓ)!

n!

=
n∑

ℓ=0

(−1)ℓ
(
n

ℓ

)
(n− ℓ)!

n!

=
n∑

ℓ=0

(−1)ℓ

ℓ!
.

Note that this is the sum of the first n+1 terms in the power series of ex around 0, evaluated
at x = −1, so as n gets larger the probability of there being no box with the right card
approaches 1/e.

There is a counting version of inclusion-exclusion, that is very useful to know:

Inclusion-exclusion (counting version):

| ∪n
i=1 Ai| =

n∑
i=1

|Ai| −
∑
i<j

|Ai ∩ Aj|

+
∑
i<j<k

|Ai ∩ Aj ∩ Ak|+ . . .

+(−1)ℓ−1
∑

i1<i2<...<iℓ

|Ai1 ∩ Ai2 ∩ Aiℓ |+ . . .

+(−1)n−1|A1 ∩ A2 ∩ An|.

Example: How many numbers are there, between 1 and n, that are relatively prime to n
(have no factors in common)?

Solution: Let n have prime factorization pa11 pa22 . . . pakk . Let Ai be the set of numbers between
1 and n that are multiples of pi. We have |Ai| = n/pi, and more generally for i1 < i2 < . . . < iℓ
we have

|Ai1 ∩ Ai2 ∩ Aiℓ | =
n

pi1 . . . piℓ
.
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We want to know |(Ai1 ∩Ai2 ∩Aiℓ)
c| (complement taken inside of {1, . . . , n}), because this is

exactly the set of numbers below n that share no factors in common with n. By inclusion-
exclusion,

| (∪n
i=1Ai)

c | = n

(
1−

k∑
i=1

1

pi
+
∑
i<j

1

pipj
− . . .+

(−1)n

p1p2 . . . pk

)

= n

(
1− 1

p1

)
. . .

(
1− 1

pk

)
.

The function

φ(n) = n

k∏
i=1

(
1− 1

pi

)
counting the number of numbers between 1 and n that are relatively prime to n, is called the
Euler totient function.

The only mention I’ll make of probability with uncountable underlying sample spaces is
this: if R is a region in the plane, then a natural model for “selecting a point from R, all
points equally likely”, is to say that for each subset R′ of R, the probability that the selected
point will be in R′ is Area(R′)/area(R), that is, proportional to the area of R′. This idea
naturally extends to more general spaces.

Example: I place a small coin at a random location on a 3 foot by 5 foot table. How likely
is it that the coin is within one foot of some edge of the table?

Solution: There’s a 1 foot by 3 foot region at the center of the table, consisting of exactly
those points that are not within one foot of some edge of the table; assuming that the coin
is equally likely to be placed at any location, the probability of landing in this region is
(1× 3)/(3× 5) = .2, so the probability of landing withing one foot of some edge is 1− .2 = .8.
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12.1 Week eleven problems

1. Shanille O’Keal shoots free throws on a basketball court. She hits the first and misses
the second, and thereafter the probability that she hits the next shot is equal to the
proportion of shots she has hit so far. What is the probability that she hits exactly 50
of her first 100 shots?

2. A dart, thrown at random, hits a square target. Assuming that any two parts of the
target of equal area are equally likely to be hit, find the probability that the point hit
is nearer to the center than to any edge. Express your answer in the form (a

√
b + c)/d

where a, b, c and d are integers.

3. A bag contains 2019 red balls and 2019 black balls. We remove two balls at a time
repeatedly and (i) discard both if they are the same color and (ii) discard the black ball
and return the red ball to the bag if their colors differ. What is the probability that this
process will terminate with exactly one red ball in the bag?

4. You have coins C1, C2, . . . , Cn. For each k, coin Ck is biased so that, when tossed, it has
probability 1/(2k+1) of falling heads. If the n coins are tossed, what is the probability
that the number of heads is odd? Express the answer as a rational function of n.

5. Two real numbers x and y are chosen at random in the interval (0, 1) with respect to the
uniform distribution. What is the probability that the closest integer to x/y is even?
Express the answer in the form r + sπ, where r and s are rational numbers.

6. Let k be a positive integer. Suppose that the integers 1, 2, 3, . . . , 3k+1 are written down
in random order. What is the probability that at no time during the process, the sum
of the integers that have been written up to that time is a positive integer divisible by
3? Your answer should be in closed form, but may include factorials.
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12.2 Week eleven solutions

1. Shanille O’Keal shoots free throws on a basketball court. She hits the first and misses
the second, and thereafter the probability that she hits the next shot is equal to the
proportion of shots she has hit so far. What is the probability that she hits exactly 50
of her first 100 shots?

Solution: This was Putnam Competition 2002, Problem B1.

Some doodling with small examples suggests the following: if Shanille throws a total of
n free throws, n ≥ 3, then for each k in the range [1, n − 1] the probability that she
makes exactly k shots in 1/(n− 1) (independent of k).

We can prove this by induction on n, with n = 3 very easy. For n > 3, we start with
the extreme case k = 1. The probability that she makes exactly one shot in total is the
probability that she misses each of shots 3 through n, which is

1

2
· 2
3
· 3
4
· . . . · n− 3

n− 2
· n− 2

n− 1
=

1

n− 1
.

For k > 1, there are two (mutually exclusive) ways that she can make k shots in total:

(a) Make k − 1 of the first n− 1, and make the last; the probability of this happening
is, by induction,

1

n− 2
· k − 1

n− 1
,

or

(b) make k of the first n − 1, and miss the last; the probability of this happening is,
by induction,

1

n− 2
· n− 1− k

n− 1
.

Thus the net probability of making k shots is

1

n− 2
· k − 1

n− 1
+

1

n− 2
· n− 1− k

n− 1
=

1

n− 1
,

and we are done by induction.

The answer to the given question is 1/99 (n = 100).

2. A dart, thrown at random, hits a square target. Assuming that any two parts of the
target of equal area are equally likely to be hit, find the probability that the point hit
is nearer to the center than to any edge. Express your answer in the form (a

√
b + c)/d

where a, b, c and d are integers.

Solution: This was on the Putnam Competition 1989, Problem B1. Note that this is
an example of a Putnam question with a typo: the correct (and officially sanctioned)
answer is as given below, but notice that c = −5, which is not a positive integer; whereas
the question (as it officially appeared) demanded that a, b, c, d all be positive integers.
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Place the dartboard on the x-y plane, with vertices at (0, 0), (0, 2), (2, 2) and (2, 0),
so center at (1, 1). We want to compute the are of the set of points inside this square
which are closer to (1, 1) than any of x = 0, 2, y = 0, 2. We’ll just consider the triangle
T bounded by vertices (0, 0), (1, 0), (1, 1); by symmetry, this is one eight of the desired
area.

For a point (x, y) in T , the distance to (1, 1) is
√

(x− 1)2 + (y − 1)2, and the distance

to the nearest of x = 0, 2, y = 0, 2 is just y. So the curve
√

(x− 1)2 + (y − 1)2 = y, or

y =
x2 − 2x+ 2

2

cuts T into two regions, one (containing (1, 1)) being the points that are closer to (1, 1)
than the nearest of x = 0, 2, y = 0, 2. This curve hits the line x = y at (2−

√
2, 2−

√
2).

So the desired area inside T is the total area of T (which is 1/2) minus the area bounded
by x = y from (0, 0) to (2−

√
2, 2−

√
2), then y = (x2−2x+2)/2 to (1, 1/2), then x = 1

to (1, 0), then the x-axis back to (0, 0). This area is the area of the triangle bounded by
(0, 0), (2−

√
2, 2−

√
2), and (2−

√
2, 0) (which is (2−

√
2)2/2), plus∫ 1

2−
√
2

x2 − 2x+ 2

2
dx =

1

3
(4
√
2− 5);

grand total (1/3)(4− 2
√
2). It follows that the desired area inside T is

1

2
− 1

3
(4− 2

√
2) =

1

6
(4
√
2− 5),

and so the total desired area is eight times this, or (4/3)(4
√
2− 5).

Since the total area of the square is 4, the desired probability is thus

1

3
(4
√
2− 5) ≈ .218951.

3. A bag contains 2019 red balls and 2019 black balls. We remove two balls at a time
repeatedly and (i) discard both if they are the same color and (ii) discard the black ball
and return the red ball to the bag if their colors differ. What is the probability that this
process will terminate with exactly one red ball in the bag?

Solution: I heard this problem from David Cook.

It helps to generalize to r red balls and b black balls, since as the process goes along the
number of balls of the two colors will not be equal. A little experimentation suggests
the following: if the process is started with and odd number r ≥ 1 of red balls, and
b ≥ 0 balls, then it always ends with one red ball. We prove this by induction on r + b.
Formally: for each n ≥ 1, P (n) is the proposition “if the process is started with and
odd number r ≥ 1 of red balls, and b ≥ 0 balls, with r+ b = n, then it always ends with
one red ball”, and we prove P (n) by induction on n.

Base case n = 1 is trivial, as is base case n = 2. For base case n = 3, we either start
with three red balls, in which case after one step we are down to one red, or we start
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with one red and two blues. In this case, one third of the time we first pick the two
blacks, and we are down to one red, while two thirds of the time we first pick a black
and a red, and we are down to one red and one black, leaving us with one red after step
two.

Now consider n ≥ 4, and start with r red balls and b black balls, r odd and r + b = n.
If on the first step we pick two reds, then we are left with r − 2 red balls and b black
balls. Note that r − 2 is odd and (r − 2) + b = n − 2, so by induction in this case we
always end with one red. If on the first step we pick two blacks, then we are left with
r red balls and b − 2 black balls. Note that r is odd and r + (b − 2) = n − 2, so by
induction in this case we always end with one red. Finally, if on the first step we pick a
black and a red, then we are left with r red balls and b − 1 black balls. Note that r is
odd and r + (b − 1) = n − 1, so by induction in this case we always end with one red.
This completes the induction.

Since 2019 is odd, the probability of ending with one red, starting with 2019 red balls
and 2019 black balls is 1.

4. You have coins C1, C2, . . . , Cn. For each k, coin Ck is biased so that, when tossed, it has
probability 1/(2k+1) of falling heads. If the n coins are tossed, what is the probability
that the number of heads is odd? Express the answer as a rational function of n.

Solution: This was Putnam Competition 2001, A2.

Let pn be the required probability. We have p1 = 1/3. For n ≥ 2 we can express pn
in terms of pn−1 as follows: we get an odd number of heads either by getting an odd
number of heads among the first n − 1 (probability pn−1) and a tail on the nth coin
(probability 2n/(2n+ 1)), or by getting an even number of heads among the first n− 1
(probability 1 − pn−1) and a head on the nth coin (probability 1/(2n + 1)). This leads
to the recurrence

pn =
2npn−1

2n+ 1
+

1− pn−1

2n+ 1
=

1 + (2n− 1)pn−1

2n+ 1

valid for n ≥ 2. We claim that the solution to this recurrence is pn = n/(2n + 1). We
prove this claim by induction on n. This base case n = 1 is clear. For n ≥ 2 we have,
using the inductive hypothesis in the second equality,

pn =
1 + (2n− 1)pn−1

2n+ 1

=
1 + (2n− 1) n−1

2(n−1)+1

2n+ 1

=
n

2n+ 1
,

completing the induction.

5. Two real numbers x and y are chosen at random in the interval (0, 1) with respect to the
uniform distribution. What is the probability that the closest integer to x/y is even?
Express the answer in the form r + sπ, where r and s are rational numbers.
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Solution: This was Putnam competition 1993, problem B3.

The closest integer to x/y is 0 if x < 2y. It is 2n (for n > 0) if 2x/(4n + 1) < y <
2x/(4n− 1). (We can ignore y/x = 2/(2m+ 1) since it has probability zero.)

Hence the required probability is p = 1/4 + (1/3− 1/5) + (1/7− 1/9) + . . . . But now
recall that π/4 = 1− 1/3 + 1/5− 1/7 + . . . , so p = 5/4− π/4.

6. Let k be a positive integer. Suppose that the integers 1, 2, 3, . . . , 3k+1 are written down
in random order. What is the probability that at no time during the process, the sum
of the integers that have been written up to that time is a positive integer divisible by
3? Your answer should be in closed form, but may include factorials.

Solution: This was Putnam competition, problem A3.

The official solution, published in the American Mathematical Monthly, is very nicely
presented, so I reproduce it here verbatim:

“The number of ways to write down 1, 2, 3, . . . , 3k + 1 in random order is (3k + 1)!, so
we want to count the number of ways in which none of the “partial sums” is divisible
by 3. First, consider the integers modulo 3 : 1, 2, 0, 1, 2, 0, . . . , 1, 2, 0, 1. To write these
with none of the partial sums divisible by 3, we must start with a 1 or a 2. After that,
we can include or omit 0’s at will without affecting whether any of the partial sums are
divisible by 3, so suppose [initially] we omit all 0’s. The remaining sequence of 1’s and
2’s must then be of the form

1, 1, 2, 1, 2, 1, 2, . . .

or
2, 2, 1, 2, 1, 2, 1, . . .

(once you start, the rest of the sequence is forced by the condition that no partial sum
is divisible by 3). However, a sequence of the form 2, 2, 1, 2, 1, 2, 1, . . . has one more 2
than 1, and we need to have one more 1 than 2. So the only possibility for our sequence
modulo 3, once the 0’s are omitted, is 1, 1, 2, 1, 2, 1, 2, . . .. There are 2k + 1 numbers in
this sequence, and the k 0’s can be returned to the sequence arbitrarily except at the
beginning. So the number of ways to form the complete sequence modulo 3 equals the
number of ways to distribute the k identical 0’s over 2k + 1 boxes (the “slots” after the
1’s and 2’s), which by a standard “stars and bars” argument is

(
3k
k

)
. Once this is done,

there are k! ways to replace the k 0’s in the sequence modulo 3 by the actual integers
3, 6, . . . , 3k. Also, there are k! ways to “reconstitute” the 2’s and (k + 1)! ways for the
1’s. So the answer is (

3k
k

)
k!k!(k + 1)!

(3k + 1)!
.′′
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13 Week twelve (November 19) — Games

These problem are all about games played between two players. Usually when these problems
appear in the Putnam competition, you are asked to determine which player wins when both
players play as well as possible. Once you have decided which player wins (maybe based on
analyzing small examples), you need to prove this in general. Often this entails demonstrating
a winning strategy: for each possible move by the losing player, you can try to identify a single
appropriate response for the winning player, such that if the winning player always uses these
responses as the game goes on, then she will indeed win. It’s important to remember that you
must produce a response for the winning player for every possible move of the losing player
— not just a select few.

13.1 Week twelve problems

1. A chocolate bar is made up of a rectangular m by n grid of small squares. Two players
take turns breaking up the bar. On a given turn, a player picks a rectangular piece of
chocolate and breaks it into two smaller rectangular pieces, by snapping along one whole
line of subdivisions between its squares. The player who makes the last break wins. If
both players play optimally, who wins?

2. Two players alternately draw diagonals between vertices of a regular polygon. They
may connect two vertices if they are non-adjacent (i.e. not a side) and if the diagonal
formed does not cross any of the previous diagonals formed. The last player to draw a
diagonal wins.

Who wins if the polygon has 2019 vertices?

3. Two players play a game in which the first player places a king on an empty 8 by 8
chessboard, and then, starting with the second player, they alternate moving the king
(in accordance with the rules of chess) to a square that has not been previously occupied.
The player who moves last wins. Which player has a winning strategy?

4. I shuffle a regular deck of cards (26 red, 26 black), and begin to turn them face-up, one
after another. At some point during this process, you say “STOP!”. You can say stop
as early as before I’ve even turned over the first card, or as late as when there is only
one card left to be turned over; the only rule is that at some point you must say it.
Once you’ve said stop, I turn over the next card. If it is red, you win the game, and if
it is black, you lose.

If you play the strategy “say stop before even a single card has been turned over”, you
have a 50% chance of winning the game. Is there a more clever strategy that gives you
a better than 50% chance of winning the game?

5. A game involves jumping to the right on the real number line. If a and b are real numbers
and b > a , then the cost of jumping from a to b is b3 − ab2.

For what real numbers c can one travel from 0 to 1 in a finite number of jumps with
total cost exactly c?
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6. Alan and Barbara play a game in which they take turns filling entries of an initially
empty 1024 by 1024 array. Alan plays first. At each turn, a player chooses a real
number and places it in a vacant entry. The game ends when all the entries are filled.
Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is
zero. Which player has a winning strategy?

7. Two players, A and B, take turns naming positive integers, with A playing first. No
player may name an integer that can be expressed as a linear combination, with positive
integer coefficients, of previously named integers. The player who names “1” loses. Show
that no matter how A and B play, the game will always end.

8. Alice and Bob play a game in which they take turns removing stones from a heap that
initially has n stones. The number of stones removed at each turn must be one less
than a prime number. The winner is the player who takes the last stone. Alice plays
first. Prove that there are infinitely many n such that Bob has a winning strategy. (For
example, if n = 17, then Alice might take 6 leaving 11; Bob might take 1 leaving 10;
then Alice can take the remaining stones to win.)
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13.2 Week twelve solutions

1. A chocolate bar is made up of a rectangular m by n grid of small squares. Two players
take turns breaking up the bar. On a given turn, a player picks a rectangular piece of
chocolate and breaks it into two smaller rectangular pieces, by snapping along one whole
line of subdivisions between its squares. The player who makes the last break wins. If
both players play optimally, who wins?

Solution: I learned this (infuriating!) problem from Peter Winkler.

There is one piece of chocolate to start, and mn pieces at the end. Each turn by a player
increases the number of squares by 1. Hence a game lasts mn − 1 turns, completely
independently of the strategies of the two players! The winner is determined by the
parity of m and n (no strategy involved!): if m and n are both odd, mn− 1 is even and
player 2 wins. Otherwise mn− 1 is odd and player 1 wins.

2. Two players alternately draw diagonals between vertices of a regular polygon. They
may connect two vertices if they are non-adjacent (i.e. not a side) and if the diagonal
formed does not cross any of the previous diagonals formed. The last player to draw a
diagonal wins.

Who wins if the polygon has 2019 vertices?

Solution: UTexas Putnam prep problem.

It’s easy to prove (by induction) that if the game is played on an n-sided polygon (n ≥ 4)
then it will have exactly n − 3 moves. So on a 2015-sided polygon, there will by 2012
moves, and player 2 must move last (and win). Again, no strategy is involved!

3. Two players play a game in which the first player places a king on an empty 8 by 8
chessboard, and then, starting with the second player, they alternate moving the king
(in accordance with the rules of chess) to a square that has not been previously occupied.
The player who moves last wins. Which player has a winning strategy?

Solution: UTexas Putnam prep problem.

Player 2 has a winning strategy. She can imagine the board as being covered with
non-overlapping 2-by-1 dominos (there are many ways to cover an 8 by 8 board with
dominos). Wherever player 1 puts the king, player 2 moves it to the other square in the
corresponding domino. She then repeats this strategy until the game is over.

4. I shuffle a regular deck of cards (26 red, 26 black), and begin to turn them face-up, one
after another. At some point during this process, you say “STOP!”. You can say stop
as early as before I’ve even turned over the first card, or as late as when there is only
one card left to be turned over; the only rule is that at some point you must say it.
Once you’ve said stop, I turn over the next card. If it is red, you win the game, and if
it is black, you lose.
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If you play the strategy “say stop before even a single card has been turned over”, you
have a 50% chance of winning the game. Is there a more clever strategy that gives you
a better than 50% chance of winning the game?

Solution: Asked me by David Wilson, in an interview for a job at Microsoft Research.

Here’s the quick-and-dirty solution: The game fairly easily seen to be equivalent to the
following: exactly as before, except now when you say “STOP”, I turn over the bottom
card in the pile of cards that remains. In this formulation, it is clear that there cannot
be a strategy that gives you better than a 50% chance of winning.

Here’s a more prosaic solution. Suppose that instead of being played with a balanced
deck, it is played with a deck that has a red cards and b black cards. We claim that if
there are a red cards and b black cards, then there is no strategy better than the naive
one of saying stop before a single card has been turned over; note that with this strategy
you win with probability a/(a + b). We prove this by induction on a + b. If a + b = 1,
then (whether a = 1 or a = 0) the result is trivial. Suppose a+ b ≥ 2. To get a strategy
that potentially improves on the proposed best strategy, you must at least wait for the
first card to be turned over. Two things can happen:

• The first card turned over is red; this happens with probability a/(a + b). Once
this happens, you are playing a new version of the game, with a− 1 red cards and
b black cards, and by induction your best winning strategy has you winning with
probability (a− 1)/(a− 1 + b).

• The first card turned over is black; this happens with probability b/(a + b). Once
this happens, you are playing a new version of the game, with a red cards and b−1
black cards, and by induction your best winning strategy has you winning with
probability a/(a+ b− 1).

Your probability of winning the original game is therefore at most

a

a+ b
× a− 1

a+ b− 1
+

b

a+ b
× a

a+ b− 1
=

a

a+ b
.

5. A game involves jumping to the right on the real number line. If a and b are real numbers
and b > a , then the cost of jumping from a to b is b3 − ab2.

For what real numbers c can one travel from 0 to 1 in a finite number of jumps with
total cost exactly c?

Solution: This was problem B2 of the 1999 Putnam Competition.

All c such that 1/3 ≤ c ≤ 1. For a detailed solution, see e.g. http://math.hawaii.

edu/home/pdf/putnam/Putnam_2009.pdf.

6. Alan and Barbara play a game in which they take turns filling entries of an initially
empty 1024 by 1024 array. Alan plays first. At each turn, a player chooses a real
number and places it in a vacant entry. The game ends when all the entries are filled.
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Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is
zero. Which player has a winning strategy?

Solution: Putnam competition 2008, problem A2.

Barbara has a winning strategy. For example, Whenever Alan plays x in row i, Barbara
can play −x in some other place in row i (since there are an even number of places
in row i, Alan will never place the last entry in a row if Barbara plays this strategy).
So Barbara can ensure that all row-sums of the final matrix are 0, so that the column
vector of all 1’s is in the kernel of the final matrix, so it has determinant zero.

7. Two players, A and B, take turns naming positive integers, with A playing first. No
player may name an integer that can be expressed as a linear combination, with positive
integer coefficients, of previously named integers. The player who names “1” loses. Show
that no matter how A and B play, the game will always end.

Solution: This is the game of Sylver coinage, invented by John H. Conway; see http:

//en.wikipedia.org/wiki/Sylver_coinage. It is named after J. J. Sylvester, who
proved that if a and b are relatively prime positive integers, then the largest positive
integer that cannot be expressed as a positive linear combination of a and b is (a−1)(b−
1)− 1.

Suppose the first k moves consist of naming x1, . . . , xk. Let gk be the greatest common
divisor of the xi’s. Consider the set of numbers expressible as a linear combination of
the xi’s over positive integers. Each x in this set is an integer multiple of gk (gk divides
the right-hand side of x =

∑
i aixi, so it divides the left-hand side). We claim that there

is some m such that all multiples of gk greater than mgk are in this set.

If we can prove this claim, we are done. The sequence (g1, g2, g3, . . .) is non-increasing.
It stays constant in going from gi to gi+1 exactly when xi+1 is a multiple of gi, and drops
exactly when xi+1 is not a multiple of gi. By our claim, once the sequence has reached a
certain g, it can only stay there for a finite length of time. So eventually that sequence
becomes constantly 1. But once the sequence reaches 1, there are only finitely many
numbers that can be legitimately played, and so eventually 1 must be played.

Here’s what we’ll prove, which is equivalent to the claim: if x1, . . . , xk are relatively
prime positive integers (greatest common divisor equals 1) then there exists an m such
that all numbers greater than m can be expressed as a positive linear combination of
the xi’s. We prove this by induction on k. When k = 1, xk = 1 and the result is
trivial. For k > 1, consider x1, . . . , xk−1. These may not be relatively prime; say their
greatest common divisor is d. By induction, there’s an m′ such that all positive integer
multiples of d greater than m′d can be expressed as a positive linear combination of the
x1, . . . , xk−1. Now d and xk must be relatively prime (otherwise the xi’s would not be
relatively prime), which means that there must be some positive integer e (which way
may assume is between 1 and xk − 1) with ed ≡ 1 (modulo xk). If we add any multiple
of xk to e to get e′, we still get e′d ≡ 1 (modulo xk). Pick a multiple large enough
that e′ > m′. By induction, e′d can be expressed as a positive integer combination of
x1, . . . , xk−1. So too can 2e′d, 3e′d, . . . , xke

′d. These xk numbers cover all the residue
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classes modulo xk. Let m be one less than the largest of these numbers. For ℓ > m, we
can express ℓ as a positive linear combination of x1, . . . , xk as follows: first, determine
the residue class of ℓ modulo xk, say it’s p. Then add the appropriate positive integer
multiple of xk to pe′d (which can can be expressed as a positive integer combination of
x1, . . . , xk−1).

8. Alice and Bob play a game in which they take turns removing stones from a heap that
initially has n stones. The number of stones removed at each turn must be one less
than a prime number. The winner is the player who takes the last stone. Alice plays
first. Prove that there are infinitely many n such that Bob has a winning strategy. (For
example, if n = 17, then Alice might take 6 leaving 11; Bob might take 1 leaving 10;
then Alice can take the remaining stones to win.)

Solution: Putnam 2006, A2.

Here is, verbatim, the solution published in the American Mathematical Monthly.

Suppose there are only finitely many n such that Bob will win if Alice starts with n
stones, say all such n < N . TakeK > N so thatK−m+1 is composite form = 0, . . . , N .
Starting with n = K, Alice must remove p − 1 stones, for p a prime number, leaving
m = K − p + 1 stones. But m > N since K − m + 1 = p is prime and K − m + 1 is
composite for m < N . By assumption, Alice can win starting from a heap of m stones.
But it is Bob’s turn to move, and so he could use the same strategy Alice would have
used to win. This applies for any first move Alice could have made from a heap of K
stones. Hence Bob has a winning strategy for a number K > N of stones, contrary
to hypothesis. Instead there must be infinitely many n for which Bob has a winning
strategy.

Implicit in this solution is the following useful fact: in a finite, two-person game with
no draws allowed, one of the players must have a winning strategy.
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14 Week thirteen (November 26) — a grab-bag

This handout is a “mock Putnam” exam. Look over the problems, pick out some that you
feel good about, and tackle them! You’ll do best if you engage your conscious brain fully on a
single problem, rather than hopping back-and-forth between problems every few minutes (but
it’s also a good idea to read all the problems before tackling one, to allow your subconscious
brain to mull over the whole set). The ideal way to approach this set would be to give yourself
three quiet, uninterrupted hours, and see how you do.

14.1 Week 13 problems

1. A sequence a0, a1, a2, . . . of real numbers is defined recursively by

a0 = 1, an+1 =
an

1 + nan
(n = 0, 1, 2, . . .).

Find a general formula for an.

2. Consider a 7 by 7 checkerboard with the squares at the four corners removed (so that
the remaining board has 45 squares). Is it possible to cover this board with 1 by 3 tiles
so that no two tiles overlap? Explain!

3. Let f be a function on [0, 2π] with continuous first and second derivatives and such that
f ′′(x) > 0 for 0 < x < 2π. Show that the integral∫ 2π

0

f(x) cosx dx

is positive.

4. Given a nonnegative integer b, call a nonnegative integer a ≤ b a subordinate of b if
each decimal digit of a is at most equal to the decimal digit of b in the same position
(counted from the right). For example, 1329 and 316 are subordinates of 1729, but 1338
is not since the second-last digit of 1338 is greater than the corresponding digit in 1729.
Let f(b) denote the number of subordinates of b. For example, f(13) = 8, since 13 has
exactly 8 subordinates: 13, 12, 11, 10, 3, 2, 1, 0. Find a simple formula for the sum

S(n) =
∑

0≤b<10n

f(b).

5. Let a1, a2, . . . , a65 be positive integers, none of which has a prime factor greater than 13.
Prove that, for some i, j with i ̸= j, the product aiaj is a perfect square.

6. Let n be an even positive integer, and let Sn denote the set of all permutations of
{1, 2, . . . , n}. Given two permutations σ1, σ2 ∈ Sn, define their distance d(σ1, σ2) by

d(σ1, σ2) =
n∑

k=1

|σ1(k)− σ2(k)|.

Determine, with proof, the maximal distance between two permutations in Sn, i.e.,
determine the exact value of maxσ1,σ2∈Sn d(σ1, σ2).
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14.2 Week 13 Solutions

These problems were taken from the Putnam preparation pages of the University of Illinois
at Urbana-Champaign; specifically the six problems on the previous page comprised the 2008
UIUC mock Putnam exam. Solutions can be found at

http://www.math.uiuc.edu/~hildebr/putnam/problems/mock08sol.pdf.
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15 Week fourteen (December 3) — Preparing for the

Putnam Competition

The Putnam Competition will take place on

Saturday December 7,

in

Hayes-Healy 231,

with these being the times of the two papers:

10am-1pm (paper A), 3pm-6pm (paper B).

Lunch will be provided between the two papers, in the Math department lounge.
Paper, pencils, erasers and sharpeners will be provided. Feel free to bring brain fuel.

Notes, calculators, book, laptops etc. are not allowed.

In what follows, I’m going to repeat some of the advice I’ve given on some previous hand-
outs. I encourage you to look over this carefully, and bear it in mind as you go over this week’s
problems and (more importantly) as you take the Putnam competition. I have shamelessly ap-
propriate much of this from Ravi Vakil’s Stanford Putnam Preparation website (http://math.
stanford.edu/~vakil/putnam05/05putnam7.pdf), and from Ioana Dumitriu’s UWashing-
ton’s “The Art of Problem Solving” website (http://www.math.washington.edu/~putnam/
index.html). Both of these websites are filled with what I think is great advice.

Some general problem-solving tips

Remember that problem solving is a full-contact sport: throw everything you know at the
problem you are tackling! Sometimes, the solution can come from an unexpected quarter.
Here are some slogans to keep in mind when solving problems:

• Try small cases!

• Plug in small numbers!

• Do examples!

• Look for patterns!

• Draw pictures!

• Write lots!

• Talk it out!

• Choose good notation!

• Look for symmetry!
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• Break into cases!

• Work backwards!

• Argue by contradiction!

• Consider extreme cases!

• Modify the problem!

• Make a generalization!

• Don’t give up after five minutes!

• Don’t be afraid of a little algebra!

• Take a break!

• Sleep on it!

• Ask questions!

And above all:

• Enjoy!

General Putnam tips

Getting ready

1. Try, if possible, to get a good night’s sleep beforehand.

2. Wear comfortable clothes.

3. There’s no need to bring paper, pencils, erasers or pencil sharpeners (unless you have
some “lucky” ones); I will provide all of these necessary materials.

4. Bring snacks and drinks, to keep your energy up during each three-hour session. I’ll
provide pizza, fruit and soda for lunch, so if you are happy with that, there’s no need
to bring any lunch supplies.

5. During the competition, you can’t use outside notes, computers, calculators, etc..

During the competition

1. Spend some time at the start looking over the questions. The earlier questions in each
half tend to be easier, but this isn’t always the case — you may be lucky/inspired and
spot a way in to A4, before A1. Remember that you have three hours for each paper;
that’s a lot of time, so take some time to begin calmly.

2. When (rather than if) your mind gets tired, take a break; go outside, get a snack, use
the bathroom, clear your head.
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3. The “fifteen minute rule” can be helpful: if you find that you’ve been thinking about a
problem aimlessly without having any serious new ideas for 15 minutes, then jump to a
different problem, or take a break.

4. Don’t become discouraged. Don’t think of this as a test or exam. Think of it instead
as a stimulating challenge. Often a problem will break open a couple of hours into
the session. And the problem with your name on it might be in the afternoon session.
Remember that the national median score for the entire competition is usually 0 or 1;
getting somewhere on one question is significant (it puts you on the top half of the
curve); getting a full question is a big deal.

5. If you solve a problem, write it up very well (rather than starting a new problem);
grading on the Putnam competition is very severe. See the later section on writing for
more on this.

Some specific mathematical tips

Here are some very simple things to remember, that can be very helpful, but that people tend
to forget to do.

1. Try a few small cases out. Try a lot of cases out. Remember that the three hours of
the Putnam competition is a long time — you have time to spare! If a question asks
what happens when you have n things, or 2015 things, try it out with 1, 2, 3, 4 things,
and try to form a conjecture. This is especially valuable for questions about sequences
defined recursively.

2. Don’t be afraid to use lots and lots of paper.

3. Don’t be afraid of diving into some algebra. (Again, three hours is a long time . . ..) You
shouldn’t waste that much time, thanks to the 15-minute rule.

4. If a question asks to determine whether something is true or false, and the direction
you initially guess doesn’t seem to be going anywhere, then try guessing the opposite
possibility.

5. Be willing to try (seemingly) stupid things.

6. Look for symmetries. Try to connect the problem to one you’ve seen before. Ask yourself
“how would [person X] approach this problem”? (It’s quite reasonable here for [Person
X] to be [Chuck Norris]!)

7. Putnam problems always have slick solutions. That leads to a helpful meta-approach:
“The only way this problem could have a nice solution is if this particular approach
worked out, unlikely as it seems, so I’ll try it out, and see what happens.”

8. Show no fear. If you think a problem is probably too hard for you, but you have an
idea, try it anyway. (Three hours is a long time.)
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Some specific writing tips

As in a previous week, I highly recommend reading the essays:

• (short, with very practical advice and a few examples): http://web.evanchen.cc/

handouts/english/english.pdf

• (long, with lots of examples of both good and bad writing): https://artofproblemsolving.
com/news/articles/how-to-write-a-solution

You’re working hard on a problem, focussing all your energy, applying all the good tips
above, and all of a sudden a bulb lights above your head: you have figured out how to solve
one of the problems! Awesome! But here’s the hard, unforgiving truth: that warm tingle
you’re feeling is no guarantee

• that you have actually solved the problem (are you sure you have all the cases covered?
Are you sure that all the little details work out? . . .)

and

• that you will get any or all credit for it.

Solving the problem is only half the battle. Now you have launch into the other half, convincing
the grader that you have actually done so.

Life is tough, and Putnam graders may be even tougher. But here’s a list of things which,
when done properly, will yield a nice write-up which will appease any reasonable grader.

1. All that scrap paper, filled with your musings on the problem to date? Put it aside; you
must write a clean, coherent solution on a fresh piece of paper.

2. Before you start writing, organize your thoughts. Make a list of all steps to the solution.
Figure out what intermediary results you will need to prove. For example, if the problem
involves induction, always start with the base case, and continue with proving that “true
for n implies true for n+ 1”. Make sure that the steps follow from each other logically,
with no gaps.

3. After tracing a “road to proof” either in your head or (preferably) on scratch paper,
start writing up the solution on a fresh piece of paper. The best way to start this is by
writing a quick outline of what you propose to do. Sometimes, the grader will just look
at this outline, say “Yes, she knows what she is doing on this problem!”, and give the
credit.

4. Lead with a clear statement of your final solution.

5. Complete each step of the “road” before you continue to the next one.

6. When making statements like “it follows trivially” or “it is easy to see”, listen for quiet,
nagging doubts. If you yourself aren’t 100% convinced, how will you convince someone
else? Even if it seems to follow trivially, check again. Small exceptions may not be
obvious. The strategy “I am sure it’s true, even if I don’t see it; if I state that it’s
obvious, maybe the grader will believe I know how to prove it” has occasionally led its
user to a score of 0 out of 10.
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7. Organize your solution on the page; avoid writing in corners or perpendicular to the
normal orientation. Avoid, if possible, post-factum insertion (if you discover you’ve
missed something, rather than making a mess of the paper by trying to write it over,
start anew. You have the time!)

8. Before writing each phrase, formulate it completely in your mind. Make sure it expresses
an idea. Starting to write one thing, then changing course in mid-sentence and saying
another thing is a sure way to create confusion.

9. Be as clear as possible. Avoid, if possible, long-winded phrases. Use as many words as
you need – just do it clearly. Also, avoid acronyms.

10. If necessary, state intermediary results as “claims” or “lemmas” which you can prove
right after stating them. If you cannot prove one of these results, but can prove the
problem’s statement from it, state that you will assume it, then show the path from it
to the solution. You may get partial credit for it.

11. Rather than using vague statements like “and so on” or “repeating this process”, for-
mulate and prove by induction.

12. When you’re done writing up the solution, go back and re-read it. Put yourself in the
grader’s shoes: can someone else read your write-up and understand the solution? Must
one look for things in the corners? Are there “miraculous” moments?, et cetera.
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