

Extremal problems for independent sets

David Galvin

University of Notre Dame

April 12, 2013

1 / 14

An extremal question for independent sets

Independent set Set of pairwise non-adjacent vertices

- i(G): Number of independent sets in G
- $i_t(G)$: Number of independent sets of size t

Question

Fix a family \mathcal{G} of graphs.

- What is the maximum of i(G) as G ranges over G?
- What about the maximum of $i_t(G)$ for each t?

Trees

$\mathcal{T}(n)$: trees on n vertices

Theorem (Prodinger, Tichy, 1982)

For $T \in \mathcal{T}(n)$,

• i(G) maximized by the star $K_{1,n-1}$

Theorem (Wingard, 1995)

For $T \in \mathcal{T}(n)$, and all t,

• $i_t(G)$ maximized by $K_{1,n-1}$

Graphs with given order and size

 $\mathcal{H}(n, m)$: graphs on *n* vertices with *m* edges

Theorem (Cutler, Radcliffe, 2011)

For $G \in \mathcal{H}(n, m)$,

- i(G) maximized by the lex graph L(n, m)
- for all t, $i_t(G)$ maximized by L(n, m)

The lex graph L(8, 11)

Graphs with given independence number

 $\mathcal{I}(n,\alpha)$: graphs on *n* vertices with $\alpha(G) = \alpha$

Theorem (Zykov, 1952)

For $G \in \mathcal{I}(n, \alpha)$,

- i(G) maximized by union of α almost-equal-sized cliques
- for all t, $i_t(G)$ maximized by same graph

The case n = 12, $\alpha = 5$

Regular graphs

 $\mathcal{R}(n,d)$: d-regular graphs on n vertices

Theorem (Kahn, 2001; Zhao, 2011)

For $G \in \mathcal{R}(n, d)$,

• i(G) maximized by $\frac{n}{2d}K_{d,d}$, union of n/2d copies of $K_{d,d}$

Conjecture (Kahn, 2001)

For $G \in \mathcal{R}(n, d)$, and all t,

• $i_t(G)$ maximized by $\frac{n}{2d}K_{d,d}$

Asymptotic evidence given by Carroll, G., Tetali, and by Zhao

Graphs with given minimum degree

 $\mathcal{G}(n,\delta)$: graphs on *n* vertices with minimum degree δ

Speculation

Removing edges increases independent set count, so maybe

• i(G) maximized by $\frac{n}{2\delta}K_{\delta,\delta}$

Not true, even for $\delta = 1$

An unbalanced maximizer

Theorem (G., 2011)

For $n \geq 8\delta^2$ and $G \in \mathcal{G}(n, \delta)$,

• i(G) uniquely maximized by $K_{\delta,n-\delta}$.

Conjecture (G., 2011)

For $G \in \mathcal{G}(n, \delta)$,

- for $n \geq 2\delta$, i(G) maximized by $K_{\delta,n-\delta}$
- for smaller n, i(G) maximized by $K_{n-\delta,n-\delta,\dots,n-\delta,x}$ $(x \le n-\delta)$

Fixed size in $\mathcal{G}(n, \delta)$

 $i_2(G)=$ number of non-edges, so $K_{\delta,n-\delta}$ definitely *not* the maximizer

Conjecture (G., 2011)

For $n \geq 2\delta$, $t \geq 3$ and $G \in \mathcal{G}(n, \delta)$,

• $i_t(G)$ maximized by $K_{\delta,n-\delta}$

Partial results

- Bipartite G (Alexander, Cutler, Mink, 2012)
- $\delta \leq 3$ (Engbers, G., 2012)
- $t \ge 2\delta + 1$ for larger δ (Engbers, G., 2012)
- $t \ge 3$, $n \ge C\delta^3$ (McDiarmid, Law, 2012)

Leaving, for each $\delta \geq 4$ and non-bipartite G, the box

$$t \in \{3, \ldots, 2\delta\}, \ n \in \{2\delta, \ldots, C\delta^3\}$$

Proof for $t \geq 2\delta + 1$ (I)

Observation

• Suffices to consider $t = 2\delta + 1$

Proof Suppose for some $t > \delta$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}$$

Then

$$\#(ordered \text{ independent } t\text{-sets}) \leq (n-\delta)^{\underline{t}}$$

Once t vertices chosen, at least $\delta + t$ ruled out, so

$$\#(\text{ordered ind. } (t+1)\text{-sets}) \le (n-\delta)^{\underline{t}}(n-(\delta+t)) = (n-\delta)^{\underline{t+1}}$$

and

$$i_{t+1}(G) \leq \binom{n-\delta}{t+1} = i_{t+1}(K_{\delta,n-\delta})$$

Proof for $t \geq 2\delta + 1$ (II)

Proof strategy

• Prove $t = 2\delta + 1$ case by induction on n

Base case
$$n = 3\delta + 1$$
 is trivial Induction, case 1 There is $x \in V(G)$ with $\delta(G - x) = \delta$
$$i_t(G) = i_t(G - x) + i_{t-1}(G - x - N(x))$$

$$\leq \binom{(n-1) - \delta}{t} \text{ (induction)} + \binom{n - (\delta + 1)}{t - 1} \text{ (trivial)}$$

$$\leq \binom{n - \delta}{t} \text{ (Pascal)}$$

11 / 14

Proof for $t \geq 2\delta + 1$ (III)

Induction, case 2 There is $no x \in V(G)$ with $\delta(G - x) = \delta$

Ordered ind. *t*-sets starting with vertex of degree $> \delta$:

$$N_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\dots(n-(\delta+t))$$

where k = number of vertices of degree $> \delta$

Ordered ind. *t*-sets starting with vertex of degree = δ :

$$N_{=\delta} \le (n-k)(n-(\delta+1))(n-(\delta+2))\dots(n-2\delta)$$

 $(n-(2\delta+2))((n-(2\delta+2)))\dots(n-(\delta+t))$

Why the missing term?

- Worst case: each new vertex shares δ neighbors of first choice
- This can't happen $\delta + 1$ times (or we're in case 1)
- $(\delta + 1)$ st choice (at worst) removes a new vertex

Proof for $t \geq 2\delta + 1$ (IV)

Have

$$N_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\dots(n-(\delta+t))$$

and

$$N_{=\delta} \le (n-k)(n-(\delta+1))(n-(\delta+2))\dots(n-2\delta)$$

 $(n-(2\delta+2))((n-(2\delta+2)))\dots(n-(\delta+t))$

Worst case k = n, giving bound

$$i_t(G) \leq \frac{n(n-(\delta+2))(n-(\delta+3))\dots(n-(\delta+t))}{t!}$$
 $< \binom{n-\delta}{t}$

Last inequality uses $t = 2\delta + 1$

Final comments

- Maybe improve result by considering first, second, third ... choices more carefully, and optimizing a linear program
- $\delta=2,3$ requires messy case analysis, structural results for δ -critical graphs, with $\delta=4$ hopeless by our methods

Open questions

- $i_t(G)$ for all t and n-vertex, d-regular G
- i(G) for $n \leq 8\delta^2$ for n-vertex G, min. degree δ
- $i_t(G)$ for $t \in [3, 2\delta]$ and $n \in [2\delta, C\delta^3]$ for n-vertex G, min. degree δ
- . . .

THANK YOU!

Slides at http://nd.edu/~dgalvin1