

Extremal problems for independent sets

David Galvin
University of Notre Dame

April 12, 2013

An extremal question for independent sets

Independent set Set of pairwise non-adjacent vertices

- $i(G)$: Number of independent sets in G
- $i_{t}(G)$: Number of independent sets of size t

Question

Fix a family \mathcal{G} of graphs.

- What is the maximum of $i(G)$ as G ranges over \mathcal{G} ?
- What about the maximum of $i_{t}(G)$ for each t ?

Trees

$\mathcal{T}(n)$: trees on n vertices

Theorem (Prodinger, Tichy, 1982)

For $T \in \mathcal{T}(n)$,

- $i(G)$ maximized by the star $K_{1, n-1}$

Theorem (Wingard, 1995)
For $T \in \mathcal{T}(n)$, and all t,

- $i_{t}(G)$ maximized by $K_{1, n-1}$

Graphs with given order and size

$\mathcal{H}(n, m)$: graphs on n vertices with m edges
Theorem (Cutler, Radcliffe, 2011)
For $G \in \mathcal{H}(n, m)$,

- $i(G)$ maximized by the lex graph $L(n, m)$
- for all $t, i_{t}(G)$ maximized by $L(n, m)$

The lex graph $L(8,11)$

Graphs with given independence number

$\mathcal{I}(n, \alpha)$: graphs on n vertices with $\alpha(G)=\alpha$

Theorem (Zykov, 1952)
For $G \in \mathcal{I}(n, \alpha)$,

- $i(G)$ maximized by union of α almost-equal-sized cliques
- for all $t, i_{t}(G)$ maximized by same graph

The case $n=12, \alpha=5$

Regular graphs

$\mathcal{R}(n, d)$: d-regular graphs on n vertices

Theorem (Kahn, 2001; Zhao, 2011)
For $G \in \mathcal{R}(n, d)$,

- $i(G)$ maximized by $\frac{n}{2 d} K_{d, d}$, union of $n / 2 d$ copies of $K_{d, d}$

Conjecture (Kahn, 2001)

For $G \in \mathcal{R}(n, d)$, and all t,

- $i_{t}(G)$ maximized by $\frac{n}{2 d} K_{d, d}$

Asymptotic evidence given by Carroll, G., Tetali, and by Zhao

Graphs with given minimum degree

$\mathcal{G}(n, \delta)$: graphs on n vertices with minimum degree δ

Speculation

Removing edges increases independent set count, so maybe

- $i(G)$ maximized by $\frac{n}{2 \delta} K_{\delta, \delta}$

Not true, even for $\delta=1$

$$
i\left(n K_{2}\right)=3^{n / 2}
$$

$$
i\left(K_{1, n-1}\right)=2^{n-1}-1
$$

An unbalanced maximizer

Theorem (G., 2011)
For $n \geq 8 \delta^{2}$ and $G \in \mathcal{G}(n, \delta)$,

- $i(G)$ uniquely maximized by $K_{\delta, n-\delta}$.

$$
K_{3, n-3}
$$

Conjecture (G., 2011)

For $G \in \mathcal{G}(n, \delta)$,

- for $n \geq 2 \delta$, $i(G)$ maximized by $K_{\delta, n-\delta}$
- for smaller $n, i(G)$ maximized by $K_{n-\delta, n-\delta, \ldots, n-\delta, x}(x \leq n-\delta)$

Fixed size in $\mathcal{G}(n, \delta)$

$i_{2}(G)=$ number of non-edges, so $K_{\delta, n-\delta}$ definitely not the maximizer

Conjecture (G., 2011)

For $n \geq 2 \delta, t \geq 3$ and $G \in \mathcal{G}(n, \delta)$,

- $i_{t}(G)$ maximized by $K_{\delta, n-\delta}$

Partial results

- Bipartite G (Alexander, Cutler, Mink, 2012)
- $\delta \leq 3$ (Engbers, G., 2012)
- $t \geq 2 \delta+1$ for larger δ (Engbers, G., 2012)
- $t \geq 3, n \geq C \delta^{3}$ (McDiarmid, Law, 2012)

Leaving, for each $\delta \geq 4$ and non-bipartite G, the box

$$
t \in\{3, \ldots, 2 \delta\}, n \in\left\{2 \delta, \ldots, C \delta^{3}\right\}
$$

Proof for $t \geq 2 \delta+1$ (I)

Observation

- Suffices to consider $t=2 \delta+1$

Proof Suppose for some $t>\delta$,

$$
i_{t}(G) \leq i_{t}\left(K_{\delta, n-\delta}\right)=\binom{n-\delta}{t}
$$

Then

$$
\#(\text { ordered independent } t \text {-sets }) \leq(n-\delta)^{\underline{t}}
$$

Once t vertices chosen, at least $\delta+t$ ruled out, so

$$
\#(\text { ordered ind. }(t+1) \text {-sets }) \leq(n-\delta)^{\underline{t}}(n-(\delta+t))=(n-\delta)^{\underline{t+1}}
$$

and

$$
i_{t+1}(G) \leq\binom{ n-\delta}{t+1}=i_{t+1}\left(K_{\delta, n-\delta}\right)
$$

Proof for $t \geq 2 \delta+1$ (II)

Proof strategy

- Prove $t=2 \delta+1$ case by induction on n

Base case $n=3 \delta+1$ is trivial
Induction, case 1 There is $x \in V(G)$ with $\delta(G-x)=\delta$

$$
\begin{aligned}
i_{t}(G) & =i_{t}(G-x)+i_{t-1}(G-x-N(x)) \\
& \leq\binom{(n-1)-\delta}{t}(\text { induction })+\binom{n-(\delta+1)}{t-1} \text { (trivial) } \\
& \leq\binom{ n-\delta}{t}(\text { Pascal })
\end{aligned}
$$

Proof for $t \geq 2 \delta+1$ (III)

Induction, case 2 There is no $x \in V(G)$ with $\delta(G-x)=\delta$
Ordered ind. t-sets starting with vertex of degree $>\delta$:

$$
N_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3)) \ldots(n-(\delta+t))
$$

where $k=$ number of vertices of degree $>\delta$
Ordered ind. t-sets starting with vertex of degree $=\delta$:

$$
\begin{aligned}
& N_{=\delta} \leq(n-k)(n-(\delta+1))(n-(\delta+2)) \ldots(n-2 \delta) \\
&\left(n-\frac{(2 \delta+2))((n-(2 \delta+2))) \ldots(n-(\delta+t))}{}\right.
\end{aligned}
$$

Why the missing term?

- Worst case: each new vertex shares δ neighbors of first choice
- This can't happen $\delta+1$ times (or we're in case 1)
- $(\delta+1)$ st choice (at worst) removes a new vertex

Proof for $t \geq 2 \delta+1$ (IV)

Have

$$
N_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3)) \ldots(n-(\delta+t))
$$

and

$$
\begin{aligned}
& N_{=\delta} \leq(n-k)(n-(\delta+1))(n-(\delta+2)) \ldots(n-2 \delta) \\
&\left(n-\frac{(2 \delta+2))((n-(2 \delta+2))) \ldots(n-(\delta+t))}{}\right.
\end{aligned}
$$

Worst case $k=n$, giving bound

$$
\begin{aligned}
i_{t}(G) & \leq \frac{n(n-(\delta+2))(n-(\delta+3)) \ldots(n-(\delta+t))}{t!} \\
& <\binom{n-\delta}{t}
\end{aligned}
$$

Last inequality uses $t=2 \delta+1$

Final comments

- Maybe improve result by considering first, second, third ... choices more carefully, and optimizing a linear program
- $\delta=2,3$ requires messy case analysis, structural results for δ-critical graphs, with $\delta=4$ hopeless by our methods

Open questions

- $i_{t}(G)$ for all t and n-vertex, d-regular G
- $i(G)$ for $n \leq 8 \delta^{2}$ for n-vertex G, min. degree δ
- $i_{t}(G)$ for $t \in[3,2 \delta]$ and $n \in\left[2 \delta, C \delta^{3}\right]$ for n-vertex G, min. degree δ
- ...

THANK YOU!

Slides at http://nd.edu/~dgalvin1

