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Abstract

Minc conjectured, and Brégman proved, a sharp upper bound on the permanent
of an n by n 0-1 matrix with given row sums (equivalently, on the number of perfect
matchings in a bipartite graph with each partition class having size n and with fixed
degree sequence for one of the two classes). Here we present Radhakrishnan’s entropy
proof of Brégman’s theorem, and Alon and Friedland’s proof of an analogous statement
for graphs that are not necessarily bipartite. We also discuss progress towards the Upper
Matching conjecture of Friedland, Krop and Markström, which extends Brégman’s
theorem to arbitrary matchings.

1 Introduction

The permanent of an n by n matrix A = (aij) is

perm(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

where Sn is the set of permutations of [n] := {1, . . . , n}. This seems superficially quite similar
to the determinant, which differs only by the addition of a factor of (−1)sgn(σ) in front of
the product. This small difference makes all the difference, however: problems involving
the determinant are generally quite tractable algorithmically (because Gaussian elimination
can be performed efficiently), but permanent problems seems to be quite intractable (in
particular, by a Theorem of Valiant the computation of the permanent of a general n by n
matrix in #P -hard).

The permanent of a 0-1 matrix has a nice interpretation in terms of perfect matchings
in a graph. There is a natural one-to-one correspondence between 0-1 n by n matrices and
bipartite graphs on a fixed bipartition classes each of size n: Given A = (aij) we construct
a bipartite graph G = G(A) on bipartition classes E = {v1, . . . , vn} and O = {w1, . . . , wn}
by putting viwj ∈ E if and only if aij = 1. Each σ ∈ Sn that contributes to perm(A) gives
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rise to the perfect matching (1-regular spanning subgraph) {viwσ(i) : i ∈ [n]} in G, and this
correspondence is bijective. In other words,

perm(A) = |Mperfect(G)|

where Mperfect(G) is the set of perfect matchings of G.
In 1963 Minc formulated a natural conjecture concerning the permanent of an n by n 0-1

matrix with all row sums fixed. Ten years later Brégman [3] gave the first proof, and the
result is now known as Brégman’s theorem.

Theorem 1.1 (Brégman’s theorem) Let n non-negative integers d1, . . . , dn by given. Let
A = (aij) be an n by n matrix with all entries in {0, 1} and with

∑n
j=1 aij = di for each

i = 1, . . . , n (that is, with the sum of the row i entries of A being di, for each i). Then

perm(A) ≤
n∏
i=1

(di!)
1
di .

Equivalently, let G be a bipartite graph on bipartition classes E = {v1, . . . , vn} and O =
{w1, . . . , wn} with each vi ∈ E having degree di. Then

|Mperfect(G)| ≤
n∏
i=1

(di!)
1
di .

Notice that the bound is tight: for example, for each fixed d and n with d|n, it is achieved by
the matrix consisting of n/d blocks down the diagonal with each block being a d by d matrix
of all 1’s, with zeros everywhere else (or equivalently, by the graph made up of the disjoint
union of n/d copies of Kd,d, the complete bipartite graph with d vertices in each classes).

A short proof of Brégman’s theorem was given by Schrijver [12], and a probabilistic
reinterpretation of Schrijver’s proof was given by Alon and Spencer [2]. In Section 2 we
present Radhakrishnan’s entropy proof [11].

Brégman’s theorem concerns perfect matchings in a bipartite graph. A natural question
to ask is what happens in a general (not necessarily bipartite) graph? Kahn and Lovász
answered this question.

Theorem 1.2 (Kahn-Lovász theorem) Let G be a graph on 2n vertices v1, . . . , v2n with each
vi having degree di. Then

|Mperfect(G)| ≤
2n∏
i=1

(di!)
1

2di .

Notice that this result is also tight: for example, for each fixed d and n with d|n, it is achieved
by the graph made up of the disjoint union of n/d copies of Kd,d. Note also that there is no
permanent version of this result.

Kahn and Lovász did not publish their proof. Since they first discovered the theorem,
it has been rediscovered/reproved a number of times: by Alon and Friedland [1], Cutler
and Radcliffe [5], Egorychev [6] and Friedland [7]. Alon and Friedland’s is a “book” proof,
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observing that the theorem is an easy consequence of Brégman’s theorem. We present the
details in Section 3.

Another direction in which we may consider extending Brégman’s theorem is to consider
arbitrary matchings in G, rather than perfect matchings. For this discussion, we focus
exclusively on the case of d-regular G on 2n vertices. Writing K(n, d) for the disjoint union
of n/d copies of Kd,d, we can restate Brégman’s theorem as

for bipartite d-regular G on 2n vertices, |Mperfect(G)| ≤ d!
n
d = |Mperfect(K(n, d))|

and the Kahn-Lovász theorem as

for arbitrary d-regular G on 2n vertices, |Mperfect(G)| ≤ d!
2n
2d = |Mperfect(K(n, d))|.

Do these inequalities continue to hold if we replaceMperfect(G) withM(G), the collection of
all matchings (not necessarily perfect) in G?

Conjecture 1.3 For bipartite d-regular G on 2n vertices (or for arbitrary d-regular G on
2n vertices),

|M(G)| ≤ |M(K(n, d))|.

Here and in Conjecture 1.4 below, the heart of the matter is the bipartite case: the methods
of Alon and Friedland discussed in Section 3 can be modified to show that the bipartite case
implies the general case.

Friedland, Krop and Markström [8] have proposed an even stronger conjecture, the Upper
Matching conjecture. For each 0 ≤ t ≤ n, writeMt(G) for the number of matchings in G of
size t (that is, with t edges).

Conjecture 1.4 (Upper Matching conjecture) For bipartite d-regular G on 2n vertices (or
for arbitrary d-regular G on 2n vertices), and for all 0 ≤ t ≤ n,

|Mt(G)| ≤ |Mt(K(n, d))|.

For t = n this is Brégman’s theorem (in the bipartite case) and the Kahn-Lovász theorem
(in the general case). For t = 0, 1 and 2 it is trivial in both cases. Friedland, Krop and
Markström [8] have verified the conjecture (in the bipartite case) for t = 3 and 4. For t = αn
for α ∈ [0, 1], asymptotic evidence in favor of the conjecture was provided first by Carroll,
Galvin and Tetali [4] and then (in a stronger form) by Kahn and Ilinca [10]. We discuss these
results in Section 4.

2 Radhakrishnan’s proof of Brégman

A perfect matching M in G may be viewed as a permutation σ of {1, . . . , n} via σ(i) = j if
and only if viwj ∈ M . This is how we will view matchings from now on. Radhakrishnan’s
first idea is to set up a random variable X which represents the selection of a matching σ
fromMperfect(G), the set of all perfect matchings in G, with all such σ equally likely. By one
of the basic properties of entropy, we have

H(X) = log |Mperfect(G)|,
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and so to prove the conjecture we need to upper bound

H(X) ≤
n∑
i=1

log di!

di
. (1)

As a first attempt, let’s view X as a random vector (σ(1), . . . , σ(n)). By subadditivity we
have

H(X) ≤
n∑
i=1

H(σ(i)).

Since there are at most di possibilities for the value of σ(i), we have H(σ(i)) ≤ log di for all
i, and so

H(X) ≤
n∑
i=1

log di.

This falls somewhat short of (1), since (log di!)/di ≈ log(di/e) by Stirling.
We might try to improve things by using the sharper chain rule in place of subadditivity:

H(X) =
n∑
i=1

H(σ(i)|σ(1), . . . , σ(i− 1)).

Now instead of naively saying that there are di possibilities for σ(i) for each i, we have a
chance to take into account the fact that when it comes time to reveal σ(i), some of vi’s
neighbors may have already been used (as a match for vj for some j < i), and so there may
be a reduced range of choices for σ(i).

The problem with this approach is that we have no way of knowing (or controlling) how
many neighbors of i have been used at the moment when σ(i) is revealed. Radhakrishnan’s
great idea to deal with this problem is to chose a random order in which to examine the
vertices of E (rather than the deterministic order v1, . . . , vn). There is a good chance that
with a random order, we can say something precise about the average or expected number
of neighbors of i that have been used at the moment when σ(i) is revealed, and thereby put
a better upper bound on the H(σ(i)) term.

So, let τ be any permutation of {1, . . . , n} (which we will think of as acting on E in the
natural way). We have

H(X) =
n∑
j=1

H(σ(τ(j))|σ(τ(1)), . . . , σ(τ(j − 1))).

It will prove convenient to write this sum in a slightly different way. Set k(τ, i) = τ−1(i). It
will generally be clear from the context which τ and i are being considered, so we will just
write “k” for “k(τ, i)”. We have

H(X) =
n∑
i=1

H(σ(i)|σ(τ(1)), . . . , σ(τ(k − 1))).
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Since this is true for all τ , we can average over all possible choices of τ to get

H(X) =
1

n!

∑
τ

(
n∑
i=1

H(σ(i)|σ(τ(1)), . . . , σ(τ(k − 1)))

)

=
n∑
i=1

1

n!

∑
τ

H(σ(i)|σ(τ(1)), . . . , σ(τ(k − 1))).

We now fix i, and try to understand the inner sum. For each σ and τ , write Di(σ, τ)
for the number of neighbors of vi that are not among σ(τ(1)), . . . , σ(τ(k − 1). If σ is being
revealed to us edge-by-edge, Di(σ, τ) counts the number of possible values that σ(i) can take,
given that each of σ(τ(1)), . . . , σ(τ(k − 1)) have been revealed. Since σ encodes a matching,
we have 1 ≤ Di(σ, τ) ≤ di always.

For each fixed τ we have

H(σ(i)|σ(τ(1)), . . . , σ(τ(k − 1))) ≤
di∑
j=1

∑
σ

1{Di(σ,τ)=j}
#(σ)

log j

where 1 is an indicator function. Here we are upper bounding entropy by the log of the size
of the range. It follows that

H(X) ≤
n∑
i=1

1

n!

∑
τ

di∑
j=1

∑
σ

1{Di(σ,τ)=j}
#(σ)

log j

=
n∑
i=1

1

n!

di∑
j=1

log j
∑
σ

1

#(σ)

∑
τ

1{Di(σ,τ)=j}. (2)

We now reach the point where the power of averaging over τ comes into play. For each
fixed σ, Di(σ, τ) depends only on where σ(i) falls in the permutation of the neighbors of
i induced by σ and τ (i.e., the permutation (σ(τ(n1)), . . . , σ(τ(ndi))), where the ni’s are
the neighbors of vi). If σ(i) comes first on this list, then Di(σ, τ) = di; if second, then
Di(σ, τ) = di − 1, and so on. If it comes last, then Di(σ, τ) = 1 since there can be only one
possibility for σ(i) at that point. By an easy symmetry consideration, σ(i) is equally likely
to appear in any position in the permutation of the neighbors of i. In other words, for each
1 ≤ j ≤ di, ∑

τ

1{Di(σ,τ)=j} =
n!

di
.

Plugging into (2) we get

H(X) ≤
n∑
i=1

1

di

di∑
j=1

log j

=
n∑
i=1

log di!

di

as required.
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3 Alon and Friedland’s proof of Kahn-Lovász

Alon and Friedland’s idea is to relate Mperfect(G) to the permanent of the adjacency matrix
Adj(G) = (aij) of G. This is the 2n by 2n matrix with

aij =

{
1 if vivj ∈ E
0 otherwise.

An element ofMperfect(G)×Mperfect(G) is a pair of perfect matchings. The union of these
perfect matchings is a collection of isolated edges (the edges in common to both matchings),
together with a collection of disjoint even cycles, that covers the vertex set of the graph. For
each such subgraph of G (call it an even cycle cover), to reconstruct the pair of matchings
from which it arose we have to make an arbitrary choice for each even cycle, since there are
two ways of writing an even cycle as an ordered union of matchings. It follows that

|Mperfect(G)×Mperfect(G)| =
∑
S

2c(S)

where the sum is over all even cycle covers S of G and c(S) counts the number of even cycles
in S.

On the other hand, any permutation σ contributing to perm(Adj(G)) breaks into disjoint
cycles each of length at least 2, with the property that for each such cycle (vi1 , . . . , vik) we
have vi1vi2 ∈ E, vi2vi3 ∈ E, . . ., vikvi1 ∈ E. So such σ is naturally associated with a collection
of isolated edges (the cycles of length 2), together with a collection of disjoint cycles (some
possibly of odd length), that covers the vertex set of the graph. For each such subgraph of G
(call it a cycle cover), to reconstruct the σ from which it arose we have to make an arbitrary
choice for each cycle, since there are two ways of orienting it. It follows that

perm(Adj(G)) =
∑
S

2c(S)

where the sum is over all cycle covers S of G and c(S) counts the number of cycles in S.
It is clear that |Mperfect(G) ×Mperfect(G)| ≤ perm(Adj(G)) since there are at least as

many S’s contributing to the second sum as the first, and the summands are identical for
S’s contributing to both. Applying Brégman’s theorem to the right-hand side, and taking
square roots, we get

|Mperfect(G)| ≤
2n∏
i=1

(di!)
1

2di .

4 The Upper Matching conjecture

Here we describe the asymptotic evidence in favour of Conjecture 1.4 that has been provided
by Carroll, Galvin and Tetali and by Kahn and Ilinca. Both sets of authors focus on the case
t = αn, where α ∈ (0, 1) is fixed (and we restrict our attention to those n for which αn is an
integer). The first non-trivial task in this range is to determine the asymptotic behavior of
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|Mαn(K(n, d))| in n and d. To do this we start from the identity

|Mαn(K(n, d))| =
∑

a1,...an/d:

0≤ai≤d,
∑
i ai=αn

n/d∏
i=1

(
d

ai

)2

ai!

Here the ai’s are the sizes of the intersections of the matching with each of the components

of K(n, d), and the term
(
d
ai

)2
ai! counts the number of matchings of size ai in a single copy of

Kd,d. (The binomial term represents the choice of ai endvertices for the matching from each
partition class, and the factorial term tells us how many ways there are to pair the endvertices
from each class to form a matching.) Considering only those sequences (a1, . . . an/d) in which
each ai is either bαdc or dαde, we get

log |Mαn(K(n, d))| = n

(
α log d+ 2H(α) + α log

(α
e

)
+ Ωα

(
log d

d

))
, (3)

where H(α)−α logα−(1−α) log(1−α) is the binary entropy function. The detailed analysis
appears in [4].

In [4], Carroll, Galvin and Tetali prove an upper bound on log |Mαn(G)| for arbitrary
d-regular G on 2n vertices that agrees with (3) in the first term, and is off by a constant in
the second term:

log |Mαn(G)| ≤ n (α log d+H(α)) . (4)

Using a refinement of Radhakrishnan’s approach to Brégman’s theorem, Kahn and Ilinca [10]
have improved this, obtaining a bound that agrees with (3) in the first two terms:

log |Mαn(G)| ≤ n
(
α log d+ 2H(α) + α log

(α
e

)
+ o(d−1/4)

)
.

Here we describe the proof of (4). It is based on finding an upper bound on the matching
polynomial of G, the polynomial

PM(G, x) =
n∑
t=0

|Mt(G)|xt.

For d-regular G on 2n vertices, the bound in question is

PM(G, x) ≤ (1 + dx)n (5)

(we will justify this presently). Using this, we easily obtain (4). Since the matching polyno-
mial has all positive terms, we have xαn|Mαn| ≤ PM(G, x) for any positive x, and so using
(5) we get

|Mαn(G)| ≤ x−αnPM(G, x) ≤
(

1 + dx

xα

)n
.

Since this is true for all x, we are liberty to choose the best possible x, namely the one that
minimizes the right-hand side above. A little calculus shows that x = α/(d(1 − α)) is the
right choice, and a little algebra then gives (4). Essentially what we are trying to do is choose
the value of x that maximizes the (percentage) contribution of xαn|Mαn| to PM(G, x).
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The inequality in (4) is trivial for bipartite G ((1 + dx)n is an exact count of subgraphs
of G which on one fixed partition class have maximum degree at most one, with a subgraph
on t edges counted with weight xt). For non-bipartite G it is less obvious. The proof given in
[4] uses a very general entropy inequality due to Friedgut. A much simpler proof was pointed
out by Gurvitz, based on the celebrated Heilmann-Lieb theorem [9]. This asserts that for
all graphs G, the polynomial PM(G, x) = 0 has only real, negative roots. It follows that we
may write PM(G, x) =

∏n
i=1(1 + αix) for some positive αi’s with

∑
αi = (PM(G, x))′|x=0 =

|E| = nd. Applying the arithmetic mean - geometric mean inequality to this expression we
obtain

PM(G, x) ≤
(

1 + x

∑
αi
n

)n
= (1 + dx)n .

References

[1] N. Alon and S. Friedland, The maximum number of perfect matchings in graphs with a
given degree sequence, Electron. J. Combin. 15 (2008), #N13.

[2] N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York, 2000.

[3] L. Brégman, Some properties of nonnegative matrices and their permanents, Soviet
Math. Dokl. 14 (1973), 945–949.

[4] T. Carroll, D. Galvin and P. Tetali, Matchings and Independent Sets of a Fixed Size in
Regular Graphs, J. Combin. Theory Ser. A 116 (2009), 1219–1227.

[5] J. Cutler, A. Radcliffe, An entropy proof of the Kahn-Lovász theorem, manuscript.

[6] G. Egorychev, Permanents, Book in Series of Discrete Mathematics (in Russian), Kras-
noyarsk, SFU, 2007.

[7] S. Friedland, An upper bound for the number of perfect matchings in graphs,
arXiv:0803.0864

[8] S. Friedland, E. Krop and K. Markström, On the Number of Matchings in Regular
Graphs, Electron. J. Combin. 15 (2008), #R110.

[9] O. Heilmann and E. Lieb, Theory of monomer-dimer systems, Comm. Math. Phys. 25
(1972), 190-232.

[10] J. Kahn and L. Ilinca, The number of matchings of a given size. manuscript.

[11] J. Radhakrishnan, An entropy proof of Brégman’s theorem, J. Combin. Theory, Ser. A
77, (1997), 161–164.

[12] A. Schrijver, A short proof of Minc’s conjecture, J. Combin. Theory Ser. A 25 (1978),
80–83.

8


