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Abstract

A graph property G is a collection of graphs closed under iso-
morphism. G is said to be evasive if, for every possible local search
strategy, there is at least one graph for which membership in G cannot
be decided until the entire graph has been searched.

Most graph properties that one can think of, but not all, turn out
to be evasive. A conjecture of Aanderaa, Karp and Rosenberg asserts
that every monotone (closed under adding edges) property is evasive
(except for two trivial exceptions).

I’ll explain how topological ideas introduced by Kahn, Saks and
Sturtevant, in particular the study of fixed points of simplicial maps,
have helped to make significant progress towards the AKR conjecture.
These notes are based in part on the original paper of Kahn, Saks and
Sturtevant [2] and in part on lecture notes of Lovász and Young [4].

1 Introduction

A graph G consists of a set V of vertices and a set E of edges (unordered
pairs of vertices). We think of the edge {u, v} as joining vertices u and v.
The graphs we consider will satisfy |V | <∞. Graphs G and G′ on the same
vertex set are isomorphic if there is a permutation of V that maps E(G)
to E(G′). A graph property is a collection of graphs that is closed under
isomorphism. Here are some examples of graph properties:

• G37, the set of graphs with exactly 37 edges.

• Gδ≥3, the set of graphs in which every vertex is in at least 3 edges.
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• Gtri, the set of graphs containing a triangle (three pairwise joined ver-
tices).

• Gconn, the set of graphs which are connected (between any two vertices
there is a path of edges).

• GScorp, the set of graphs which are Scorpions (with three special vertices,
a sting joined only to a tail, which is also joined to a body (but nothing
else), with the body joined also to all the other vertices (the feet), with
no restriction on edges solely involving feet).

A natural notion of the complexity of a graph property G is the query
complexity. We imagine that an oracle has access to a graph G, and we can
explore the structure of G by asking questions of the form “is e ∈ E?” for
any potential edge e. The query complexity of G is then the smallest k such
that, no matter what graph G the oracle has access to, we can determine
whether or not G ∈ G by asking at most k questions.

A property is said to be evasive if its query complexity is
(|V |

2

)
(the largest

it could possibly be). In other words, G is evasive if for every question-asking
strategy we could employ, there is at least one graph G such that under
that strategy we cannot determine whether G ∈ G without querying every
potential edge.

A strategy for establishing evasiveness of a property G is to think of
the oracle being controlled by an adversarial demon, who does not refer to
a specific graph G when answering questions, but instead builds G as the
questions are being asked in a way that is designed to delay for as long as
possible the determination of whether G ∈ G. We illustrate this idea by using
it to demonstrate that the property G37 (having exactly 37 edges) is evasive.
The demon has the oracle answer “yes” (that is, “e ∈ E”) in response to
each of the first 37 queries, and then “no” in response to all the rest. Clearly
this adversarial strategy forces us to ask

(|V |
2

)
questions.

A much more interesting example is Gconn, the property of being con-
nected. Here, the demon has a simple strategy: in response to the question
“is e = {u, v} ∈ E?” he answers “no” unless that answer would imply that
there would be no u-v path in G, even if all remaining unqueried potential
edges were included in G; in this case he answers “yes”. Suppose (for a con-
tradiction) that there is a strategy that determines whether G is connected
in fewer than

(|V |
2

)
queries. Since throughout the questioning process the de-

mon preserves the possibility that G connected (by adding in all remaining
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unqueried potential edges), it must be that the strategy concludes that G is
connected. Now consider an unqueried edge e = {u, v}. Since the strategy
has concluded that G is connected, there must be a path of queried edges
connecting u to v, all of which are known to be in E. Fix such a path,
which together with e forms a cycle C, and consider the last edge on it that
was queried, e′ = {u′, v′}, say. That the demon had answered “yes” to the
question “is e′ ∈ E?” indicates that at that moment, there was no path of
“yes” and unqueried edges connecting u′ to v′. But this is a contradiction,
since there is such a path, along C.

By a suitably chosen adversarial strategy (often quite intricate), many
graph properties, such as Gtri and Gδ≥3 can be shown to be evasive. Indeed,
it is hard to find an example of a graph property that is not evasive, except
the trivial ones, the collection of all graphs and the empty collection (both of
which have query complexity 0). But examples do exist; the property GScorp
of being a Scorpion, for example, turns out to have query complexity O(|V |).

A feature of many graph properties — such as Gtri, Gconn and Gδ≥3 —
is monotonicity. A monotone graph property is one that is closed under
adding edges. This is a feature that is absent from both G37 and GScorp. The
following conjecture is often referred to as the Aanderaa-Karp-Rosenberg
(AKR) conjecture. As we will discuss presently, a slightly different (and
false) form of this conjecture was proposed in [6].

Conjecture 1.1 Every non-trivial monotone graph property is evasive.

Originally Aanderaa and Rosenberg conjectured that there is some ε > 0
such that every non-trivial graph property has query complexity at least
ε|V |2. Aanderaa showed this to be false (using GScorp), and the ε conjecture
was modified to include the word “monotone”. It was proved by Rivest
and Vuillemin [5], who showed that one may take ε = 1/16; this was later
improved to 1/4− δ for arbitrary δ > 0 by Kahn, Saks and Sturtevant (KSS)
[2]. Karp then strengthened the conjecture to its present form.

The AKR conjecture is known to be true if |V | is a prime power (as well
as |V | = 6). The proof of this fact, by KSS, used topological methods, and
the purpose of this note is to explain these methods.

We will focus on a variant of the problem which is simpler in its details,
but uses all the relevant concepts. A graph G is said to be bipartite with
bipartition V = A ∪ B (or on (A,B)) if A and B are disjoint and all edges
contain exactly one element from each of A, B. A bipartite graph property is
a family of bipartite graphs on (A,B) that is closed under permutations of A
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and permutations of B; the property is monotone if it is closed under adding
edges containing exactly one element from each of A, B, and non-trivial if
it is not the empty family or the family of all bipartite graphs on (A,B).
A bipartite graph property is evasive if its query complexity, defined in the
obvious way, is |A||B|. Using the methods of KSS, the AKR conjecture for
monotone bipartite graph properties was resolved by Yao [7]. In this note,
we give Yao’s proof of the following theorem.

Theorem 1.2 Every non-trivial monotone bipartite graph property is eva-
sive.

It will be helpful in the sequel to generalize (slightly) the notion of a
graph property and bipartite graph property. A set system F on ground set
X is a collection of subsets of X. When |X| =

(
m
2

)
, a set system corresponds

exactly to a family of graphs on m vertices (not necessarily closed under
isomorphism), via a bijection from X to the set of unordered pairs of vertices.
When |X| = ab for some numbers a, b, a set system corresponds to a family of
bipartite graphs on (A,B), where |A| = a and |B| = b (again, not necessarily
closed under isomorphism), via a bijection from X to A×B.

Extending previous definitions, we say that F is monotone if it is closed
under taking supersets and non-trivial if there is some subset of F that is not
in F , and some subset that is in F . The query complexity of a set system is
defined in the obvious way: an oracle has access to a subset S of X, and we
can explore S by asking questions of the form “is x ∈ S?” for any x ∈ X.
The query complexity of F is then the smallest k such that, no matter what
set S the oracle has access to, we can determine whether or not S ∈ F by
asking at most k questions. A set system is then said to be evasive if its
query complexity is |X|.

2 Connection to topology

A simplicial complex K on ground set X is a family of subsets of X that is
closed under taking subsets. There is a natural bijection between monotone
set systems on X and simplicial complexes on X, obtained by sending the
monotone set system F to the simplicial complex {X \ S : S ∈ F}. Clearly,
determining membership in a monotone set system through queries to an
oracle is identical to determining membership in the corresponding simplicial
complex, so it makes sense to talk about evasive simplicial complexes.
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Any simplicial complex on ground set of size n can be realized as a subset
K̂ of Rn: associate a (different) basis vector to each element of X, then to
each K ∈ K associate the convex hull of the basis vectors associated with
elements of K, and finally take the union of all of these sets. We refer to K̂ as
a geometric realization of K, and say that K is contractable if its realization
K̂ is, that is, if there is a continuous map Φ : K̂ × [0, 1] → K̂ and a p ∈ K̂
such that Φ(x, 0) = x and Φ(x, 1) = p for all x ∈ K̂.

The following lemma of Kahn, Saks and Sturtevant [2] shows how topo-
logical considerations come into the study of evasiveness.

Lemma 2.1 If K is a non-evasive simplicial complex, then K is contractable.

The evasiveness of a non-trivial monotone graph or bipartite graph prop-
erty G can thus be established via the non-contractability of the associated
simplicial complex.

The proof of Lemma 2.1 involves a nice sufficient condition for con-
tractability. We will state it in terms of the more combinatorial notion of
collapsibility. A free face of a complex K is a K ∈ K that is not maximal
(with respect to containment) but is contained in a unique maximal element.
An elementary collapse of K is the process of removing from K some free
face K together with all supersets of K, the result of course still being a
complex. A complex K is said to collapse to K′ if K′ can be obtained from
K by a sequence of elementary collapses. Finally, say that K is collapsible if
it collapses to the empty simplicial complex. A collapsible complex is also
contractable (see e.g. [1, p. 49]).

Given a complex K and an x ∈ X, we define two auxiliary complexes,
both on ground set X \ {x}. First, the link of K is

link(x,K) = {K ⊆ X \ {x} : K ∪ {x} ∈ K}.

Next, the contrastar of x in K is

cost(x,K) = {K ⊆ X \ {x} : K ∈ K}.

(so link(x,K) consists of those K ∈ K with x ∈ K, but with x removed, and
cost(x,K) consists of those K ∈ K with x 6∈ K).

Lemma 2.2 If there is an x ∈ X with link(x,K) and cost(x,K) both col-
lapsible, then K is collapsible.
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Proof: If K1, . . . , Kk is a sequence of free faces that can be used to collapse
link(x,K), then K1 ∪ {x}, . . . , Kk ∪ {x} is a sequence of free faces that can
be used to collapse K to cost(x,K); the collapsibility of K then follows from
that of cost(x,K). 2

Proof of Lemma 2.1: We proceed by induction on |X| to show that K is in
fact collapsible. If K is trivial (either empty or a simplex) then it is collapsible
(again, see [1]). Note that this includes the base case |X| = 1.

If |X| > 1 and K is non-trivial, then there is some x ∈ X for which “is
x ∈ K?” is a good first question, that is, the first question in a strategy which
always decides membership in K in fewer than |X| questions. Having asked
this question we have two possibilities: if the answer is “no”, then K ∈ K if
and only if K ∈ cost(x,K); if the answer is “yes” then K ∈ K if and only if
K \ {x} ∈ link(x,K). In either case we have (by our choice of x) a strategy
which decides membership in the new simplicial complex in fewer than |X|−1
questions. In other words, if K is non-evasive and non-trivial, then there is
some x ∈ X for which both cost(x,K) and link(x,K) are non-evasive. By
induction and Lemma 2.2, K is collapsible. 2

Here is how our proof of Theorem 1.2 will go. Let G be a non-trivial
monotone bipartite graph property. Because G is a property, it is invariant
under permutations of A and B, and so the associated simplicial complex is
invariant under the induced maps. We will examine the set of possible fixed
points of these maps, and show that since G is non-trivial, there cannot be
any fixed points. The lack of a fixed point will imply (by some general fixed-
point theorems) that the simplicial complex we are working with cannot be
contractable, so that by Lemma 2.1, G must be evasive. The strategy for
proving Conjecture 1.1 for m a prime power is similar; the assumption that
m is a prime power comes in when we analyze the possible fixed points.

3 Fixed points of simplicial maps

Let K be a simplicial complex on ground set X. A bijection ϕ : X → X
is an automorphism of K if for each K ∈ K, we have ϕ(K) (= {ϕ(x) :

x ∈ K}) ∈ K. Such a ϕ induces continuous linear map ϕ̂ : K̂ → K̂ by ϕ̂
permuting the vertices of K (the basis vectors associated to each element
of X) in correspondence with ϕ, with the map extended linearly to convex

combinations of vertices. A fixed point of ϕ is a p ∈ K̂ such that ϕ̂(p) = p.
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We write fix(ϕ) for the set of fixed points of K.
There is a nice combinatorial characterization of fix(ϕ) in terms of the

orbits of ϕ. If an orbit of ϕ, X ′ say, happens to be in K, then (since ϕ
permutes the elements of X ′), we have that w′, the center of mass of (the
geometric realization of) X ′ is fixed by ϕ. Let X1, . . . , Xt be all such orbits.
Then along with the fixed points w1, . . . , wt, any convex combination of these
points is also fixed by ϕ, provided, of course, that the point in question is
in fact a point of K̂, which is the same as saying that the union of the
corresponding orbits is in K. So fix(ϕ) contains the set X̂ (ϕ), the geometric
representation of the simplicial complex X (ϕ) on vertex set {X1, . . . , Xt},
with a set being in X if the union of the vertices is in K. It turns out that
in fact this is all of fix(ϕ).

Lemma 3.1 fix(ϕ) = X̂ (ϕ).

There are many classical fixed-point theorems. The following, a special
case of a theorem of Lefshetz [3], generalizes Brouwer’s fixed-point theorem.

Theorem 3.2 Every automorphism of a non-empty contractable simplicial
complex has a fixed point.

We also need a form of the Hopf index formula, for which we need the
notion of the Euler characteristic of a simplex K. For our purpose this is
defined to be

χ(K) =
∑

K∈K, K 6=∅

(−1)|K|.

This is a topological invariant of a simplicial complex, and for all contractable
simplicial complexes it is −1.

Theorem 3.3 If ϕ is an automorphism of a non-empty contractable K, then
the Euler characteristic of fix(ϕ) is −1.

4 Proof of Theorem 1.2

As a warm-up, we prove the following.

Proposition 4.1 Let F be any non-trivial monotone set system closed under
a permutation of the ground set that has a single orbit. Then F is evasive.
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Proof: Let F be as in the lemma, but not necessarily non-trivial. By a
suitable labeling of the ground set, we may assume that F is invariant under
the map ϕ(x) = x+ 1 (mod n) (here we are identifying the ground set with
{1, . . . , n}). Suppose that F is non-evasive. If F consists of the set of all
subsets of X, it is trivial. Otherwise, by Lemma 2.1, the associated (non-
empty) simplicial complex K is contractable. Since F is invariant under ϕ,
ϕ is an automorphism of K and so (by Theorem 3.2) has a fixed point. By
Lemma 3.1, the only possible way that ϕ can have a fixed point is if {1, . . . , n}
(the only orbit of ϕ) is in K; but this implies that F is empty and so trivial.

2

The key idea here is that if we are able to characterize the orbits of
a permutation under which F is invariant, then we also characterize the
fixed points of the corresponding simplicial map. Proposition 4.1 is a fairly
easy instance of this idea; characterizing the orbits of permutations that fix
monotone bipartite families is trickier.

Proof of Theorem 1.2: Let G be an non-evasive monotone bipartite graph
property, with the underlying bipartition (A,B). If G consists of all bipar-
tite graphs on (A,B) then it is trivial. Otherwise, to G we correspond, as
described, a non-empty, non-evasive simplicial complex K, the elements of
whose ground set we refer to as “edges”. Let ϕ be a permutation of the edges
that corresponds to a cyclic shift of the vertices of B (leaving A unchanged);
this is an automorphism of K. The orbits of ϕ are exactly the sets of edges
that have a vertex of A in common (so there are |A| orbits each of size |B|),
and we index these orbits in the natural way be elements of A.

Since K is non-evasive it is contractable and so has at least one fixed
point. It follows that there must be at least one orbit of ϕ, {a′}×B say, that
is in K. (Edges are technically unordered pairs, but in the bipartite setting
nothing changes if we view them as ordered pairs with the first coordinate
in A.) Because G is a property (closed under isomorphism) we have that
{a} × B ∈ K for all a ∈ A. The sets in the simplicial complex X (ϕ) that
determines fix(ϕ) are therefore of the form A′ × B for some A′ ⊆ A. Again
by closure of G under isomorphism, for a given value of |A′| either all of none
of these sets are in X . By monotonicity, then, X (ϕ) has the form

X (ϕ) = {A′ ×B : |A′| ≤ r}

for some r ≤ |A|. We will argue that we must have r = |A|, which says that
A×B ∈ X (ϕ) and so A×B ∈ K, making K and thus G trivial.

8



The Euler characteristic of X (ϕ) is

r∑
i=1

(−1)i
(
|A|
i

)
=

r∑
i=1

(−1)i
((
|A| − 1

i− 1

)
+

(
|A| − 1

i

))
= −1 + (−1)r

(
|A| − 1

r

)
with the first equality being Pascal’s identity and the second the result of
telescoping. Since K is contractable, by Theorem 3.3 the Euler characteristic
of X (ϕ) is −1, so

(|A|−1
r

)
= 0, which can only happen if |A| = r. 2
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