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For graphs G and H , an H-coloring of G is a function from the ver-
tices of G to the vertices of H that preserves adjacency. H-colorings
encode graph theory notions such as independent sets and proper
colorings, and are a natural setting for the study of hard-constraint
models in statistical physics.
We study the set of H-colorings of the even discrete torus Z

d
m ,

the graph on vertex set {0, . . . ,m − 1}d (m even) with two strings
adjacent if they differ by 1 (mod m) on one coordinate and agree
on all others. This is a bipartite graph, with bipartition classes E
and O. In the case m = 2 the even discrete torus is the discrete
hypercube or Hamming cube Q d , the usual nearest neighbor graph
on {0,1}d .
We obtain, for any H and fixed m, a structural characterization of
the space of H-colorings of Z

d
m . We show that it may be parti-

tioned into an exceptional subset of negligible size (as d grows)
and a collection of subsets indexed by certain pairs (A, B) ∈ V (H)2,
with each H-coloring in the subset indexed by (A, B) having all
but a vanishing proportion of vertices from E mapped to vertices
from A, and all but a vanishing proportion of vertices from O
mapped to vertices from B . This implies a long-range correlation
phenomenon for uniformly chosen H-colorings of Zd

m with m fixed
and d growing.
The special pairs (A, B) ∈ V (H)2 are characterized by every vertex
in A being adjacent to every vertex in B , and having |A||B| maxi-
mal subject to this condition. Our main technical result is an upper
bound on the probability, for an arbitrary edge uv of Z

d
m , that in

a uniformly chosen H-coloring f of Zd
m the pair ({ f (w): w ∈ Nu},

{ f (z): z ∈ Nv }) is not one of these special pairs (where N· indicates
neighborhood).
Our proof proceeds through an analysis of the entropy of f , and
extends an approach of Kahn, who had considered the case of
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m = 2 and H a doubly infinite path. All our results generalize to
a natural weighted model of H-colorings.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

For G = (V (G), E(G)) a simple, loopless graph, and H = (V (H), E(H)) a graph without multiple
edges but perhaps with loops, an H-coloring of G , or homomorphism from G to H , is a function
f : V (G) → V (H) that preserves adjacency, that is, which satisfies f (u) f (v) ∈ E(H) whenever uv ∈
E(G). We write Hom(G, H) for the set of H-colorings of G . (Unless explicitly stated otherwise, all
graphs in this paper will be finite. For graph theory background, see e.g. [3,11].)

H-colorings provide a unifying framework for a number of important graph theory notions. For
example, the set Hom(G, Kq) (where Kq is the complete loopless graph on q vertices) coincides with
the set of proper q-colorings of G , and the set Hom(G, H ind) (where H ind consists of two vertices
joined by an edge, with a loop at one of the vertices) may be identified with the set of independent
sets of G , via the preimage of the unlooped vertex.

H-colorings also have a natural statistical physics interpretation as configurations in hard-constraint
spin models. Here, the vertices of G are thought of as sites that are occupied by particles, with edges
of G representing pairs of bonded sites. The vertices of H are the different types of particles (or spins),
and the occupation rule is that bonded sites must be occupied by pairs of particles that are adjacent
in H . A legal configuration in such a spin model is exactly an H-coloring of G . The case of proper
q-colorings corresponds to the zero-temperature q-state anti-ferromagnetic Potts model, while the case of
independent sets corresponds to the hard-core lattice gas model. (See for example [8] for a discussion of
these models from a combinatorial point of view, and [36] for a statistical physics oriented discussion.)
Another important hard-constraint model is the Widom–Rowlinson model (or WR model), introduced
in [34] as a model of liquid–vapor phase transitions. Here HWR is the completely looped path on
3 vertices.

There have been numerous papers devoted to the study of the space of H-colorings of particular
graphs and families of graphs, for various special instances of H . Some recent papers (see for example
[5,7,14,16] and [22]) have taken a broader approach, treating the space of H-colorings for arbitrary H .
The present paper falls into this category.

Many of the graphs G on which it is natural (from a statistical physics viewpoint) to study
Hom(G, H) are regular (all vertices have the same degree) and bipartite (the vertex set splits into
two classes with all edges going between classes). Examples include the hypercubic lattice Z

d , the
hexagonal lattice and the Bethe lattice (regular tree). For this reason much attention has been fo-
cused on this special case, and that is also where our focus lies.

In [22], an entropy approach was taken to obtain nearly matching upper and lower bounds on
|Hom(G, H)| for arbitrary H and d-regular bipartite G , specifically

η(H)
|V (G)|

2 �
∣∣Hom(G, H)

∣∣ � η(H)
|V (G)|

2 2
|V (G)|

2d , (1)

with η(H) a certain parameter that will be defined presently. In [14], this work was extended consid-
erably. For all H and k ∈ V (H), optimal numbers a+(k) and a−(k) are constructed with the following
property: for each ε > 0, if f is uniformly chosen from Hom(G, H), then (for suitably large d) with
high probability the proportion of vertices of G mapped to k is between a−(k) − ε and a+(k) + ε.

Let G be a bipartite graph with fixed bipartition E ∪ O. For A, B ⊆ V (H) with all vertices of A
adjacent to all vertices of B , a pure-(A, B) coloring is an f ∈ Hom(G, H) with f (u) ∈ A for all u ∈ E
and f (v) ∈ B for all v ∈O. If G is regular and has n vertices, then the number of pure-(A, B) colorings
of G is (|A||B|)n/2. An intuition driving the results of [14] and [22] is that in a certain sense, most f ∈
Hom(G, H) are close to pure-(A, B) colorings for some (A, B) that maximizes |A||B| (the maximum
value is the η(H) of (1); note that there may be many (A, B) that achieve the maximum).

Such an intuition cannot be formalized for all regular bipartite G — for example, by the indepen-
dence of the coloring on different components of a disconnected graph, it is easy to see that the
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intuition cannot be true for a graph that consist of a large number of small components. If, however,
we are working with connected graphs with reasonable expansion (meaning that each subset of ver-
tices from one partition class has a reasonably large number of neighbors in the other class) then
we might expect it to be true that most f ∈ Hom(G, H) are close to pure-(A, B) colorings for some
(A, B). This is shown for random regular bipartite graphs, for example, in [14], and the proof critically
uses the excellent expansion of random graphs.

For other graphs with weaker but still good expansion we expect similar results. One family of
graphs that is of particular interest, given the statistical physics interpretation of H-colorings, is the
integer lattice Z

d with the usual nearest neighbor adjacency, together with its finite analog the dis-
crete torus Z

d
m , the graph obtained from an axis-parallel box in Z

d by identifying opposite faces.
These graphs have been the focus of study for particular homomorphism models (see e.g. [20] for
independent sets and [6] for proper colorings), as well as for general H-colorings (see e.g. [5]).

Formally, for each d � 1 and even m � 2, the even discrete torus Z
d
m is the graph on vertex set

V = {0,1, . . . ,m−1}d with edge set E consisting of all pairs of strings that differ by exactly 1 (mod m)
on exactly one coordinate. For m � 4 it is 2d-regular and bipartite while for m = 2 it is d-regular and
bipartite. We denote by E the bipartition class of vertices the sum of whose coordinates is even, and
by O the complementary class. In the case m = 2, the even discrete torus is isomorphic to the familiar
Hamming cube or discrete hypercube (the graph on vertex set {0,1}d with edge set consisting of all
pairs of strings that differ on exactly one coordinate). For this special case we use the more familiar
notation Q d .

In [14] information is given about the number of occurrences of each color in a uniformly chosen
H-coloring of Z

d
m , but no information is given about how the vertices of a particular color are dis-

tributed between E and O. Some special cases of this problem have been previously addressed, as
we now discuss. (Note that we frequently refer to elements of V (H) as colors, and say that a vertex
of Zd

m is colored k if its image in the H-coloring under consideration is k.)
In [30], in the course of deriving the asymptotic formula

∣∣Hom(Q d, H ind)
∣∣ = (

2
√

e + o(1)
)
22d−1

(2)

(as d → ∞), Korshunov and Sapozhenko showed that if I is a uniformly chosen independent set
from Q d (that is, if I is the preimage of the unlooped vertex in a uniformly chosen f from
Hom(Q d, H ind)), then with high probability I has size close to 2d/4 and is contained almost en-
tirely in a single partition class. Kahn [28] and Galvin [19] extended these results to the case of I
chosen from the set of independent sets according to the hard-core distribution with parameter λ,
that is, the distribution in which each set I is chosen with probability proportional to λ|I| for some
λ > 0 (Korshunov and Sapozhenko’s setting is λ = 1).

In [29], Kahn considered the set Hom(Q d,Z)/∼ (where Z is given a graph structure by declaring
consecutive integers to be adjacent, and ∼ is the equivalence relation defined by h ∼ g if and only
if h − g is a constant function). Answering a question of Benjamini, Häggström and Mossel [2], he
showed that if f is a uniformly chosen element from this set (a “cube-indexed random walk”), then
with high probability f takes on only constantly many values (independent of d). Extending this work,
Galvin [15] showed that in fact f takes on only at most five (consecutive) values, that f is constant
on all but o(2d) (actually, at most g(d) for any g(d) = ω(1)) vertices on one of the two bipartition
classes of Q d , and that on the other partition classes each of two values appear on (1/4 − o(1))2d of
the vertices. Using a correspondence between Hom(Q d,Z)/∼ and Hom(Q d, K3), the results of [15]
also answer the question of the structure of a typical (uniformly chosen) proper 3-coloring of Q d . In
the process of showing

∣∣Hom(Q d, K3)
∣∣ = (

6e + o(1)
)
22d−1

(3)

it is shown in [15] that Hom(Q d, K3) may be partitioned into an exceptional subset of size
o(1)| Hom(Q d, K3)|, and six equal sized subsets, with the property that within each of these six sub-
sets, all colorings are constant on all but o(2d) (again, actually at most g(d) for any g(d) = ω(1))
vertices on one of the two bipartition classes of Q d , and on the other partition classes each of two
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colors appear on (1/4 − o(1))2d of the vertices. Peled [33] has recently extended these results on the
3-coloring and cube-indexed random walk models to more general tori.

One of the main purposes of this paper is to extend these structural characterizations of
Hom(Q d, H ind) and Hom(Q d, K3) to arbitrary H and from Q d to Z

d
m for all even m. We also ex-

tend to a general class of probability distributions on Hom(Zd
m, H) that are very natural to consider

from a statistical physics standpoint. Fix a set of positive weights Λ = {λi : i ∈ V (H)} indexed by the
vertices of H . We think of the magnitude of λk as measuring how likely color k is to appear at each
vertex. This can be formalized by giving each f ∈ Hom(Zd

m, H) weight wΛ( f ) = ∏
v∈V (Zd

m)
λ f (v) and

probability

pΛ( f ) = wΛ( f )

ZΛ(Zd
m, H)

where ZΛ(Zd
m, H) = ∑

f ∈Hom(Zd
m,H)

wΛ( f ) is the appropriate normalizing constant or partition func-

tion. When all weights are 1, ZΛ(Zd
m, H) is simply counting the number of H-colorings, and pΛ is

uniform measure. (For a good introduction to these distributions see for example [8].) Because of a
technical limitation of one step in our proof, all λi ’s under consideration in this paper will be ratio-
nal.

Throughout the paper, we use the standard Landau notation, with f = o(g) and f = ω(g) indi-
cating, respectively, that f /g → 0 and f /g → ∞ as d → ∞; f = O (g) and f = Ω(g) indicating,
respectively, that | f | < C |g| and | f | > C |g| for some constant C ; and f = Θ(g) indicating that both
f = O (g) and f = Ω(g) hold. We will always think of d as the variable in our functions, with m,
H and (when present) Λ some fixed parameters, and so all implicit constants depend only on m, H
and Λ, but not on d. Where necessary we will always assume that d is large enough to support our
assertions. For S ⊆ Hom(Zd

m, H) and T ⊆ V (H) we write wΛ(S) for
∑

f ∈S wΛ( f ) and λT for
∑

k∈T λk .
With A ∼ B indicating that every vertex in A is adjacent to every vertex in B , set

ηΛ(H) = max
{
λAλB : A, B ⊆ V (H), A ∼ B

}
and

MΛ(H) = {
(A, B) ∈ V (H)2: A ∼ B, λAλB = ηΛ(H)

}
.

We denote by Nx the set of neighbors of x, and later use N(X) for
⋃

x∈X Nx .
We now state our first main result, a structural decomposition of Hom(Zd

m, H) (in the presence of
weight-set Λ) into finitely many classes of similar-looking colorings.

Theorem 1.1. Fix H, rational Λ and m � 2 even. There is a partition of Hom(Zd
m, H) into |MΛ(H)|+1 classes

as

Hom
(
Z

d
m, H

) = DΛ(0) ∪
⋃

(A,B)∈MΛ(H)

DΛ(A, B)

with the following properties.

1. wΛ(DΛ(0)) � 2−Ω(d) ZΛ(Zd
m, H).

2. For each (A, B) ∈ MΛ(H) and f ∈ DΛ(A, B), the number of vertices v ∈ E (resp. O) with f (v) /∈ A
(resp. f (v) /∈ B) is at most (m − Ω(1))d, and moreover all but at most (m − Ω(1))d vertices w of O
(resp. E ) have the property that all colors from A (resp. B) appear on Nw .

This decomposition already gives significant information about the structure of Hom(Zd
m, H) and

the distribution pΛ on Hom(Zd
m, H). For the purpose of obtaining long-range influence results (see

Section 2), we need a slightly stronger decomposition result that in addition quantifies the number
of vertices of each color in an arbitrary element of each partition class as well as the sizes of the
partition classes. In what follows we use X = Y (1 ± 2−Ω(d)) to indicate |X/Y − 1| � 2−Ω(d) .
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Theorem 1.2. Fix H, rational Λ and m � 2 even. There is a partition of Hom(Zd
m, H) into |MΛ(H)| + 1

classes as

Hom
(
Z

d
m, H

) = CΛ(0) ∪
⋃

(A,B)∈MΛ(H)

CΛ(A, B)

with the following properties.

1. wΛ(CΛ(0)) � 2−Ω(d) ZΛ(Zd
m, H).

2. For each (A, B) ∈ MΛ(H), f ∈ CΛ(A, B), k ∈ A and 	 ∈ B, the proportion of vertices of E (resp. O)
colored k (resp. 	) is within 2−Ω(d) of λk/λA (resp. λ	/λB ).

3. If A 	= B is such that (A, B), (B, A) ∈MΛ(H) then

wΛ

(
CΛ(A, B)

) = wΛ

(
CΛ(B, A)

)(
1 ± 2−Ω(d)

)
.

4. If (A, B), ( Ã, B̃) ∈ MΛ(H) are such that ϕ(A) = Ã and ϕ(B) = B̃ for some weight preserving automor-
phism ϕ of H, then

wΛ

(
CΛ(A, B)

) = wΛ

(
CΛ( Ã, B̃)

)(
1 ± 2−Ω(d)

)
.

5. For each (A, B) ∈MΛ(H), x ∈ E , y ∈O, k ∈ A and 	 ∈ B,

pΛ

(
f (x) = k

∣∣ f ∈ CΛ(A, B)
) = (1 ± 2−Ω(d))λk

λA

and

pΛ

(
f (y) = 	

∣∣ f ∈ CΛ(A, B)
) = (1 ± 2−Ω(d))λ	

λB
.

Theorem 1.2 does not make a general statement about the relative sizes of the CΛ(A, B)’s, but
there are two important situations in which we do obtain some information. It will helpful at this
point to define the notion of an approximate equipartition.

Definition 1.3. Fix H , rational Λ and m � 2 even. An approximate equipartition of Hom(Zd
m, H) is a

partition into |MΛ(H)| + 1 classes satisfying conditions 1, 2 and 5 of Theorem 1.2, as well as the
condition that for all (A, B), (A′, B ′) ∈MΛ(H) we have

wΛ

(
CΛ(A, B)

) = (
1 ± 2−Ω(d)

)
wΛ

(
CΛ

(
A′, B ′)).

A corollary of statements 1 and 3 is that if MΛ(H) = {(A, B), (B, A)} for some A 	= B (as, for
example, in the case H = H ind for arbitrary Λ), then the partition of Hom(Zd

m, H) from Theorem 1.2
is an approximate equipartition with

wΛ

(
CΛ(A, B)

)
, wΛ

(
CΛ(B, A)

) = ZΛ

(
Z

d
m, H

)(1

2
± 2−Ω(d)

)
.

Furthermore, if MΛ(H) = {(A, A)} for some A then the partition of Hom(Zd
m, H) from Theorem 1.2

is trivially an approximate equipartition with wΛ(CΛ(A, A)) = ZΛ(Zd
m, H)(1 − 2−Ω(d)). These are in a

sense the two generic situations, as for every H , if the weights λi are chosen from any continuous
distribution supported on {x ∈ R

|V (H)|: x > 0} then with probability 1 one of these two situations will
occur.

A corollary of statements 1 and 4 is that if MΛ(H) is transitive, that is, if for each (A, B), ( Ã, B̃) ∈
MΛ(H) there is a weight preserving automorphism ϕ of H with ϕ(A) = Ã and ϕ(B) = B̃ , then the
partition of Hom(Zd

m, H) is an approximate equipartition with

wΛ

(
CΛ(A, B)

) = ZΛ

(
Z

d
m, H

)( 1

|M (H)| ± 2−Ω(d)

)
.

Λ
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This is far from a generic situation, but is the case for a number of very important examples, such as
the uniform proper q-coloring model (H = Kq and Λ = (1, . . . ,1)), where it easily seen that

∣∣MΛ(Kq)
∣∣ =

{( q
q/2

)
if q even,( q

(q−1)/2

) + ( q
(q+1)/2

)
if q odd,

or more concisely |MΛ(Kq)| = (1 + 1{q odd})
( q
[q/2]

)
. (Note that M(Kq) consists of all pairs (A, B) with

A and B disjoint, A ∪ B = V (Kq), and |A|, |B| as near equal as possible.) Another example of this
behavior is the uniform Widom–Rowlinson model (H the complete looped path on three vertices,
or equivalently the complete looped graph on {1,2,3} with edge 13 removed). In this case we have
MΛ(H) = {(A, A), (B, B)} with A = {1,2} and B = {2,3}.

The existence of these equipartitions is what drives our long-range influence results Corollar-
ies 2.2, 2.3 and 2.4 in Section 2. A representative result from that section is the following: in a
proper q-coloring of Q d chosen uniformly conditioned on a particular vertex v ∈ E being colored 1,
the probability that another vertex u ∈ E is colored 1 is close to 2/q, whereas the probability that a
vertex w ∈O is colored 1 is close to 0, regardless of the distances between u, v and w .

In general, we cannot say anything more about the relative (Λ-weighted) sizes of the CΛ(A, B),
and indeed we can construct examples to show that various different types of behaviors can occur.
We postpone a discussion of this, together with a conjecture concerning the sizes, to Section 6.

The proof of Theorem 1.2 is based on the notion of an ideal edge. Let H and f ∈ Hom(Zd
m, H)

be given. Say that an edge e = uv ∈ E (with u ∈ E ) is ideal (with respect to f ) if f (Nu) = B and
f (Nv) = A for some (A, B) ∈ M(H). We will only be interested in the probability that a particular
edge is not ideal with respect to f , when f is chosen uniformly from Hom(Zd

m, H). Note that by the
symmetry of the torus, this probability is independent of the particular edge we choose. Our main
technical result is the following.

Theorem 1.4. Fix H, m � 2 even, and e ∈ E. If f is chosen uniformly from Hom(Zd
m, H) then

Pr(e is not ideal with respect to f ) � 2−Ω(d).

The analogous result for m = 2 and H = Z (with two elements of Hom(Q d,Z) identified if they
differ by a constant) was proved by Kahn in [29], and our proof follows similar lines. A standard trick
of comparing a weighted H-coloring model to a uniform H ′-coloring model for a certain graph H ′
(depending on H and Λ) makes the generalization from uniform to arbitrary Λ relatively straightfor-
ward.

The paper is laid out as follows. In Section 2 we discuss a long-range influence phenomenon that
is implied by Theorem 1.2. In Section 3 we derive Theorem 1.2 from Theorem 1.4. We then give
the proof of Theorem 1.4 in Section 4. In Section 5 we discuss the extent to which our proof goes
through for the proper q-coloring model when q is allowed to grow with d. Some open problems and
conjectures are discussed in Section 6.

2. Long-range influence

Roughly speaking we say that a distribution pΛ on Hom(Zd
m, H) exhibits long-range influence if the

distribution of pΛ restricted to a single vertex x is sensitive to conditioning on the color of another
vertex y, even in the limit as d and the distance from x to y go to infinity.

More formally, given a graph H , a weight set Λ and even m, we say that the Λ-weighted H-
coloring model on Z

d
m exhibits long-range influence if there is a choice of x, y ∈ V and k, 	 ∈ V (H)

(actually a sequence of choices, one for each d) with dist(x, y) = ω(1) (where “dist” is usual graph
distance) such that

pΛ( f (x) = k| f (y) = 	)
� 1 as d → ∞. (4)
pΛ( f (x) = k)
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Theorem 1.2 strongly implies such a phenomenon, at least in the case where the partition of
Hom(Zd

m, H) guaranteed by Theorem 1.2 is an approximate equipartition. The following is an im-
mediate corollary of Theorem 1.2, and in particular statement 5 of that theorem.

Theorem 2.1. Fix H, rational Λ and m � 2 even. Suppose that the partition of Hom(Zd
m, H) from Theorem 1.2

is an approximate equipartition. Fix k, 	 ∈ V (H). For all x ∈ E we have

pΛ

(
f (x) = k

) =
(

1

|MΛ(H)| ± 2−Ω(d)

) ∑
(A,B)∈MΛ(H): k∈A

λk

λA

(and by symmetry this is also true for x ∈O). On the other hand, if x, y ∈ E then

pΛ

(
f (x) = k

∣∣ f (y) = 	
) =

(
1

|MΛ(H)| ± 2−Ω(d)

) ∑
(A,B)∈MΛ(H): 	,k∈A

λk

λA

and if x ∈ E and y ∈O then

pΛ

(
f (x) = k

∣∣ f (y) = 	
) =

(
1

|MΛ(H)| ± 2−Ω(d)

) ∑
(A,B)∈MΛ(H): k∈A, 	∈B

λk

λA
.

By choosing k, 	 appropriately, these three quantities can be made to be different (in the limit as
d → ∞). Rather than stating an unwieldy general proposition to this effect, we illustrate it with three
examples. It will be helpful first to set up some notation. Fix m, H and Λ. For each d ∈ N and x ∈ V ,
we define the occupation probability vector �vd(x) by

�vd(x) = (
pΛ

(
f (x) = k

): k ∈ V (H)
)
.

(We suppress dependence on m, H and Λ to aid readability.) If the choice of f is conditioned on an
event E we use �vd(x|E) to denote the conditional occupation probability vector, that is,

�vd(x|E) = (
pΛ

(
f (x) = k

∣∣E
): k ∈ V (H)

)
.

In what follows we use d∞(·,·) for 	∞ distance.
Our first example is the independent set model, that is, H = H ind where V (H ind) = {v in, vout} and

E(H ind) = {v in vout, vout vout}. We list v in first in the occupation and conditional occupation probability
vectors. Our weighting vector will assign rational weight λ to v in and weight 1 to vout. (This is the
hard-core model with fugacity λ, results on which from [28] have been discussed earlier.) Noting that
Mλ(H ind) = {(A, B), (B, A)} where A = {v in, vout} and B = {vout}, we have the following.

Corollary 2.2. Fix m � 2 even and rational λ > 0. For all x ∈ V we have

d∞
(

�vd(x),

(
λ

2(1 + λ)
,

2 + λ

2(1 + λ)

))
� 2−Ω(d).

On the other hand, if x, y ∈ E then

d∞
(

�vd
(
x
∣∣{ f (y) = v in

})
,

(
λ

1 + λ
,

1

1 + λ

))
� 2−Ω(d)

and if x ∈ E and y ∈O then

d∞
(�vd

(
x
∣∣{ f (y) = v in

})
, (0,1)

)
� 2−Ω(d).

(This result was earlier proven in [19] for m = 2 and all λ (not necessarily rational) satisfying
λ > cd−1/3 log d for some constant c > 0.)

Our second example is the uniform proper q-coloring model (H = Kq where V (Kq) = {1, . . . ,q}
and E(Kq) = {i j: i 	= j}, and Λ = �1). We list color 1 first in the occupation and conditional occupation
probability vectors. By our earlier observation that M(H) consists of all pairs (A, B) with A ∪ B =
{1, . . . ,q}, A ∩ B = ∅ and |A| − |B| ∈ {0,±1}, we get the following via a routine calculation.
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Corollary 2.3. Fix m � 2 even and q ∈ N. For all x ∈ V we have

�vd(x) =
(

1

q
, . . . ,

1

q

)
.

On the other hand, if x, y ∈ E then

d∞
(

�vd
(
x
∣∣ f (y) = 1

)
,

(
2

q
,

q − 2

q(q − 1)
, . . . ,

q − 2

q(q − 1)

))
� 2−Ω(d)

and if x ∈ E and y ∈O then

d∞
(

�vd
(
x
∣∣ f (y) = 1

)
,

(
0,

1

q − 1
, . . . ,

1

q − 1

))
� 2−Ω(d).

The exact equality for �vd(x) here follows by symmetry. This corollary, in the special case m = 2
and q = 3, was proved in [17] (and is implicit in [15]).

Our final example is the uniform Widom–Rowlinson model. Here H = HWR is the graph on vertex
set {1,2,3} with all edges (and loops) present except the edge connecting 1 and 3. In the occupa-
tion and conditional occupation probability vectors we list the vertices in numerical order. Noting
that M(HWR) = {(A, A), (B, B)} where A = {1,2} and B = {2,3}, we get the following via a routine
calculation.

Corollary 2.4. Fix m � 2 even. For all x ∈ V we have

d∞
(

�vd(x),

(
1

4
,

1

2
,

1

4

))
� 2−Ω(d).

On the other hand, if x, y ∈ E then

d∞
(

�vd
(
x
∣∣ f (y) = 1

)
,

(
1

2
,

1

2
,0

))
� 2−Ω(d)

while if x ∈ E and y ∈O then

d∞
(

�vd
(
x
∣∣ f (y) = 1

)
,

(
0,

1

2
,

1

2

))
� 2−Ω(d).

3. Proofs of Theorems 1.1 and 1.2

We first note that if the weight set Λ′ is obtained from Λ by multiplying each λk by the same
constant, then the distributions pΛ and pΛ′ are identical. We may therefore assume without loss of
generality that λk � 1 for all k ∈ V (H).

Our main technical result (Theorem 1.4) considers uniformly chosen homomorphisms, so to apply
it to homomorphisms chosen according to pΛ we need to first relate pΛ to uniform distribution on a
graph H(Λ) built from H and Λ. We use a technique introduced in [7].

Let C = C(Λ) be the smallest integer such that Cλk is an integer for all k ∈ V (H). For each k let Sk
be an arbitrary set of size Cλk , with the Sk ’s disjoint. We construct H(Λ) on vertex set

⋃
k∈V (H) Sk

by joining x and y if and only if x ∈ Sk and y ∈ S	 for some k	 ∈ E(H). Equivalently, H(Λ) is obtained
from H by replacing each vertex k by a set of size Cλk , each edge by a complete bipartite graph and
each loop by a complete looped graph; see Fig. 1.

For each f ∈ Hom(Zd
m, H) let A f consist of those g ∈ Hom(Zd

m, H(Λ)) with g(v) ∈ S f (v) for each

v ∈ V . It is straightforward to verify that each A f satisfies |A f | = Cmd
wΛ( f ), and that the A f ’s form a

partition of Hom(Zd
m, H(Λ)). This implies that choosing an element g uniformly from Hom(Zd

m, H(Λ))

and then letting f ∈ Hom(Zd
m, H) be such that g ∈ A f is equivalent to choosing f from Hom(Zd

m, H)

according to pΛ .
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Fig. 1. An example H and H(Λ) with λ1 = 3/2, λ2 = 1 and λ3 = 1, so C = 2. Here S1 = {v1, v2, v3}, S2 = {u1, u2}, and S3 =
{w1, w2}.

Before continuing, we note the following easily established correspondence between M(H(Λ))

and MΛ(H):∣∣M(
H(Λ)

)∣∣ = ∣∣MΛ(H)
∣∣ and(

A′, B ′) ∈ M
(

H(Λ)
)

if and only if

A′ =
⋃
k∈A

Sk and B ′ =
⋃
	∈B

S	 for some (A, B) ∈ MΛ(H). (5)

Now let g be chosen uniformly from Hom(Zd
m, H(Λ)). By Theorem 1.4, the expected number

of non-ideal edges of g is at most (m − Ω(1))d and so by Markov’s inequality there is a subset
Hom′(Zd

m, H(Λ)) of Hom(Zd
m, H(Λ)) with∣∣Hom′(

Z
d
m, H(Λ)

)∣∣ �
(
1 − 2−Ω(d)

)∣∣Hom
(
Z

d
m, H(Λ)

)∣∣ (6)

and with each g ∈ Hom′(Zd
m, H(Λ)) having at most (m − Ω(1))d non-ideal edges.

We now need an isoperimetric bound on the discrete torus. The following result is due to Bollobás
and Leader [4, Theorem 8].

Lemma 3.1. Let X ⊆ V satisfy |X | � md/2. The number of edges in E which have exactly one vertex in common
with X is at least |X |(d−1)/d.

We will use the following corollary.

Corollary 3.2. Let a satisfy (ma)d/(d−1) < 1/4. If at most mda edges are deleted from Z
d
m then the resulting

graph has a component with at least md(1 − (ma)d/(d−1)) vertices.

Proof. Let D be the set of deleted edges, and let C1, C2, . . . , Ck be the components of the graph on
vertex set V with edge set E \D, listed in order of increasing size (where size is measured by number
of vertices). If k = 1, we are done. Otherwise, let X = ⋃

	
i=1Ci where 	 is chosen as large as possible so

that |X | � md/2. Since D includes all of the edges which have exactly one vertex in common with X ,
we have by Lemma 3.1

mda � |D| � |X | d−1
d

and so

|X | � md(ma)
d

d−1 < md/4
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(the final inequality by hypothesis). By the definition of 	, we have |C	| > md/4. If 	 = k − 1, we are
done (since then |C	| � md(1 − (ma)d/(d−1))). We complete the proof by arguing that we must have
	 = k − 1. If not, let X ′ be the union of all the components other than C	+1 and those in X . By the
same argument as above (since |X ′| � md/2) we have |X ′| < md/4 < |C	|. This is a contradiction, since
by our ordering of the components X ′ is a union of components all at least as large as C	 . �

Corollary 3.2 implies that for each g ∈ Hom′(Zd
m, H(Λ)) there is a collection F of edges which

spans a connected subgraph of Zd
m on at least md − (m − Ω(1))d vertices, and that all of these edges

are ideal (note that in this application we have a = 2−Ω(d) and so certainly (ma)d/(d−1) < 1/4). By the
connectivity of the subgraph induced by these edges, it follows that there is some (A′, B ′) ∈M(H(Λ))

such that for each uv ∈F with u ∈O, we have that Nu is colored from A′ (and so in particular v is)
and Nv is colored from B ′ (and so in particular u is). We may therefore decompose Hom′(Zd

m, H(Λ))

as

Hom′(
Z

d
m, H(Λ)

) =
⋃

(A′,B ′)∈M(H(Λ))

D
(

A′, B ′)

with the property that for each g ∈ D(A′, B ′) we can find a subset of V of size at least md − (m −
Ω(1))d with each vertex of this set colored from A′ (resp. B ′) if it is in E (resp. O), and moreover
all but at most (m − Ω(1))d vertices of O (resp. E ) have all of A′ (resp. B ′) appearing on their
neighborhoods.

We now pass to a partition of Hom(Zd
m, H). For each (A, B) ∈ MΛ(H), let DΛ(A, B) be the set

of all f ∈ Hom(Zd
m, H) for which there is some g ∈ A f with g ∈ D(A′, B ′), where (A′, B ′) is ob-

tained from (A, B) by the correspondence described in (5). The DΛ(A, B)’s are disjoint, for if f ∈
DΛ(A, B) (with corresponding g ∈ D(A′, B ′)) and f̃ ∈ DΛ( Ã, B̃) (with corresponding g̃ ∈ D( Ã′, B̃ ′))
with (A, B) 	= ( Ã, B̃), the neighborhoods of the end-vertices of any edge which is ideal for both g and
g̃ witness that f 	= f̃ .

Moreover, DΛ(A, B) inherits from D(A′, B ′) that for all f ∈ DΛ(A, B), the number of vertices v ∈ E
(resp. O) with f (v) /∈ A (resp. f (v) /∈ B) is at most (m − Ω(1))d (for concreteness, (m − κ)d for some
0 < κ < m that depends on H and Λ but may be chosen to be independent of (A, B)), and moreover
all but at most (m − Ω(1))d vertices w of O (resp. E) have the property that all colors from A
(resp. B) appear on Nw .

Set DΛ(0) = Hom(Zd
m, H) \ ⋃

(A,B)∈MΛ(H)DΛ(A, B). If f ∈ DΛ(0) then A f ⊆ Hom(Zd
m, H(Λ)) \

Hom′(Zd
m, H(Λ)) and so by (6)

Cmd
wΛ

(
DΛ(0)

)
� 2−Ω(d)

∣∣Hom
(
Z

d
m, H(Λ)

)∣∣ = 2−Ω(d)Cmd
ZΛ

(
Z

d
m, H(Λ)

)
.

This completes the proof of Theorem 1.1.
We now turn to Theorem 1.2. Our construction of the CΛ(A, B)’s will be from scratch (and so

in particular we will not refer to ideal edges); however, to establish the required properties of the
CΛ(A, B)’s we will relate them to the DΛ(A, B)’s.

For each (A, B) ∈ MΛ(H) we define a set CΛ(A, B)′ as follows. First, for each F1 ⊆ E and
F2 ⊆ O with |F1| + |F2| � (m − κ)d (with κ as described in the construction of DΛ(A, B) above),
let C (F1,F2)

Λ (A, B)′ include all f ∈ Hom(Zd
m, H) for which every vertex of E \ F1 is colored from A,

every vertex from F1 is colored from Ac , every vertex of O \ F2 is colored from B , and every vertex
from F2 is colored from Bc (note that for some choices of (F1, F2) we may have C (F1,F2)

Λ (A, B)′ = ∅).
Next, set

CΛ(A, B)′ =
⋃

(F1,F2)

C (F1,F2)
Λ (A, B)′.

By our upper bound on |F1| + |F2|, we have DΛ(A, B) ⊆ CΛ(A, B)′ for each (A, B). It is also
clear that |CΛ(A, B)′| = |CΛ(B, A)′| (because the mapping from Hom(Zd

m, H) to itself, induced by
any automorphism of Zd

m that maps E to O, maps CΛ(A, B)′ to CΛ(B, A)′ bijectively, and is weight-
preserving), and (for a similar reason) that if ϕ(A) = Ã and ϕ(B) = B̃ for some weight-preserving
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automorphism ϕ of H then |CΛ(A, B)′| = |CΛ( Ã, B̃)′|. We do not yet have a partition of Hom(Zd
m, H),

however, as the CΛ(A, B)′ ’s are not necessarily disjoint.
Most of the rest of the proof is devoted to establishing the following two facts. First, for each

(A, B) ∈ MΛ(H), x ∈ E , y ∈ O, k ∈ A and 	 ∈ B , if f is chosen from Hom(Zd
m, H) according to pΛ

then

pΛ

(
f (x) = k

∣∣ f ∈ CΛ(A, B)′
) = (1 + 2−Ω(d))λk

λA
,

pΛ

(
f (y) = 	

∣∣ f ∈ CΛ(A, B)′
) = (1 + 2−Ω(d))λ	

λB
. (7)

For the second, say that f ∈ CΛ(A, B)′ is balanced if for each k ∈ A (resp. 	 ∈ B) the proportion of
vertices of E (resp. O) colored k (resp. 	) is within a multiplicative factor 1 ± (1 − κ/(4m))d of λk/λA
(resp. λ	/λB ). For all (A, B) ∈MΛ(H) we have the following:

pΛ

(
f is not balanced

∣∣ f ∈ CΛ(A, B)′
)
� exp

{
−

(
m − κ

2

)d/
4

}
. (8)

These two facts allow us to swiftly complete the proof of Theorem 1.2. Indeed, for each (A, B) ∈
MΛ(H), let CΛ(A, B) be the subset of CΛ(A, B)′ consisting of balanced homomorphisms. The
CΛ(A, B)’s are clearly disjoint. Letting CΛ(0) be the complement of the union of the CΛ(A, B)’s,
we have that wΛ(CΛ(0)) � 2−Ω(d) ZΛ(Zd

m, H) since it consists of the unbalanced homomorphisms
removed from the CΛ(A, B)′ ’s (a collection with total weight at most exp{−(m − κ/2)d/4}ZΛ(Zd

m, H),
by (8)) together with some subset of DΛ(0) (with total weight at most 2−Ω(d) ZΛ(Zd

m, H)). This estab-
lishes that our partition satisfies statement 1 of Theorem 1.2.

Statement 2 is immediate from the construction of the CΛ(A, B)’s. Statements 3 and 4 follow from
the corresponding statements for the CΛ(A, B)′ ’s, since the sizes of CΛ(A, B)′ and CΛ(A, B) differ by
a multiplicative factor of no more than 1 ± 2−Ω(d) . Finally, statement 5 follows from (7) for the same
reason.

We now begin the verification of (7) and (8), beginning with (7). Fix (A, B) ∈ MΛ(H), x ∈ E and
k ∈ A (the case y ∈ O and 	 ∈ B is analogous). If (F1, F2) is such that x /∈ F1 ∪ N(F2), then since
x is adjacent to vertices colored from B , and all vertices of A are adjacent to all vertices of B , we
have the following: for f chosen from C (F1,F2)

Λ (A, B)′ according to pΛ , the probability that f (x) = k is
exactly λk/λA . Thus (7) will follow if we can show that the contribution to wΛ(CΛ(A, B)′) from those
C (F1,F2)

Λ (A, B)′ ’s with x ∈ F1 ∪ N(F2) is at most 2−Ω(d)wΛ(CΛ(A, B)′). To establish this, note that∑
(F1,F2)

wΛ

(
C (F1,F2)

Λ (A, B)′
)
1{x∈F1∪N(F2)}

= 1

md

∑
y∈E

∑
(F1,F2)

wΛ

(
C (F1,F2)

Λ (A, B)′
)
1{y∈F1∪N(F2)}

� 1

md

∑
(F1,F2)

∣∣F1 ∪ N(F2)
∣∣wΛ

(
C (F1,F2)

Λ (A, B)′
)

� (2d + 1)(m − κ)d

md
wΛ

(
CΛ(A, B)′

)
.

The first equality follows from the symmetry of both Z
d
m and the construction of CΛ(A, B)′ . In the

first inequality we reverse the order of summation, and in the second we bound |F1 ∪ N(F2)| by
(2d + 1)(m − κ)d .

Now we turn to (8). Again fix (A, B) ∈ MΛ(H). A lower bound on wΛ(C (F1,F2)
Λ (A, B)′) (for

C (F1,F2)
Λ (A, B)′ 	= ∅) is

λ
md/2−|F1∪N(F2)|
A λ

md/2−|F2∪N(F1)|
B . (9)
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As before, this is because every vertex in E \ F1 ∪ N(F2) is adjacent only to vertices colored only
from B and so may be given any color from A, with a similar argument for vertices from O \ F2 ∪
N(F1) (note that in this lower bound we are using the assumption λi � 1 for all i).

For δ > 0, an upper bound on the sum of the weights of those f ∈ C (F1,F2)
Λ (A, B)′ in which a

particular color k from A appears either on a proportion less than (λk/λA −δ) of E , or on a proportion
greater than (λk/λA + δ), is( ∑

i�(λk/λA−δ)md/2
i�(λk/λA+δ)md/2

(
md/2

i

)
(λA − λk)

md/2−iλi
k

)
λ

md/2
B λ

|F1∪N(F2)|+|F2∪N(F1)|
V (H) . (10)

By standard binomial concentration inequalities (see for example [24] or [1, Appendix A]), we have

∑
i�(λk/λA−δ)md/2
i�(λk/λA+δ)md/2

(
md/2

i

)
(λA − λk)

md/2−iλi
k � 2 exp

{−δ2md/2
}
λ

md/2
A . (11)

Combining (9), (10) and (11) we find that for f chosen from non-empty C (F1,F2)
Λ (A, B)′ according to

pΛ , the probability that a particular color appears either on a proportion less than (λk/λA − δ) of E
or on a proportion greater than (λk/λA + δ) is at most

2λ
2|F1∪N(F2)|+2|F2∪N(F1)|
V (H)

exp{δ2md/2} � exp
{−δ2md/2 + O

(
d(m − κ)d)}

(again using λi � 1 for all i as well as our upper bound on |F1| + |F2|). Repeating this argument
for colors from B and applying the law of total probability and a union bound, we find that for f
chosen from CΛ(A, B)′ according to pΛ , the probability that either there is some color k from A
which fails to appear on a proportion between (λk/λA − δ) and (λk/λA + δ) of E , or there is some
color 	 from B which fails to appear on a proportion between (λ	/λB − δ) and (λ	/λB + δ) of O is at
most exp{−δ2md/2 + O (d(m − κ)d)}. Taking δ = (1 − κ/(4m))d gives the required result.

4. Proof of Theorem 1.4

Our strategy is to put an upper bound on the entropy of a uniformly chosen element of
Hom(Zd

m, H) that is smaller than a trivial lower bound unless ε is suitably small. We build on ideas
introduced by Kahn [29].

4.1. Entropy

In this section we very briefly review the entropy material that is relevant for the proof of The-
orem 1.4. See [29] for an expanded treatment appropriate to the present application, or for example
[32] for a very thorough discussion. In what follows, X, Y , etc., are discrete random variables, taking
values in any finite set. Throughout, we take log = log2.

The (binary) entropy function is H(α) = −α logα − (1 − α) log(1 − α). The entropy of the random
variable X is H(X) = ∑

x −p(x) log p(x) where we write p(x) for Pr(X = x) (and later p(x|y) for
Pr(X = x|Y = y)). The inequality that makes entropy a useful tool for counting is

H(X) � log
∣∣range(X)

∣∣, (12)

with equality if and only if X is uniform. For random variables X, Y and Z where Y determines Z ,
we also have

H(X |Y ) � H(X) and H(X |Y ) � H(X |Z), (13)
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that is, dropping or lessening conditioning does not decrease entropy (here H(X |Y ) =∑
y p(y)

∑
x −p(x|y) log p(x|y) is a conditional entropy). We will also use the (conditional) chain

rule: for X = (X1, . . . , Xn) a random vector,

H(X |Y ) = H(X1|Y ) + H(X2|X1, Y ) + · · · + H(Xn|X1, . . . , Xn−1, Y ). (14)

Finally, we will need the conditional version of Shearer’s lemma from [29] (extending the original
Shearer’s lemma from [10]). For a random vector X = (X1, . . . , Xm) and A ⊆ [m] := {1, . . . ,m}, set
X A = (Xi : i ∈ A).

Lemma 4.1. Let X = (X1, . . . , Xm) be a random vector and A a collection of subsets (possibly with repeats)
of [m], with each element of [m] contained in at least t members of A. Then, for any partial order ≺ on [m],

H(X) � 1

t

∑
A∈A

H
(

X A
∣∣(Xi : i ≺ A)

)
,

where i ≺ A means i ≺ a for all a ∈ A.

4.2. Notation and definitions

It will be convenient to gather together all of our notation in a single place. For whatever graph is
under discussion, we use ∼ to indicate adjacency of pairs of vertices. For A, B ⊆ V (H) write A ∼ B if
a ∼ b for all a ∈ A and b ∈ B . For v ∈ V set Nv = {w ∈ V : w ∼ v}. Recall that

η(H) = max
{|A||B|: A, B ⊆ V (H), A ∼ B

}
and

M(H) = {
(A, B): A, B ⊆ V (H), A ∼ B, |A||B| = η(H)

}
.

Define

S(H) = {
A: (A, B) ∈ M(H) for some B

}
.

For A ⊆ V (H) let n(A) = {v ∈ V (H): {v} ∼ A}, and for A, B ⊆ V (H) let p(A, B) be the number of pairs
(a,b) ∈ A × B with a � b. Let

V � = {
x = (x1, . . . , xd) ∈ V : xd = 0, x ∈ E

}
(a set of size md−1/2). For each v ∈ V � set

C(v) = {
v + (0, . . . ,0, i): 0 � i � m − 1

}
.

In other words, C(v) is the set of all vertices in V which agree with v on the first d − 1 coordinates;
note that unless m = 2, C(v) induces a cycle in Z

d
m . (In the case m = 2, C(v) simply induces an edge;

this slight difference between m = 2 and m � 4 is something that has to be accommodated throughout
the proof.) Throughout the proof we think of C(v) as an ordered tuple of vectors (v0, v1, . . . , vm−1)

with each vi = v + (0, . . . ,0, i).
For u ∈ C(v) for some v ∈ V � , let u′+ = u + (0, . . . ,0,1) and u′− = u − (0, . . . ,0,1) (so u′+ = u′− if

and only if m = 2), and set

Mu = Nu \ {
u′+, u′−

}
and

MC(v) = Mv0 ∪ · · · ∪ Mvm−1 .

A key observation that drives our proof is that the subgraph of Z
d
m induced by MC(v) is a disjoint

union of 2d − 2 cycles of length m (when m � 4) or of d − 1 disjoint edges (when m = 2); this
significantly restricts the appearance of an H-coloring on MC(v) given its appearance on C(v).
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To each v ∈ V � with |v| � 2m (where | · | indicates the sum of the coordinates) associate a w(v) ∈
V � with |w(v)| = |v| − 2m and with w(v) < v in the usual component-wise partial order on Z

d .
For |v| < 2m we do not define a w(v), but it will prove convenient to adopt the convention in this
case that Mw = ∅. From now on, whenever w appears, it will be w(v) for whatever v ∈ V � is under
consideration.

We will use (A0, . . . , Am−1) to indicate a tuple with each Ai ⊆ V (H), and when (A0, . . . , Am−1)

appears as a range of summation it will vary over all possible such tuples. We will use alt(A, B)

for the tuple (A, B, . . . , A, B), and n(A0, . . . , Am−1) for the tuple (n(A0), . . . ,n(Am−1)). We denote by
g(A0, . . . , Am−1) the number of ways of choosing (x0, . . . , xm−1) with xi ∈ Ai for each i and with
x0 ∼ · · · ∼ xm−1 ∼ x0 (that is, with the xi ’s, taken consecutively, forming a cycle).

4.3. Events and probabilities

Now let f be uniformly chosen from Hom(Zd
m, H). We define a number of events in the associated

probability space. For A ⊆ V (H) and v ∈ V � , let

Q v,A = {
f (Nv) = A

}
,

R v,A = {
f (Mv) = A

}
,

QC(v),(A0,...,Am−1) =
m−1⋂
i=0

Q vi ,Ai

and

RC(v),(A0,...,Am−1) =
m−1⋂
i=0

R vi ,Ai .

To denote the probability of each of these events, we will replace the leading upper case letter with
the corresponding lower case letter; so, for example,

qv,A = Pr(Q v,A).

For u ∈ C(v) for some v ∈ V � let Ru = { f (y): y ∈ Mu} be the random variable indicating the palette
of colors used on Mu , and let

TC(v) = (R v0 , . . . , R vm−1).

Finally, define ε (depending on d, m and H , but by the symmetry of Zd
m independent of v) by

1 − ε =
∑

(A,B)∈M(H)

rC(v),alt(A,B).

4.4. A partial order on V

For 0 � k � (m − 1)(d − 1), let

Lk =
{

x ∈ V :
d−1∑
i=1

xi = k

}
.

We refer to the Lk ’s as the levels of V ; note that they partition V . Following the approach of [29], we
wish to put a partial order on V that satisfies (15) and (16) below. We will achieve this by putting
an order ≺ on the indices of the levels, as follows. Begin by ordering the odd natural numbers in
the usual order, up to m − 1. Next put 0, then m + 1, then 2, then m + 3, etc., interleaving the
standard order of the evens and the odds. This order for m = 2 is used in [29], and begins 1 ≺ 0 ≺
3 ≺ 2 ≺ 5 ≺ 4 ≺ · · · . For m = 4, it begins 1 ≺ 3 ≺ 0 ≺ 5 ≺ 2 ≺ 7 ≺ 4 ≺ · · · , and for m = 6 it begins
1 ≺ 3 ≺ 5 ≺ 0 ≺ 7 ≺ 2 ≺ 9 ≺ 4 ≺ · · · .
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For each even i ∈ N let Xi = {i − m + 1, i − 1, i + 1, i + m − 1} ∩ N (or {i − 1, i + 1} ∩ N if m = 2)
and Yi = {i − 3m + 1, i − 2m − 1, i − 2m + 1, i − m − 1} ∩N (or {i − 5, i − 3} ∩N if m = 2). The order ≺
is constructed specifically to satisfy that x ≺ i for all x ∈ Xi and y ≺ x for all x ∈ Xi and y ∈ Yi .

We use ≺ to obtain a partial order (which we shall also call ≺) on V by declaring x ≺ y if and
only if i ≺ j, where x ∈ Li and y ∈ L j . This partial order has two properties that will be critically
important for us. For the first of these, note that for v ∈ V � , if v ∈ Li for some i (necessarily even),
then C(v) ⊆ Li and MC(v) ⊆ ⋃

x∈Xi Lx , and so

MC(v) ⊆ {
x: x ≺ C(v)

}
. (15)

For the second property, note that since Mw ⊆ ⋃
y∈Yi L y for v ∈ Li we have

Mw ⊆ {x: x ≺ MC(v)}. (16)

4.5. The proof of Theorem 1.4

We will show that ε < 2−Ω(d) (with the implicit constant depending on m and H). From this, Theo-
rem 1.4 follows. To see this, first observe that for (A, B) ∈M(H) we have QC(v),alt(A,B) ⊇ RC(v),alt(A,B) .
Indeed, consider any f ∈ RC(v),alt(A,B) . For each even i we must have f (vi) ∼ a for all a ∈ A, and so
since (A, B) ∈M(H), we must have f (vi) ∈ B; similarly, for odd i we must have f (vi) ∈ A. It follows
that

1 − ε �
∑

(A,B)∈M(H)

qC(v),alt(A,B).

Now let e = xy be an edge of Zd
m; by symmetry we may assume that e = v0 v1 for some v = v0 ∈ V � .

The event that e is ideal contains the event
⋃

(A,B)∈M(H) QC(v),alt(A,B) (a union of disjoint events),
and so the probability that e is ideal is at least 1 − ε.

To bound ε we consider the entropy H( f ) of an f ∈ Hom(Zd
m, H), chosen uniformly. We first put

a trivial lower bound on H( f ):

H( f ) = log
∣∣Hom

(
Z

d
m, H

)∣∣ � md

2
logη(H), (17)

the equality from (12) and the inequality obtained by choosing any (A, B) ∈ M(H) and considering
only pure-(A, B) colorings (as defined in Section 1). The bulk of the proof will be devoted to finding
an upper bound on H( f ) which, for ε too large, is smaller than this trivial lower bound.

We will upper bound H( f ) by an application of Shearer’s lemma (with conditioning), that is,
Lemma 4.1. For m � 4, we take as our covering family {MC(v): v ∈ V �} together with 2d − 2 copies of
C(v) for each v ∈ V � . For m = 2 we take {MC(v): v ∈ V �} together with d − 1 copies of C(v) for each
v ∈ V � . Each vertex of Z

d
m is covered 2d − 2 times by this family (in the case m � 4) or d − 1 times

(in the case m = 2) and so, bearing (13), (15) and (16) in mind we have

H( f ) �
∑

v∈V �

H
(

f �C(v)
∣∣ f �MC(v)

) +
(

1 + 1{m=2}
2d − 2

) ∑
v∈V �

H( f �MC(v)
| f �Mw), (18)

where f �S denotes the restriction of f to the set S ⊆ V (note that this is our only use of the order ≺).
For the first term on the right-hand side of (18) we expand out the conditional entropy and use (12)
to get

H
(

f �C(v)
∣∣ f �MC(v)

)
�

∑
(A0,...,Am−1)

rC(v),(A0,...,Am−1)H
(

f
(
C(v)

)∣∣{TC(v) = (A0, . . . , Am−1)
})

�
∑

(A ,...,A )

rC(v),(A0,...,Am−1) log
(

g
(
n(A0, . . . , Am−1)

))
. (19)
0 m−1
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We now turn to the second term on the right-hand side of (18). For |v| � 2m − 1 we use (12) to
naively bound

H( f �MC(v)
| f �Mw) �

(
2d − 2

1 + 1{m=2}

)
m log

∣∣V (H)
∣∣; (20)

this will ultimately not be too costly since there are not too many such v . Specifically, the number of
such v is exactly the number of vectors (a1, . . . ,ad−1) ∈ {0, . . . ,m − 1}d−1 with

∑d−1
i=0 ai � 2m − 2 and

even; this is at most the number of solutions to
∑d

i=0 ai = 2m − 2 in non-negative integers, which is

at most
(2m+d−3

2m−2

)
.

For |v| � 2m we use (13) and (14) to obtain

H( f �MC(v)
| f �Mw) � H( f �MC(v)

|R w)

= H( f �MC(v)
, TC(v)|R w)

� H(TC(v)|R w) + H( f �MC(v)
|TC(v)), (21)

the equality holding since f �MC(v)
determines TC(v) . For the second term on the right-hand side

of (21) we expand out the conditional entropy and the use (12) to get

H( f �MC(v)
|TC(v))

=
∑

(A0,...,Am−1)

rC(v),(A0,...,Am−1)H
(

f �MC(v)

∣∣{TC(v) = (A0, . . . , Am−1)
})

�
∑

(A0,...,Am−1)

rC(v),(A0,...,Am−1)

(
2d − 2

1 + 1{m=2}

)
log

(
g(A0, . . . , Am−1)

)
. (22)

Here we use that MC(v) consists of 2d − 2 disjoint cycles (in the case m � 4) or d − 1 disjoint edges
(in the case m = 2).

Inserting (19), (20), (21) and (22) into (18), combining with (17), summing over v ∈ V � (noting
that |V �| = md−1/2) and using the symmetry of Zd

m we obtain

m logη(H) �
2
(2m+d−3

2m−2

)
log |V (H)|

md−2
+

(
1 + 1{m=2}

2d − 2

)
H(TC(v)|R w)

+
∑

(A0,...,Am−1)

rC(v),(A0,...,Am−1) log
(

g(A0, . . . , Am−1)g
(
n(A0, . . . , Am−1)

))
. (23)

We now focus on the sum on the right-hand side of (23). Using the trivial bound

g(A0, . . . , Am−1) �
m−1∏
i=0

|Ai| (24)

together with the observation that for any (A, B) ∈M(H) we have n(A) = B and n(B) = A, we have

g
(
alt(A, B)

)
g
(
n
(
alt(A, B)

))
� η(H)m (25)

for any such (A, B) (actually we have equality in (25), but we will not need it). On the other hand,
we claim that if (A0, . . . , Am−1) is not of the form alt(A, B) for some (A, B) ∈ M(H) then there is a
constant δ(H) � 1 such that

g(A0, . . . , Am−1)g
(
n(A0, . . . , Am−1)

)
� η(H)m − δ(H). (26)

To see this, note first that if there is an A ∈ (A0, . . . , Am−1) with A /∈ S(H), A0 say, then from (24) we
have
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g(A0, . . . , Am−1)g
(
n(A0, . . . , Am−1)

)
�

m−1∏
i=0

|Ai|
∣∣n(Ai)

∣∣,
and since each of the terms in the product above is at most η(H), and one (|A0||n(A0)|) is strictly
less than η(H), we get (26). So we may assume that (A0, . . . , Am−1) ∈ S(H)m , but is not of the form
alt(A, B). Since (A, B) ∈ M(H) is equivalent to A, B ∈ S(H) and A = n(B), B = n(A), we may assume
without loss of generality that A1 	= n(A0). We have

g(A0, . . . , Am−1) �
(|A0||A1| − p(A0, A1)

)m−1∏
i=2

|Ai|

and

g
(
n(A0, . . . , Am−1)

)
�

(∣∣n(A0)
∣∣∣∣n(A1)

∣∣ − p
(
n(A0),n(A1)

))m−1∏
i=2

∣∣n(Ai)
∣∣.

If one of p(A0, A1), p(n(A0),n(A1)) is non-zero, then as before the product of these two bounds
is strictly less than η(H)m , giving (26) in this case. If they are both 0 then we have A0 ∼ A1 and
n(A0) ∼ n(A1), so A1 ⊆ n(A0) and n(A0) ⊆ A1, so A1 = n(A0), a contradiction.

Recalling the definition of ε, together (25) and (26) yield∑
(A0,...,Am−1)

rC(v),(A0,...,Am−1) log
(

g(A0, . . . , Am−1)g
(
n(A0, . . . , Am−1)

))
� ε log

(
η(H)m − δ(H)

) + (1 − ε) logη(H)m

= m logη(H) + ε log

(
1 − δ(H)

η(H)m

)

� m logη(H) − εδ(H) log e

η(H)m

(recall log = log2). Inserting into (23) we get

εδ(H) log e

η(H)m
�

2
(2m+d−3

2m−2

)
log |V (H)|

md−2
+

(
1 + 1{m=2}

2d − 2

)
H(TC(v)|R w). (27)

The final entropy term we need to analyze is H(TC(v)|R w). A naive upper bound from (12) is

H(TC(v)|R w) �
∣∣V (H)

∣∣m,

the right-hand side being the logarithm of the size of the range of possible values. Inserting this into
(27) we have

εδ(H) log e

η(H)m
�

2
(2m+d−3

2m−2

)
log |V (H)|

md−2
+

(
1 + 1{m=2}

2d − 2

)∣∣V (H)
∣∣m, (28)

showing that ε � c/d for some constant c depending on H and m.
The information that ε = o(1) as d → ∞ allows us to strengthen our bound on H(TC(v)|R w), via

the following key lemma.

Lemma 4.2. For any (A, B) ∈M(H),

Pr(RC(v),alt(A,B)|R w,A) � 1 − (3m − 1)ε

rw,A
,

and also∑
A /∈S(H)

rw,A � ε.
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Proof. Choose w1, . . . , w2m−1 ∈ V � with w < w1 < · · · < w2m−1 < v in the usual partial ordering
of Zd . Then

(RC(v),alt(A,B))
c ∩ R w,A ⊂ (

R w,A ∩ (R w1,B)c) ∪ (
R w1,B ∩ (R w2,A)c) ∪ · · ·

∪ (
R w2m−1,B ∩ (R v0,A)c) ∪ (

R v0,A ∩ (R v1,B)c) ∪ · · ·
∪ (

R vm−2,A ∩ (R vm−1,B)c),
and each of the 3m−1 events on the right-hand side occurs with probability less that ε, by symmetry
of Zd

m . Therefore

Pr
(
(RC(v),(A,B))

c
∣∣R w,A

) = Pr((RC(v),(A,B))
c ∩ R w,A)

rw,A

� (3m − 1)ε

rw,A
.

Also, rw,A � rC(w),alt(A,B) implies∑
A∈S(H)

rw,A �
∑

A∈S(H)

rC(w),alt(A,B) =
∑

(A,B)∈M(H)

rC(w),alt(A,B) = 1 − ε. �

We now partition S(H) by S(H) = S1(H) ∪ S2(H), where A ∈ S1(H) if and only if rw,A �
2(3m − 1)ε (note that this partition depends on d as well as on H , and for fixed m and H it may
change for different values of d). For convenience we also write S0(H) for the complement of S(H)

(in the power set of V (H)). Expanding out the conditional entropy we have

H(TC(v)|R w) =
2∑

i=0

∑
A∈Si(H)

rw,A H(TC(v)|R w,A).

Trivially (from (12) and the second statement of Lemma 4.2),∑
A∈S0(H)

rw,A H(TC(v)|R w,A) � ε
∣∣V (H)

∣∣m. (29)

For the remaining two terms of the sum, we need to do a little groundwork. For each A,
−H(TC(v)|R w,A) is the sum over all (A0, . . . , Am−1) of

Pr
({

TC(v) = (A0, . . . , Am−1)
}∣∣R w,A

)
log

(
Pr

({
TC(v) = (A0, . . . , Am−1)

}∣∣R w,A
))

(by definition of entropy) and so

H(TC(v)|R w,A) �
∑

(A0,...,Am−1)

H
(
Pr

({
TC(v) = (A0, . . . , Am−1)

}∣∣R w,A
))

. (30)

For A ∈ S1(H), we cannot do any better than bounding all 2|V (H)|m entropy terms in (30) by 1, leading
to ∑

A∈S1(H)

rw,A H(TC(v)|R w,A) � 2|V (H)|m ∑
A∈S1(H)

rw,A

� 2(3m − 1)2|V (H)|(m+1)ε, (31)

since there are at most 2|V (H)| summands and each is at most 2(3m − 1)ε. For A ∈ S2(H), on the
other hand, we know by Lemma 4.2 and the definition of S2(H) that

Pr
({

TC(v) = (A0, . . . , Am−1)
}∣∣R w,A

)
� (3m − 1)ε

r
� 1

2
w,A
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if (A0, . . . , Am−1) 	= alt(A, B), while

Pr
({

TC(v) = (A0, . . . , Am−1)
}∣∣R w,A

)
� 1 − (3m − 1)ε

rw,A
� 1

2

if (A0, . . . , Am−1) = alt(A, B). We may therefore replace each of the entropy terms in (30) by
H((3m − 1)ε/rw,A), leading to∑

A∈S2(H)

rw,A H(TC(v)|R w,A)

� 2|V (H)|m ∑
A∈S2(H)

rw,A H

(
(3m − 1)ε

rw,A

)

� 2|V (H)|m
( ∑

A∈S2(H)

rw,A

)
H

( |S2(H)|(3m − 1)ε∑
A∈S2(H) rw,A

)
(32)

with (32) an application of Jensen’s inequality. Now we use the fact that ε � c/d to conclude that the
argument of the entropy term in (32) is bounded above by Cε for some constant depending on m
and H (this utilizes Lemma 4.2 and the fact that

∑
A∈S1(H) rw,A is at most cε) to get

∑
A∈S2(H)

rw,A H(TC(v)|R w,A) � C H(Cε). (33)

We now combine (29), (31) and (33) with (27) to find that there are constants ci , i = 1, . . . ,4 (all
depending on both m and H) such that

c1ε � dc2

md
+ c3 H(c4ε)

d
.

Using H(x) � 2x log(1/x) for x � 1/2 (a simple power series argument) this becomes

c1ε � dc2

md
+ c3ε

d
log

1

c4ε
, (34)

from which it follows that ε � 2−Ω(d) .

5. Coloring with q = q(d) colors

In the uniform proper q-coloring model (H = Kq , Λ = (1, . . . ,1)) it is natural to allow q, the
number of colors, to vary with d (see e.g. [9,25,27,35]). We may define long-range influence in this
case exactly as in (4), simply allowing H to also change with d.

The Dobrushin uniqueness theorem [12] implies that we do not have long-range influence in the
q-coloring model on Z

d
m when q > 2d (in the case m = 2) or q > 4d (in the case m � 4). On the other

hand, Corollary 2.3 establishes that we do have long-range influence for all constant q.
We can say a little bit more. Going through the proof of Theorem 1.4, keeping careful track of the

dependency of the final constants on |V (H)|, we find that we can prove the following theorem.

Theorem 5.1. Fix m � 2 even. If f is chosen uniformly from Hom(Zd
m, Kq), for any q < (log d)/(m + 2), then

Pr(e is not ideal with respect to f ) � d−4.

(We could replace (log d)/(m + 2) here with c log d for any c < 1/(m + 1). We could also replace
d−4 by d−C for arbitrary C > 0, but d−4 is more than enough for our intended application.) The proof
of Theorem 5.1 is straightforward, and we just mention some issues here. From (28) we can no longer
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conclude that ε � c/d, but we do obtain ε � logO (m) d/d. In order to conclude that the argument in
the entropy term in (32) is going to zero with d, we need only q < c log d for any c < 1. In the final
analysis we replace (34) by

c1ε

q2m
� c2d2m log q

md
+ c32q(m+1)ε

d
log

1

c42qε

(with the numbered constants depending on m), from which the result follows.
Repeating the proofs of Theorems 1.1 and 1.2, replacing appeals to Theorem 1.4 with appeals to

Theorem 5.1, we then easily obtain the analog of Theorem 1.2 for the proper q-coloring model with
q < (log d)/(m + 2), with all occurrences of 2−Ω(d) in Theorem 1.2 replaced by 1/d. This is more
than enough to obtain the following long range influence result, using the scheme described in Sec-
tion 2.

Theorem 5.2. Fix m � 2 even. If f is chosen uniformly from Hom(Zd
m, Kq) with q < (log d)/(m + 2), then for

any x, y ∈ E and k ∈ {1, . . . ,q} we have

lim
d→∞

Pr( f (x) = k)

Pr( f (x) = k| f (y) = k)
= 1

2
.

Conjecture 5.3. If q � d (in the case m = 2) or q � 2d (in the case m � 4) then there is long-range influence
in the q-coloring model on Z

d
m. Otherwise, there is no long-range influence.

A motivation for this conjecture comes from the infinite �-regular tree T� . Let f be a q-coloring
of T� . For each 	 � 1, let �p f

	 be the occupation probability vector of a fixed vertex in a uniformly
chosen q-coloring of T� conditioned on the coloring agreeing with f on all vertices at graph distance
more than 	 from x. Brightwell and Winkler [9] showed that for q � �, there are choices of f for
which �p f

	 does not, in the limit as 	 goes to infinity, approach the uniform vector. On the other hand,
Jonasson [27] showed that for q � � + 1 the limit is uniform for all f . In other words, q = � is the
threshold for long-range influence, suitably interpreted, in T� .

6. Discussion and open problems

6.1. The sizes of the partition classes

Theorem 1.2 does not give any information about the relative (Λ-weighted) sizes of the CΛ(A, B)’s.
We give two examples here to show that many different behaviors are possible, making such a general
statement rather difficult to formulate.

A fact that we use in both examples is that for G connected and H consisting of components H1
and H2 we can identify Hom(G, H) with the disjoint union of Hom(G, H1) and Hom(G, H2).

First, consider H the disjoint union of H ind and K3 (note that η(H ind) = η(K3) = 2) with
Λ = (1, . . . ,1). The results of [30] and [15] (see (2), (3) and the discussions around these equa-
tions) together imply that in any decomposition of Hom(Q d, H) satisfying the conditions of Theo-
rem 1.2, along with the exceptional class we have eight partition classes. Six of these correspond
to the six elements of M(K3), and these each have size (1 + o(1))e/(6e + 2

√
e )| Hom(Q d, H)| ≈

0.14|Hom(Q d, H)|. The two remaining classes correspond to the two elements of M(H ind) and each
have size (1 + o(1))

√
e/(6e + 2

√
e )| Hom(Q d, H)| ≈ 0.08|Hom(Q d, H)|.

For an example with a different type of behavior, let H be the disjoint union of K loop
4 (the com-

plete looped graph on four vertices) and K8 (note that η(K8) = η(K loop
4 ) = 16, with M(K loop

4 ) =
(V (K loop

4 ), V (K loop
4 ))), again with Λ = (1, . . . ,1). It is immediate that |Hom(Q d, K loop

4 )| = 162d−1
and

that all colorings in this set are pure-(V (K loop
4 ), V (K loop

4 )) colorings. It is also fairly straightforward to

verify that |Hom(Q d, K8)| = ω(162d−1
). Indeed, consider proper 8-colorings of Q d which are pure-

(A, B) for some (A, B), except that there is one vertex from E that is colored from B . An easy
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count gives that there are (1/2)(3/2)d162d−1
such colorings. This implies that in any decomposition of

Hom(Q d, H) satisfying the conditions of Theorem 1.2, along with the exceptional set we have
(8

4

) + 1

partition classes. The first
(8

4

)
of these classes correspond to the elements of M(K8) and each have

size Ω(|Hom(Q d, H)|), and the last class corresponds to the unique element of M(K loop
4 ) and has

size o(| Hom(Q d, H)|).
There is a fairly natural conjecture concerning the sizes of the CΛ(A, B)’s in general, which we

now discuss. A trivial lower bound on wΛ(CΛ(A, B)) is

wΛ

(
CΛ(A, B)

)
�

(
ηΛ(H)

)md/2
.

A better lower bound is obtained by the following process. First, for each s, t ∈N with s, t � U (some
appropriately chosen upper bound), select S ⊆ E and T ⊆ O with |S| = s and |T | = t and with the
property that for each x, y ∈ S ∪ T , we have x ∪ Nx disjoint from y ∪ N y . For U not too large, the
number of choices for (S, T ) is close to ((md)s+t)/(2s+t s!t!). Next, choose a color from A for each
v ∈ E \ (S ∪ N(T )), a color from B for each w ∈ O \ (T ∪ N(S)), a color from Ac for each v ∈ S and
a color from Bc for each w ∈ T . Finally, for each v ∈ S (resp. w ∈ T ) choose a color for each vertex
of Nv (resp. Nw ) from among those colors which are adjacent to everything in A (resp. B) as well
as to the color chosen for v (resp. w). For each k /∈ A, let N(A,k) be the set of colors adjacent to
everything in A as well as to k, and for 	 /∈ B define N(B, 	) analogously.

For each choice of S and T with |S| = s and |T | = t , the sum of the weights of all the colorings
obtained by the process described above is

λ
md/2−s−�t
A λ

md/2−t−�s
B

(∑
k/∈A

λkλ
�
N(A,k)

)s(∑
	/∈B

λ	λ
�
N(B,	)

)t

.

(To avoid having to separate the cases m = 2 and m � 4 we use � to denote the degree of a vertex
in Z

d
m .) Summing over all s and t , as long as U is large enough we get a lower bound of the form

wΛ

(
CΛ(A, B)

)
� ηΛ(H)

md
2 exp

{
md LΛ(A, B,d)

(
1 + o(1)

)}
where

LΛ(A, B,d) = 1

2λAλ�
B

∑
k/∈A

λkλ
�
N(A,k) + 1

2λBλ�
A

∑
	/∈B

λ	λ
�
N(B,	).

We conjecture that this lower bound is essentially the truth.

Conjecture 6.1. For all H, Λ and m � 2 even, there is a decomposition of Hom(Zd
m, H) satisfying the condi-

tions of Theorem 1.2 and moreover satisfying that for each (A, B) ∈MΛ(H) we have

wΛ

(
CΛ(A, B)

) = ηΛ(H)
md
2 exp

{
md LΛ(A, B,d)

(
1 + o(1)

)}
as d → ∞.

This conjecture is true in the case H = H ind, m = 2 (that is, G = Q d) and Λ = (1, λ) (unlooped
vertex listed first) for all λ > 0 (for λ = 1 this is implicit in the work of Korshunov and Sapozhenko
[30], and for all other λ it is implicit in the work of Galvin [19]). It is also true in the case H = K3,
m = 2 and Λ = (1,1,1) (this is implicit in the work of Galvin [17]).

An appealing special case of Conjecture 6.1 is a count of the set Cq(Q d) of proper q-colorings of
Q d (H = Kq , Λ = (1, . . . ,1)).

Conjecture 6.2. For all q ∈ N,

∣∣Cq(Q d)
∣∣ = (1 + 1{q odd})

(
q

�q/2�
)(�q/2��q/2�)2d−1

exp
{

f (q)
(
1 + o(1)

)}
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as d → ∞, where

f (q) = �q/2�
2�q/2�

(
2 − 2

�q/2�
)d

+ �q/2�
2�q/2�

(
2 − 2

�q/2�
)d

.

This is proved for q = 3 in [15].

6.2. Mixing time and the size of the exceptional class

The (Λ-weighted) size of the exceptional class CΛ(0) of Theorem 1.2 is closely related to the
mixing time of local-update algorithms designed to sample from Hom(Zd

m, H) according to the distri-
bution pΛ .

Fix H , Λ and m. Let W be an ergodic, time homogeneous Markov chain on state space
Hom(Zd

m, H) with transition probabilities P ( f , g) for f , g ∈ Hom(Zd
m, H) and stationary distribution

pΛ . Assume that W is local; for the purposes of this section, that means that there is a function
ρ(d) = o(md) such that if f and g differ at more than ρ(d) vertices then P ( f , g) = 0.

An example of such a chain is Glauber dynamics, which makes transitions from f as follows: first
choose a vertex v of Z

d
m uniformly, then choose a coloring to transition to from among the set of

colorings which agree with f off v , with each such coloring g being chosen with probability propor-
tional to λg(v) .

The mixing time τmix(W) of such a chain is defined to be the smallest time t such that after
running the chain for t steps, from an arbitrary starting state, it is certain that the distribution of
the chain is within 1/e (say; any constant less than 1/2 will do) of pΛ in total variation distance.
This captures how effective the chain is at generating a sample that is guaranteed to be within any
prescribed distance of the stationary distribution; in particular, if one wishes for a sample that is
from a distribution within (1/e)c of stationary, it is sufficient to run the chain for cτmix(W) steps.
The chain W is said to mix rapidly if τmix(W) is a polynomial in md , and slowly otherwise. (See e.g.
[31] for a thorough treatment.)

Let (A, B) ∈ MΛ(H) be such that wΛ(CΛ(A, B))/ZΛ(Zd
m, H) is bounded away from 0 and is at

most 1/2 (this will happen, for example, if |MΛ(H)| � 2 and the partition of Hom(Zd
m, H) guaranteed

by Theorem 1.2 is an approximate equipartition). By the properties of the partition and the locality
of W , it is clear that in any step in which the chain leaves CΛ(A, B), it must go to CΛ(0). This
suggests that the mixing time of the chain might be high, since CΛ(0) acts as a bottleneck.

This intuition may be formalized using the notation of the conductance of a chain, introduced by
Jerrum and Sinclair [26]. Using the form of the conductance argument presented in [13] (see [17,23]
for specific applications in a setting similar to the present one), it follows that

τmix(W) � wΛ(CΛ(A, B))

8wΛ(CΛ(0))
� Ω

(
ZΛ(Zd

m, H)

wΛ(CΛ(0))

)
. (35)

In the presence of Theorem 1.2, the lower bound on τmix(W) given by (35) is 2O (d) , which conveys
no information since this is only polynomial in md . We believe, however, that is should be possible to
find a much smaller upper bound on CΛ(0) that would in particular give an exponential lower bound
on τmix(W).

Conjecture 6.3. Fix H, Λ and m � 2 even. There is a partition of Hom(Zd
m, H) satisfying all the conditions of

Theorem 1.2 as well as

wΛ

(
C(0)

) = 2−g(d)md
ZΛ

(
Z

d
m, H

)
for some polynomial g(d) (whose degree depends only on H, Λ and m).

One way to prove this conjecture would be to obtain a concentration result showing that for f
chosen from Hom(Zd

m, H) according to pΛ , with high probability the number of non-ideal edges is
close to its expected value; we are currently using the very weak Markov’s inequality.



1132 J. Engbers, D. Galvin / Journal of Combinatorial Theory, Series B 102 (2012) 1110–1133
The slow mixing result that would be implied by Conjecture 6.3 has been obtained for various
special cases ([5] for a large class of H with carefully chosen Λ, [18] and [23] for H = H ind and
Λ = (1, λ) for all fixed λ > 0, and [17] and [21] for H = K3 and Λ = (1, . . . ,1)).

6.3. Varying m with d

All of our results are for fixed m, and become interesting as d grows. It would be of great interest
to obtain similar results for fixed d, as m grows (as Peled [33] has done in the case H = K3), as this
would allow us to say something about the space of Gibbs measures for the probability distribution
pΛ on the infinite space Hom(Zd, H) (see for example [5,7], for a discussion of Gibbs measures in
the specific context of homomorphism models). Unfortunately, a careful examination of our proof of
Theorem 1.4, keeping track of the dependency of the final constants on m, shows that at best we may
take m = c log d for some absolute constant c > 0 if we wish to obtain useful results.
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