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Entropy and Graph Homomorphisms

David Galvin

(joint work with Prasad Tetali [3])

Let G be an n-regular, N -vertex bipartite graph on vertex set V (G), and let
H be a fixed graph on vertex set V (H) (perhaps with loops). Set

Hom(G,H) = {f : V (G) → V (H) : u ∼ v ⇒ f(u) ∼ f(v)}.

That is, Hom(G,H) is the set of graph homomorphisms from G to H .
When H = Hind consists of one looped and one unlooped vertex connected

by an edge, an element of Hom(G,Hind) can be thought of as a specification
of an independent set (a set of vertices spanning no edges) in G. Our point of
departure is the following result of Kahn [4], bounding the size of I(G), the set of
independent sets of G.

Theorem 1 For any n-regular, N -vertex bipartite graph G,

|I(G)| ≤ (2n+1 − 1)N/2n.

Note that |Hom(Kn,n, Hind)| = 2n+1 − 1 (where Kn,n is the complete bipartite
graph with n vertices on each side), so we may paraphrase Theorem 1 by saying
that |Hom(G,Hind)| is maximum when G is a disjoint union of Kn,n’s. Our main
result is a generalization of this statement (and our proof is a generalization of
Kahn’s).

Proposition 2 For any n-regular, N -vertex bipartite G, and any H,

|Hom(G,H)| ≤ |Hom(Kn,n, H)|N/2n.
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We also consider a weighted version of Proposition 2. Following [1], we put a
measure on Hom(G,H) as follows. To each i ∈ V (H) assign a positive “activity”
λi, and write Λ for the set of activities. Give each f ∈ Hom(G,H) weight w

Λ(f) =
∏

v∈V (G) λf(v). The constant that turns this assignment of weights on Hom(G,H)
into a probability distribution is

ZΛ(G,H) =
∑

f∈Hom(G,H)

wΛ(f).

When all activities are 1, we have ZΛ(G,H) = |Hom(G,H)|, and so the following
is a generalization of Proposition 2.

Proposition 3 For any n-regular, N -vertex bipartite G, any H, and any system

Λ of positive activities on V (H),

ZΛ(G,H) ≤
(

ZΛ(Kn,n, H)
)N/2n

.

We may put this result in the framework of a well-known mathematical model
of physical systems with “hard constraints” (see [1]). We think of the vertices of
G as particles and the edges as bonds between pairs of particles, and we think
of the vertices of H as possible “spins” that particles may take. Pairs of bonded
vertices of G may have spins i and j only when i and j are adjacent in H . Thus
the legal spin configurations on the vertices of G are precisely the homomorphisms
from G to H . We think of the activities on the vertices of H as a measure of
the likelihood of seeing the different spins; the probability of a particular spin
configuration is proportional to the product over the vertices of G of the activities
of the spins. Proposition 3 concerns the “partition function” of this model — the
normalizing constant that turns the above-described system of weights on the set
of legal configurations into a probability measure.

Our proofs are based on entropy considerations, and in particular on a lemma
of Shearer (see [2, p. 33]) bounding the entropy of a random vector.
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Random Planar Graphs

Stefanie Gerke

(joint work with Colin McDiarmid [3])

Given 0 < p < 1 and a positive integer n, let Gn,p denote the random graph
with nodes v1, . . . , vn in which the

(

n

2

)

possible edges appear independently with
probability p. We denote by Rn,p the random graph Gn,p conditioned on it being
planar. (We may think of repeatedly sampling a graph Gn,p until we find one that
is planar.) Also, let us denote R

n,
1

2

by Rn. Thus Rn is uniformly distributed over
all labelled planar graphs on n nodes.

Rather little is known about random planar graphs, even about the number of
edges in such graphs, which is our focus here. Let us denote the number of edges
in a (simple) graph G by m(G). Thus we are interested in the random variable
m(Rn) and more generally in m(Rn,p). Of course m(G) ≤ 3n− 6 for any planar
graph G on n nodes. The expected value E[m(Rn)] is at least (3n− 6)/2 – see [2].
It is shown in [1] that m(Rn) ≤ 2.54n asymptotically almost surely (aas), that is
with probability tending to 1 as n → ∞. This result slightly improves the upper
bound of 2.56 in [6]. We will show here in particular that m(Rn) ≥

13

7
n + o(n)

aas, thereby improving on the result from [2] mentioned above.
We now introduce two functions f(α) and g(p) which are needed to state our

two main results – see also Figure 1.
Given 1 < α ≤ 3, let k = k(α) = ⌊ 2α

α−1
⌋, and let

f(α) =
1

4

(

k2 + k + 6− (k2 − 3k + 6)α
)

.

It is not hard to verify that f(α) is continuous and decreasing on 1 < α ≤ 3, and
satisfies f(α) → ∞ as α → 1 and f(3) = 0, see also the end of Section 4. (The
function f is also piecewise-linear and convex.) For 0 < p < 1 we may define g(p)
to be the unique value ρ ∈ (1, 3) such that f(ρ)/ρ = (1 − p)/p. The function g is
continuous and increasing on 0 < p < 1, and satisfies g(p)→ 1 as p→ 0, g(1

2
) = 13

7

and g(p) → 3 as p → 1. We are now able to state our theorem concerning the
number of edges of random planar graphs.

Theorem 1 Let 0 < p < 1. Then as n→∞,

E[m(Rn,p)] ≥ g(p)n+ o(n);


