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Let I be an independent set drawn from the discrete d-dimensional hypercube Qd = {0, 1}d
according to the hard-core distribution with parameter λ > 0 (that is, the distribution in

which each independent set I is chosen with probability proportional to λ|I |). We show a

sharp transition around λ = 1 in the appearance of I: for λ > 1, min{|I ∩ E |, |I ∩O|} = 0

asymptotically almost surely, where E and O are the bipartition classes of Qd, whereas for

λ < 1, min{|I ∩ E |, |I ∩O|} is asymptotically almost surely exponential in d. The transition

occurs in an interval whose length is of order 1/d.

A key step in the proof is an estimation of Zλ(Qd), the sum over independent sets in

Qd with each set I given weight λ|I | (a.k.a. the hard-core partition function). We obtain

the asymptotics of Zλ(Qd) for λ >
√

2− 1, and nearly matching upper and lower bounds

for λ �
√

2− 1, extending work of Korshunov and Sapozhenko. These bounds allow us to

read off some very specific information about the structure of an independent set drawn

according to the hard-core distribution.

We also derive a long-range influence result. For all fixed λ > 0, if I is chosen from

the independent sets of Qd according to the hard-core distribution with parameter λ,

conditioned on a particular v ∈ E being in I , then the probability that another vertex w is

in I is o(1) for w ∈ O but Ω(1) for w ∈ E .

1. Introduction and statement of results

The focus of this paper is the discrete hypercube Qd. This is the graph on vertex set

V = {0, 1}d with two strings adjacent if they differ on exactly one coordinate. It is a

d-regular bipartite graph with bipartition classes E and O, where E is the set of vertices

with an even number of 1s. Note that |E | = |O| = 2d−1. (For graph theory basics see, for

example, [1].)

An independent set in Qd is a set of vertices no two of which are adjacent. Write

I(Qd) for the set of independent sets in Qd. The hard-core model with parameter λ on

Qd (abbreviated hc(λ)) is the probability distribution on I(Qd) in which each I is chosen
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with probability proportional to λ|I |. This fundamental statistical physics model interprets

vertices of a graph (in this case, Qd) as sites that may or may not be occupied by massive

particles, and edges as bonds between pairs of sites (encoding, for example, spatial

proximity). The occupation rule is that bonded sites may not be simultaneously occupied,

so a legal configuration of particles corresponds to an independent set in the graph. In this

context λ represents a density parameter, with larger λ favouring denser configurations.

(For an introduction to the hard-core model from a combinatorial perspective, see, for

example, [2].)

In [8], Kahn used entropy methods to make an extensive study of the hard-core model

on Qd (and regular bipartite graphs in general) for fixed λ > 0. One of the main results is

that an independent set from Qd chosen according to hc(λ) exhibits phase coexistence: it

comes either predominantly from E or predominantly from O. Specifically, it is shown in

[8] that for fixed λ, ε > 0, and for I chosen from I(Qd) according to hc(λ), both∣∣∣∣|I | − λ

1 + λ
2d−1

∣∣∣∣ � 2d

d1−ε and

min{|I ∩ E |, |I ∩O|} � 2d

d1/2−ε

hold asymptotically almost surely (a.a.s.), that is, with probability tending to 1 as d→∞.

Informally, the work of [8] demonstrates that for all fixed λ > 0, hc(λ) is close to
1
2
μE + 1

2
μO , where μE (or μO) is a random subset of E (or O) in which each vertex is

chosen to be in the set independently with probability λ
1+λ

. (This is just hc(λ) on E (or O).)

Kahn’s estimates on |I | and min{|I ∩ E |, |I ∩O|} do not involve λ. Here we are able to

obtain more precise estimates that capture the dependence on λ and in particular show

that λ = 1 is a critical value around which a transition occurs in the nature of the phase

coexistence: for λ > 1, the smaller of |I ∩ E |, |I ∩O| is a.a.s. 0, whereas for λ < 1, it is

a.a.s. exponential in d. Allowing λ to vary with d, we find that the transition between

min{|I ∩ E |, |I ∩O|} being a.a.s. 0 and a.a.s. going to infinity with d occurs in an interval

of length order 1/d.

To state our results precisely we consider four possible ranges of λ:

λ � 1 +
ω(1)

d
, (1.1)

|λ− 1| � O(1)

d
, (1.2)

√
2− 1 +

(
√

2 + Ω(1)) log d

d
� λ � 1− ω(1)

d
, (1.3)

c log d

d1/3
� λ �

√
2− 1 +

(
√

2 + o(1)) log d

d
, (1.4)

where c > 0 is an absolute constant (that we do not explicitly compute). Here and in what

follows, ω(1) indicates a function of d that tends to infinity as d does; o(1) a function that

tends to 0; Ω(1) a function that is eventually always greater than some constant greater

than 0; and O(1) a function that is bounded above by a constant. All implied constants

will be independent of d, all limiting statements are as d→∞, and where we are not
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taking a limit, we will always assume that d is large enough to support our assertions.

Unless otherwise indicated, all logarithms are to base e.

Theorem 1.1. Let I be chosen from I(Qd) according to hc(λ).

(1) For λ satisfying (1.1), a.a.s.∣∣∣∣max{|I ∩ E |, |I ∩O|} − λ2d−1

1 + λ

∣∣∣∣ � 2d/2
√

log d (1.5)

and

min{|I ∩ E |, |I ∩O|} = 0. (1.6)

(2) For λ satisfying (1.2), a.a.s. (1.5) holds. If λ = 1 + k+o(1)
d

for some constant k, then for

each c ∈ N

Pr
(
min{|I ∩ E |, |I ∩O|} = c

)
∼

(
1
2
e−k/2

)c
c!

exp

{
−1

2
e−k/2

}
. (1.7)

(3) For λ satisfying (1.3), a.a.s. (1.5) holds, as well as

|min{|I ∩ E |, |I ∩O|} − λ
2

(
2

1+λ

)d|√
(2 + ε) λ

2

(
2

1+λ

)d
log

(
λ
2

(
2

1+λ

)d) � 1, (1.8)

where ε > 0 is arbitrary.

(4) For λ satisfying (1.4), a.a.s.∣∣∣∣max{|I ∩ E |, |I ∩O|} − λ2d−1

1 + λ

∣∣∣∣ � d(log d)

(
2

1 + λ

)d

(1.9)

and

1

4 logm

λ

2

(
2

1 + λ

)d

� min{|I ∩ E |, |I ∩O|} � em2 λ

2

(
2

1 + λ

)d

, (1.10)

where m = m(λ, d) < d/
√

log d is any natural number satisfying

(ed2)mλm+1(1 + λ)2m(m+1) 2d

(1 + λ)d(m+1)
= o(1). (1.11)

The upper bound on m in (1.11) helps make our analysis more tractable, and does not

impose any serious restriction: for any λ = ω(
√

log d/d), for example, m can be taken to

be o(d/
√

log d).

The following corollary of Theorem 1.1 is immediate.

Corollary 1.2. Pr(min{|I ∩ E |, |I ∩O|} = 0) goes from 1− o(1) to o(1) as λ goes from 1 +

ω(1/d) to 1− ω(1/d).

For fixed λ �
√

2− 1 we satisfy (1.11) by taking m = [1/ log2(1 + λ)], and so combining

(1.8) and (1.10) we also get the following corollary.
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Corollary 1.3. For all fixed λ < 1, there are constants c(λ) and C(λ) (independent of d) such

that a.a.s.

c(λ)

(
2

1 + λ

)d

� min{|I ∩ E |, |I ∩O|} � C(λ)

(
2

1 + λ

)d

.

Our proof of Theorem 1.1 provides structural information about the smaller of I ∩ E
and I ∩O for I chosen according to hc(λ). For simplicity, we state the following result

for fixed λ (not varying with d). Say that A ⊆ E (or O) is 2-linked if A ∪N(A) induces

a connected subgraph, and note that each A ⊆ E (or O) can be partitioned into 2-

components: maximal 2-linked subsets. Write Imin for the smaller of I ∩ E and I ∩O (with

an arbitrary choice being made if |I ∩ E | = |I ∩O|).

Theorem 1.4. Fix λ > 0 and let I be chosen from I(Qd) according to hc(λ). The following

statements are all true a.a.s.

(1) If λ > 1 then Imin = ∅.
(2) If λ = 1 then Imin consists of k 2-components, each of size 1, with k being drawn from

a Poisson distribution with parameter 1/2.

(3) If 1 > λ >
√

2− 1, then Imin consists of k 2-components, each of size 1, where k satisfies

∣∣∣∣k − λ

2

(
2

1 + λ

)d∣∣∣∣ �

√
(2 + ε)

λ

2

(
2

1 + λ

)d

log

(
λ

2

(
2

1 + λ

)d)

for any ε > 0.

(4) If 21/m − 1 � λ > 21/(m+1) − 1 for some integer m � 2, then Imin consists of k 2-

components, each of size at most m, where k satisfies

1

4 logm

λ

2

(
2

1 + λ

)d

� k � em
λ

2

(
2

1 + λ

)d

.

As will be seen in our proof of Theorem 1.4, the fourth statement above is also true for

λ satisfying (1.4) as long as m is chosen to satisfy (1.11).

Theorem 1.4 suggests that a sequence of threshold phenomena occurs for independent

sets chosen from Qd according to hc(λ). The one we exhibit is that as λ passes across 1,

Imin goes from being empty to consisting of exponentially many singleton 2-components

(and nothing else), with these 2-components arriving (in a Poisson manner) in a window

of width 1/d. It is tempting to conjecture that for each m � 2, as λ passes across 21/m − 1,

Imin goes from having exponentially many 2-components of size m− 1 (and smaller), and

no 2-components of size m, to having exponentially many 2-components of size m (and

smaller), with these new 2-components arriving (in an appropriate Poisson manner) in

a short threshold window. An interesting direction for future work would be to extend

what we have done for λ satisfying (1.1), (1.2) and (1.3), and determine, for λ satisfying

(1.4) (and smaller), the exact number of 2-components of size k in Imin for each relevant

k, and the exact nature of the transition across 21/m − 1 for each m � 2.
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To understand probabilities associated with the hard-core model, it is useful to

understand the normalizing constant (or partition function)

Zλ(Qd) =
∑

I∈I(Qd)

λ|I |.

In the case λ = 1, this just counts the number of independent sets in Qd. Motivated by

the interpretation of independent sets as ‘codes of distance 2’ over a binary alphabet,

Korshunov and Sapozhenko [9] gave an asymptotic estimate in this case.

Theorem 1.5. |I(Qd)| ∼ 2
√
e22d−1

as d→∞.

The following theorem, which extends Theorem 1.5 to a wider range of λ, is the main

tool in our approach to Theorem 1.1.

Theorem 1.6.

Zλ(Qd) =

⎧⎪⎪⎨
⎪⎪⎩

(2 + o(1))(1 + λ)2
d−1

if λ satisfies (1.1),

(2 + o(1))(1 + λ)2
d−1

exp{ λ
2

(
2

1+λ

)d} if λ satisfies (1.2) or (1.3),

(1 + λ)2
d−1

exp{ λ
2

(
2

1+λ

)d
(1 + o(1))} if λ satisfies (1.4).

We expect that the range of validity for the third of these estimates can be extended

to λ > (1 + Ω(1)) log d/d. Indeed, we already know that the lower bound is valid for this

range of λ, since (4.9) and the second clause of (4.10), which combine to give the lower

bound, both hold for λ in this range. On the other hand, the upper bound would follow

immediately from an extension of Lemma 3.10 to the range λ > (1 + Ω(1)) log d/d.

The gap between the upper and lower bounds for Zλ(Qd) for λ satisfying (1.4) is the

main obstacle to understanding more precisely the evolution of the hc(λ) independent set,

as discussed after the statement of Theorem 1.4.

The phenomenon of phase coexistence is, unsurprisingly, accompanied by a long-range

influence phenomenon. An independent set I chosen from I(Qd) according to hc(λ) is

drawn (in the range of λ that we are considering) either predominantly from E or

predominantly from O. If we are given the information that a particular vertex (v ∈ E ,

say) is in I , then that should make it very likely that I is drawn mostly from E . So if we

then ask what is the probability that another vertex (w, say) is in I , the answer should

depend on the parity of w, being quite small if w ∈ O and reasonably large if w ∈ E . This

heuristic can be made rigorous.

Theorem 1.7. Let λ satisfy λ > c log d

d1/3 . Let I be chosen from I(Qd) according to hc(λ). If

u, v ∈ E and w ∈ O are three vertices in Qd then

Pr
(
u ∈ I | w ∈ I

)
� (1 + λ)−d(1−o(1)) (1.12)

and

Pr
(
u ∈ I | v ∈ I

)
� λ

1 + λ
(1− o(1)). (1.13)
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Estimates of Zλ(Qd) can also be used to obtain information on the number of

independent sets of Qd of a given size; this topic will be explored in detail in a subsequent

paper [4].

Very few specific properties of Qd are used hereafter. We just use the fact that it is

a regular bipartite graph which satisfies certain isoperimetric bounds (specifically, those

of Lemmas 3.8 and 3.9). Analogues of all of our main theorems could be obtained for

any family of regular bipartite graphs with appropriate isometric properties, but in the

absence of an appealing general formulation, we confine ourselves here to considering Qd.

An overview of our approach is given in Section 2. The main technical lemma

(Lemma 3.10) is stated in Section 3, along with notation and other useful lemmas.

The proofs of all the stated theorems appear in Section 4, and a proof of Lemma 3.10 is

presented in Section 5.

2. Overview

A trivial lower bound on Zλ(Qd) for all λ > 0 is 2(1 + λ)2
d−1 − 1: just consider the

contribution from those sets which are drawn either entirely from E or entirely from O.

To improve this to the lower bounds appearing in Theorem 1.6, we consider not just

independent sets which are confined purely to either E or O. It is easy to see that there is

a contribution of

2d−1λ(1 + λ)2
d−1−d = (1 + λ)2

d−1 λ

2

(
2

1 + λ

)d

from those independent sets that have just one vertex from O (and the same from those

that have just one vertex from E) and, more generally, a contribution of approximately

2(1 + λ)2
d−1 1

k!

(
λ

2

(
2

1 + λ

)d)k

from those independent sets which consist of exactly k non-nearby vertices on one side

of the bipartition, for reasonably small k (by ‘non-nearby’ it is meant that there are no

common neighbours between pairs of the vertices). Indeed, there are 2 ways to choose the

bipartition class that has k vertices, and approximately
(
2d−1

k

)
≈ 1

k!
2(d−1)k ways to choose

the k vertices. These vertices together have a neighbourhood of size kd, so the sum of the

weights of independent sets that extend the k vertices is λk(1 + λ)2
d−1−kd .

Summing over k we get a lower bound on Zλ(Qd) of approximately

2(1 + λ)2
d−1

exp

{
λ

2

(
2

1 + λ

)d}
.

This lower bound could also have been achieved by summing only from k a little

below to a little above λ
2

(
2

1+λ

)d
(where the mass of the Taylor series of exp{ λ

2

(
2

1+λ

)d}
is concentrated) and, once k vertices have been chosen from one side, only considering

extensions to the other side which have close to λ2d−1

1+λ
vertices (where the mass of the

binomial series (1 + λ)2
d−1

is concentrated). This does not cause the count of extensions

to drop much below (1 + λ)2
d−1−dk as long as dk is much smaller than 2d−1, which it will
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be for k ≈ λ
2

(
2

1+λ

)d
and λ > c log d

d1/3 . In this way we see that the lower bound on Zλ(Qd) can

be achieved by only considering independent sets I with min{|I ∩ E |, |I ∩O|} ≈ λ
2

(
2

1+λ

)d
and max{|I ∩ E |, |I ∩O|} ≈ λ2d−1

1+λ
. Thus an upper bound that matches the lower bound

completes the proofs of both Theorems 1.6 and 1.1 (as well as Theorem 1.4, as we

shall see).

To motivate the upper bound, consider what happens when we count the contribution

from independent sets that have exactly two nearby vertices from O (that is, two

vertices with a common neighbour). There are approximately d22d−2 choices for this

pair (as opposed to approximately 22d−2 choices for a pair of vertices without a common

neighbour), since once the first vertex has been chosen, the second must come from the

approximately d2/2 vertices at distance two from the first. The sum of the weights of

independent sets that extend each choice is λ2(1 + λ)2
d−1−2d+2, roughly the same as the

sum of the weights of extensions in the case of the pair of vertices without a common

neighbour. The key point here is that any pair of vertices from O has at most two

neighbours in common, so has neighbourhood size of approximately 2d, whether or not

the vertices are nearby. Thus we get an additional contribution of approximately

(1 + λ)2
d−1 d22d−2

(1 + λ)2d

to the partition function from those sets with two nearby vertices from O, negligible

compared to the addition contribution to the partition function from those sets with two

non-nearby vertices from O.

The main work in upper-bounding Zλ(Qd) involves extending this to the observation

that the only non-negligible contribution to the partition function comes from independent

sets that on one side consist of a set of vertices with non-overlapping neighbourhoods.

This in turn amounts to showing that there is a negligible contribution from those

independent sets which are 2-linked on one side. This entails proving a technical lemma

(Lemma 3.10) bounding the sum of the weights of 2-linked subsets of E of a given size

whose neighbourhood in O is of a given size. This lemma is a weighted generalization

of an enumeration result originally introduced by Sapozhenko in [11] and used in [12]

to simplify the original proof of Theorem 1.5. A weaker form of Lemma 3.10 is proved

in [6], where it is used to estimate the weighted sum of independent sets in Qd satisfying

|I ∩ E | = |I ∩O|.

3. Preliminaries

Let Σ = (V , E) be a finite graph. For A ⊆ V write N(A) for the set of vertices outside A

that are neighbours of a vertex in A, and set

[A] = {v ∈ V : N({v}) ⊆ N(A)};

note that if A is an independent set then A ⊆ [A]. For bipartite Σ with bipartition X ∪ Y
say that A ⊆ X (or Y ) is small if |[A]| � |X|/2 (or |Y |/2).

Say that A is k-linked if, for every u, v ∈ A, there is a sequence u = u0, u1, . . . , ul = v in A

such that, for each i = 0, . . . , l − 1, the length of the shortest path connecting ui and ui+1
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is at most k, or, equivalently, if A is connected in the graph obtained from G by joining

all pairs of vertices at distance at most k (this extends our earlier notion of 2-linkedness).

The following easy lemma is from [11].

Lemma 3.1. If A is k-linked, and T ⊆ V is such that for each u ∈ A the length of the

shortest path connecting u to T is at most � and for each v ∈ T the length of the shortest

path connecting v to A is at most �, then T is (k + 2�)-linked.

Note that for bipartite Σ and A ⊆ X (or Y ), if A is 2-linked then so is [A]. Any A can

be decomposed into its maximal 2-linked subsets; we refer to these as the 2-components

of A.

The following lemma bounds the number of connected subsets of a graph; see [5,

Lemma 2.1]. (The bound given in [5] is (eΔ)n, but the proof easily gives the claimed

improvement.)

Lemma 3.2. Let Σ have maximum degree Δ. The number of n-vertex subsets of V which

contain a fixed vertex and induce a connected subgraph is at most (eΔ)n−1.

We will use the following easy corollary, which follows from the fact that a k-linked

subset of a d-regular graph is connected in a graph with all degrees at most (k + 1)dk .

Corollary 3.3. Let Σ be d-regular with d � 2. The number of k-linked subsets of V of size

n which contain a fixed vertex is at most exp{3nk log d}.

The next lemma is a special case of a fundamental result due to Lovász [10] and Stein

[13]. For bipartite Σ with bipartition X ∪ Y , say that Y ′ ⊆ Y covers X if each x ∈ X has

a neighbour in Y ′.

Lemma 3.4. If Σ as above satisfies |N(x)| � a for each x ∈ X and |N(y)| � b for each

y ∈ Y , then there is some Y ′ ⊆ Y that covers X and satisfies

|Y ′| � (|Y |/a)(1 + log b).

The following is a special case of Hoeffding’s inequality [7].

Lemma 3.5. For all λ > 0, δ > 0 and m ∈ N,

�m
(

λ
1+λ+δ

)
�∑

j=�m
(

λ
1+λ−δ

)
�
λj

(
m

j

)
�

(
1− 2 exp{−2δ2m}

)
(1 + λ)m.

We will need to compare the exponential function ex to truncations eD(x) =
∑D

k=0
xk

k!
of

its Taylor series; the following will be sufficient.
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Lemma 3.6. For any y � x < z with y, z ∈ N,

ey(x) � exp

{
y log

ex

y
+ log(y + 1)

}
(3.1)

and

ex − ez(x) � exp

{
z log

ex

z
+ log

(
x

z − x

)}
. (3.2)

Proof. We have

ey(x) =

y∑
k=0

xk

k!
� (y + 1)

xy

y!
� exp

{
y log

(
ex

y

)
+ log(y + 1)

}

and

ex − ez(x) =

∞∑
k=z+1

xk

k!
� xz

z!

∞∑
k=1

(
x

z

)k

� exp

{
z log

(
ex

z

)
+ log

(
x

z − x

)}
,

in both cases using n! � (n/e)n.

Corollary 3.7. Let {xd}∞d=1 be such that xd → ∞. With ε1 =
√
c1(log xd)/xd and ε2 =√

c2(log xd)/xd, where c1 > 2 and c2 > 1 are constants, we have

e[(1+ε2)xd](xd)− e[(1−ε1)xd](xd) ∼ exd .

Proof. Note that the function f(t) = (1 + t) log
(

e
1+t

)
has a local maximum at t = 0 and

for t = o(1) satisfies f(t) = 1− t2

2
+ o(t2). From (3.1) we have e[(1−ε1)xd](xd) = o(exd ) and

from (3.2) we have exd − e[(1+ε2)xd](xd) = o(exd ).

For the remainder of this section, we specialize to Σ = Qd. We will need the following

isoperimetric bounds for A ⊆ E (or O) (see [3, Lemma 6.2] for the first and [9, Lemma 1.3]

for the second).

Lemma 3.8. There is a constant Ciso > 0 such that, for A ⊆ E (or O), if |A| � d4 then

|A| � Ciso|N(A)|/d. If |A| � d/10, then |N(A)| � d|A| − 2|A|(|A| − 1).

Lemma 3.9. For A ⊆ E (or O), if |A| � 2d−2 then

|N(A)| �
(
1 + Ω(1/

√
d)

)
|A|.

Our main tool is a weighted version of a result of Sapozhenko [11].

Lemma 3.10. For each a, g � 1, set

G(a, g) = {A ⊆ E 2−linked : |[A]| = a and |N(A)| = g}.
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There are constants c > 0 and c′ > 0 such that the following holds. If λ > c log d

d1/3 and a � 2d−2,

then ∑
A∈G(a,g)

λ|A| � 2d(1 + λ)g exp

{
−c
′(g − a) log d

d2/3

}
.

Lemma 3.10 can be proved by combining [11, Lemma 4.5] with [6, Lemmas 3.3 and

3.4] (indeed, a key result from [6] is a slightly weaker version of Lemma 3.10). A proof

of Lemma 3.10 is given in Section 5. Here we establish the following corollary, which is

all that we will use hereafter.

Corollary 3.11. For λ > c log d

d1/3 and m � d/
√

log d,

∑
λ|A|(1 + λ)−|N(A)| � (ed2)m−1λm(1 + λ)2m(m−1) 2d

(1 + λ)md
,

where the sum is over all A ⊆ E small and 2-linked with |A| � m.

Proof. We consider the sum in three parts. Say that A is of type I if |A| � d/10; of

type II if d/10 < |A| � d4 and of type III if d4 < |A|.
For type I A with |A| = k (k � m) there are (by Lemma 3.2) at most 2d−1(ed2)k−1 choices

for A (the factor of 2d−1 accounting for the choice of a fixed vertex in A and the d2 coming

from the fact that each A is connected in a graph with maximum degree at most d2). By

Lemma 3.8 each such A satisfies |N(A)| � dk − 2k(k − 1). It follows that the contribution

to the sum from type I As is at most

d/10∑
k=m

2d−1(ed2)k−1λk(1 + λ)−dk+2k(k−1).

For large enough d (independent of λ, in the range λ > c log d

d1/3 ) each summand above is at

most one-third of its predecessor, and so the total sum is at most

3

4
(ed2)m−1λm(1 + λ)2m(m−1) 2d

(1 + λ)md
. (3.3)

To complete the proof of the corollary we will show that the contributions to the sum

from As of type II and type III are negligible compared to (3.3).

The contribution to the sum from type II As (again using Lemmas 3.2 and 3.8) is at

most
d4∑

k=d/10

2d−1(ed2)k−1λk(1 + λ)
− dk
Ciso

(where Ciso is the constant from Lemma 3.8). For large enough d (independent of λ, in

the range λ > c log d

d1/3 ) the first term in this sum is the largest, and so the sum is at most

d42d−1(ed2)
d
10−1λ

d
10 (1 + λ)

− d2

10Ciso ,

which is vanishingly small compared to (3.3) for all λ and m in the specified range.
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In the range |A| > d4 we partition the possible As according to a := |[A]| > d4 and

g := |N(A)| > d4. By Lemma 3.10, the sum over type III As is at most

∑
a,g>d4 , G(a,g)�=∅

( ∑
A∈G(a,g)

λ|A|
)

(1 + λ)−g �
∑
a,g>d4

2d exp

{
−c
′(g − a) log d

d2/3

}
.

By Lemma 3.9, g − a � Ω(d7/2) and there are at most 22d choices for a and g, so the sum

is at most 2−ω(d2), which again is vanishingly small compared to (3.3) for all λ and m in

the specified range.

4. Proofs of the main theorems

4.1. Proof of Theorem 1.6

We will begin with a general upper bound on Zλ(Qd).

Lemma 4.1. For any λ > 0,

Zλ(Qd) � 2(1 + λ)2
d−1

exp

{ ∑
A⊆E small, 2−linked, |A|�1

λ|A|(1 + λ)−|N(A)|
}
.

To see that this implies the claimed upper bounds, note that

∑
λ|A|(1 + λ)−|N(A)| =

λ

2

(
2

1 + λ

)d

+
λ2(1 + λ)2

4

(
d

2

)
2d

(1 + λ)2d
, (4.1)

where the sum is over all A ⊆ E small and 2-linked with 1 � |A| � 2. The second term

on the right corresponds to |A| = 2: there are 2d−1
(
d
2

)
/2 ways to choose A ⊆ E small and

2-linked with |A| = 2, and each such A has |N(A)| = 2d− 2. The first term corresponds to

|A| = 1. On the other hand, from Corollary 3.11 we have that for all λ > c log d

d1/3

∑
λ|A|(1 + λ)−|N(A)| � (ed2)2λ3(1 + λ)12

2d

(1 + λ)3d

= o

(
λ2(1 + λ)2

4

(
d

2

)
2d

(1 + λ)2d

)
, (4.2)

where the sum is now over all A ⊆ E small and 2-linked with |A| � 3. Inserting (4.1) and

(4.2) into Lemma 4.1, we obtain (for λ > c log d

d1/3 )

Zλ(Qd) � 2(1 + λ)2
d−1

exp

{
λ

2

(
2

1 + λ

)d

+ λ2(1 + λ)2d2 2d

(1 + λ)2d

}
. (4.3)

If λ = λ(d) satisfies (1.1) then the exponent in (4.3) is o(1). If λ satisfies either (1.2) or

(1.3) then it is λ
2

(
2

1+λ

)d
+ o(1). Finally, if λ satisfies (1.4) then it is λ

2

(
2

1+λ

)d
(1 + o(1)). This

gives all the upper bounds of Theorem 1.6.

Proof of Lemma 4.1. A simple argument (based on the fact that Qd has a perfect

matching) shows that for I ∈ I(Qd), at least one of |[I ∩ E]| � 2d−2, |[I ∩O]| � 2d−2
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holds. By E–O symmetry we therefore have

Zλ(Qd) � 2(1 + λ)2
d−1

∑
A⊆E small

λ|A|(1 + λ)−|N(A)|. (4.4)

Decomposing A into 2-components A1, . . . , Ak , we have

λ|A|(1 + λ)−|N(A)| =

k∏
i=1

λ|Ai|(1 + λ)−|N(Ai)| (4.5)

and

∑
A⊆E small

λ|A|(1 + λ)−|N(A)| =
∑ ⎧⎨

⎩
k∏
i=1

λ|Ai|(1 + λ)−|N(Ai)| :

k � 0

A ⊆ E small

A = ∪ki=1Ai

⎫⎬
⎭

�
∑
k�0

(∑
λ|A|(1 + λ)−|N(A)|)k

k!

= exp
{∑

λ|A|(1 + λ)−|N(A)|
}
, (4.6)

where the unqualified sum in the last two lines is over all A ⊆ E small and 2-linked with

|A| � 1. Combining (4.6) with (4.4), we obtain the lemma.

Before turning to the lower bounds, we combine (4.1), (4.2) and (4.6) to observe that

for λ > c log d

d1/3 (for suitably large c), we have

∑
A⊆E small

λ|A|(1 + λ)−|N(A)| � exp

{
λ

2

(
2

1 + λ

)d

+
d2λ2(1 + λ)22d

(1 + λ)2d

}
. (4.7)

Now we turn to the lower bounds on Zλ(Qd), which will follow from a general bound

that is more than what we need for the proof of Theorem 1.6 but just what we need for

much of Theorems 1.1 and 1.4.

Lemma 4.2. For all λ � ω(1)
d

and f � � � 2d−2

d2 ,

Zλ(Qd) � 2(1 + λ)2
d−1

�∑
k=f

1

k!

(
λ

2

(
2

1 + λ

)d)k

exp

{
−�

2d2

2d−2

}(
1− 2

d2

)
.

This lower bound is obtained by considering only those I which satisfy

f � min{|I ∩ E |, |I ∩O|} � �

and

e1 � max{|I ∩ E |, |I ∩O|} � e2,

where

e1 =
λ

1 + λ

(
2d−1 − d�

)
−

√
(log d)

(
2d−1 − df

)
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and

e2 =
λ

1 + λ

(
2d−1 − df

)
+

√
(log d)

(
2d−1 − df

)
.

Before proving the lemma, we use it to obtain the claimed lower bounds on Zλ(Qd) and

complete the proof of Theorem 1.6.

For λ satisfying either (1.1) or (1.2), λ
2

(
2

1+λ

)d
= O(1). With f = f(λ) = 0 and � = �(λ) =

log d (say), an application of (3.2) yields

�(λ)∑
k=f(λ)

1

k!

(
λ

2

(
2

1 + λ

)d)k

� exp

{
λ

2

(
2

1 + λ

)d}
− o(1),

and we also have

exp

{
−�(λ)

2d2

2d−2

}
� 1− o(1).

Putting these bounds into Lemma 4.2, we get

Zλ(Qd) � (2− o(1))(1 + λ)2
d−1

exp

{
λ

2

(
2

1 + λ

)d}
. (4.8)

Noting that λ
2

(
2

1+λ

)d
= o(1) for λ satisfying (1.1), we get from (4.8) the claimed lower

bounds on Zλ(Qd) for λ satisfying either (1.1) or (1.2).

For λ satisfying either (1.3) or (1.4), λ
2

(
2

1+λ

)d
= ω(1). For any ε > 0, set

f(λ) =
λ

2

(
2

1 + λ

)d

−

√
(2 + ε)

λ

2

(
2

1 + λ

)d

log

(
λ

2

(
2

1 + λ

)d)

and

�(λ) =
λ

2

(
2

1 + λ

)d

+

√
(2 + ε)

λ

2

(
2

1 + λ

)d

log

(
λ

2

(
2

1 + λ

)d)
.

An application of Corollary 3.7 yields

�(λ)∑
k=f(λ)

1

k!

(
λ

2

(
2

1 + λ

)d)k

� (1− o(1)) exp

{
λ

2

(
2

1 + λ

)d}
,

and we also have

exp

{
−�(λ)

2d2

2d−2

}
� exp

{
−2d2λ2 2d

(1 + λ)2d

}
.

Putting these bounds into Lemma 4.2, we get

Zλ(Qd) � (2− o(1))(1 + λ)2
d−1

exp

{
λ

2

(
2

1 + λ

)d

− 2d2λ2 2d

(1 + λ)2d

}
. (4.9)
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Noting that

2d2λ2 2d

(1 + λ)2d
=

{
o(1) for λ satisfying (1.3),

o
(
λ
2

(
2

1+λ

)d)
for λ satisfying (1.4),

(4.10)

we get from (4.9) the claimed lower bounds on Zλ(Qd) for λ satisfying either (1.3) or (1.4).

Proof of Lemma 4.2. For each f � k � �, we consider the contribution to the partition

function from those I with |I ∩ E | = k, e1(k) � |I ∩O| � e2(k) and all 2-components of

I ∩ E having size 1, where

e1(k) :=
λ

1 + λ

(
2d−1 − dk

)
−

√
(log d)

(
2d−1 − dk

)
and

e2(k) :=
λ

1 + λ

(
2d−1 − dk

)
+

√
(log d)

(
2d−1 − dk

)
.

If we choose the elements of I ∩ E sequentially then each new vertex we add removes

from consideration at most
(
d
2

)
+ 1 � d2 vertices (those vertices which are at distance at

most 2 from the chosen vertex). So the number of choices for I ∩ E is at least

∏k−1
j=0

(
2d−1 − jd2

)
k!

� 2k(d−1)

k!

(
1− �d2

2d−1

)�

� 2k(d−1)

k!
exp

{
−�

2d2

2d−2

}
, (4.11)

the second inequality using 1− x � e−2x for 0 < x < 1/2; the application is valid since

� � 2d−2

d2 .

Once I ∩ E has been chosen, there are 2d−1 − dk vertices in O from among which

we choose between e1(k) and e2(k) to complete I . The sum of the weights of the valid

extensions to I is, using Lemma 3.5,

λk
e2(k)∑
j=e1(k)

λj
(

2d−1 − dk
j

)
� λk(1 + λ)2

d−1−dk
(

1− 2

d2

)
. (4.12)

Combining (4.11) and (4.12) and noting that e1 � e1(k) and e2(k) � e2 for all f � k � �,

we see that the contribution to the partition function from those I with f � |I ∩ E | � �

and e1 � |I ∩O| � e2 is at least

(1 + λ)2
d−1

�∑
k=f

1

k!

(
λ

2

(
2

1 + λ

)d)k

exp

{
−�

2d2

2d−2

}(
1− 2

d2

)
.

We get at least the same contribution from those I with f � |I ∩O| � �, e1 � |I ∩
E | � e2. Since � < e1, there is no overlap between the two contributions, and all I

under consideration satisfy f � min{|I ∩ E |, |I ∩O|} � � and e1 � max{|I ∩ E |, |I ∩O|} �
e2. This completes the proof of the lemma.
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4.2. Proof of Theorem 1.1

The lower bounds on Zλ(Qd) for λ satisfying (1.1), (1.2) and (1.3) come from considering

only those I satisfying

b1(λ) � max{|I ∩ E |, |I ∩O|} − λ2d−1

1 + λ
� b2(λ),

where

b1(λ) = −d�(λ)−
√

(log d)
(
2d−1 − df(λ)

)
and

b2(λ) = −df(λ) +
√

(log d)
(
2d−1 − df(λ)

)
,

with f(λ) and �(λ) as introduced in the discussion after the statement of Lemma 4.2. For

all such λ, we have

b1(λ) � −2d/2
√

log d and b2(λ) � 2d/2
√

log d,

the main point in both cases being that for λ satisfying (1.3), dλ
(

2
1+λ

)d
= o(2d/2). Since

the lower bounds in this range are asymptotic to the upper bounds, that (1.5) occurs a.a.s.

for this range of λ follows immediately, as does, similarly, the fact that (1.8) holds a.a.s.

for λ satisfying (1.3).

That (1.6) holds a.a.s. for λ satisfying (1.1) follows immediately from Theorem 1.6.

Indeed, the contribution to Zλ(Qd) from those I with min{|I ∩ E |, |I ∩O|} = 0 is

2(1 + λ)2
d−1 − 1 ∼ 2(1 + λ)2

d−1 ∼ Zλ(Qd).

We have to work a little harder to show that (1.9) and (1.10) occur a.a.s. for λ satisfying

(1.4). In this range, set

IE (λ) =

⎧⎪⎨
⎪⎩I ∈ I(Qd) :

cl(I ∩ E) � m

1
4 logm

λ
2

(
2

1+λ

)d � k(I ∩ E) � emλ
2

(
2

1+λ

)d
|max{|I ∩ E |, |I ∩O|} − λ2d−1

1+λ
| � d(log d)

(
2

1+λ

)d
⎫⎪⎬
⎪⎭

(with m as in (1.11)), where cl(A) and k(A) are the size of the largest 2-component of A and

the number of 2-components of A, respectively, and define IO(λ) analogously. Note that

IE (λ) and IO(λ) are disjoint and that I ∈ IE (λ) satisfies (1.9) and (1.10), so the following

lemma completes the proof that (1.9) and (1.10) occur a.a.s. for λ satisfying (1.4).

Lemma 4.3. For λ satisfying (1.4),

Zλ(Qd) ∼
∑

I∈IE (λ)

λ|I | +
∑

I∈IO(λ)

λ|I |.

Proof of Lemma 4.3. We begin by considering the contribution to Zλ(Qd) from those I

with I ∩ E small and cl(I ∩ E) > m. With the sum below over such I , and recalling (4.5),
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we have ∑
λ|I | = (1 + λ)2

d−1
∑

A⊆E small, cl(A)>m

λ|A|(1 + λ)−|N(A)|

� (1 + λ)2
d−1

∑
A′⊆E small, 2−linked, |A′ |>m

λ|A
′ |(1 + λ)−|N(A′)|

×
∑

A′′⊆E small

λ|A
′′ |(1 + λ)−|N(A′′)|

� Zλ(Qd)
∑

A′⊆E small, 2−linked, |A′ |>m

λ|A
′ |(1 + λ)−|N(A′)|

= o
(
Zλ(Qd)

)
, (4.13)

where in (4.13) we have used Corollary 3.11. We similarly have a negligible contribution

to Zλ(Qd) from those I with I ∩O small and cl(I ∩O) > m.

Next we consider the contribution from those I with I ∩ E small, cl(I ∩ E) � m and

k(I ∩ E) � 1
4 logm

λ
2

(
2

1+λ

)d
. The contribution is at most

(1 + λ)2
d−1

∑
k� 1

4 logm
λ
2

(
2

1+λ

)d
(

2d−1

k

)
mkλk(1 + λ)−dk (4.14)

� (1 + λ)2
d−1

∑
k� 1

4 logm
λ
2

(
2

1+λ

)d
mk

k!

(
λ

2

(
2

1 + λ

)d)k

� (1 + λ)2
d−1

exp

{
(1− Ω(1))

(
λ

2

(
2

1 + λ

)d)}
(4.15)

= o
(
Zλ(Qd)

)
.

The factor of
(
2d−1

k

)
in (4.14) counts the number of ways of choosing a fixed vertex in each

of the k 2-components of I ∩ E . The factor of mk counts the number of ways of assigning

a size to each 2-component. For each choice of a fixed vertex and a size (�i, say) for each

2-component, the contribution to Zλ(Qd) is at most

(1 + λ)2
d−1

k∏
i=1

(ed2)�i−1λ�i (1 + λ)−d�i+2�i(�i−1) � (1 + λ)2
d−1

k∏
i=1

λ(1 + λ)−d

(for large enough d, independent of λ). In (4.15) we use (3.1).

A similar calculation (using (3.2) in place of (3.1)) shows that the contribution from

those I with I ∩ E small, cl(I ∩ E) � m and k(I ∩ E) � emλ
2

(
2

1+λ

)d
is o(Zλ(Qd)), and by

symmetry so too is the contribution from those I with I ∩O small, cl(I ∩O) � m and

either k(I ∩O) � 1
4 logm

λ
2

(
2

1+λ

)d
or k � emλ

2

(
2

1+λ

)d
.

We have shown that 1
2
(1− o(1)) of Zλ(Qd) comes from

I ′E (λ) =

{
I ∈ I(Qd) :

cl(I ∩ E) � m
1

4 logm
λ
2

(
2

1+λ

)d � k(I ∩ E) � emλ
2

(
2

1+λ

)d
}
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and another 1
2
(1− o(1)) comes from the analogously defined I ′O(λ). (We have dropped

‘I ∩ E small’ since it is implied by the condition on k(I ∩ E).)

It remains to show that the contribution to I ′E (λ) from those I with I ∩O either too

large or too small is negligible. For each 1
4 logm

λ
2

(
2

1+λ

)d � k � emλ
2

(
2

1+λ

)d
and each choice

of k 2-components A1, . . . , Ak for I ∩ E , the contribution to
∑

I∈I ′E (λ) λ
|I | is

2d−1−
∑ k

i=1 |N(Ai)|∑
j=0

λj
(

2d−1 −
∑k

i=1 |N(Ai)|
j

)
.

By Lemma 3.5, all but a proportion at most 2
d2 of this sum comes from those j satisfying

∣∣∣∣λ2d−1

1 + λ
− j

∣∣∣∣ � λ

1 + λ

k∑
i=1

|N(Ai)|+

√√√√(log d)

(
2d−1 −

k∑
i=1

|N(Ai)|
)
.

For all k in the range under consideration, and all possible choices of the Ais, we have

λ

1 + λ

k∑
i=1

|N(Ai)|+

√√√√(log d)

(
2d−1 −

k∑
i=1

|N(Ai)|
)

� d(log d)

(
2

1 + λ

)d

.

This completes the proof.

Finally, we turn to (1.7). Note that the right-hand side of (1.7) is

Pr(Poisson(γk) = c),

where Poisson(γk) is a Poisson random variable with parameter γk := 1
2
e−k/2.

For each fixed c ∈ N we get a lower bound on the contribution to the partition

function from those I with min{|I ∩ E |, |I ∩O|} = c by considering those which have c

2-components on E , each of size 1, and have more than log d (say) vertices on O, and the

same with E and O reversed. This gives a lower bound of

2

c!

c−1∏
i=0

(
2d−1 − id2

)
λ

(
(1 + λ)2

d−1 −
∑
i<log d

λi
(

2d−1 − cd
log d

))
,

which is at least

(2− o(1))(1 + λ)2
d−1 1

c!

(
λ

2

(
2

1 + λ

)d)c

. (4.16)

Recalling the discussion just before the proof of Lemma 4.3, we know that all but a

vanishing part of Zλ(Qd) comes from those I with the smaller of I ∩ E , I ∩O consisting of

no more than log d 2-components of size 1. So we get an upper bound on the contribution

to the partition function from those I with min{|I ∩ E |, |I ∩O|} = c of(
2d−1

c

)
λc(1 + λ)2

d−1−cd + o
(
Zλ(Qd)

)
� (2 + o(1))(1 + λ)2

d−1 1

c!

(
λ

2

(
2

1 + λ

)d)c

, (4.17)
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the inequality following from the fact that, in this range of λ,

Zλ(Qd) ∼ 2(1 + λ)2
d−1

exp

{
λ

2

(
2

1 + λ

)}
= O

(
(1 + λ)2

d−1)
.

Combining (4.16) and (4.17), and noting that for λ = 1 + k+o(1)
d

we have λ
2

(
2

1+λ

)d ∼ γk , it

follows that

Pr
(
min{|I ∩ E |, |I ∩O|} = c

)
∼ Pr(Poisson(γk) = c).

4.3. Proof of Theorem 1.4

The first statement follows immediately from the fact that (1.6) holds a.a.s. for λ satisfying

(1.1). The second statement follows from our proof that (1.7) holds a.a.s. for λ satisfying

(1.1), once we observe that the lower bound in (1.7) is obtained by only considering those

independent sets for which cl(Imin) � 1. By a similar observation, our proof that (1.8)

holds a.a.s. for λ satisfying (1.3) also proves the third statement.

For the fourth statement, note for 21/m′ − 1 � λ > 21/(m′+1) − 1 we satisfy (1.11) with

m = m′; the statement then follows immediately from Lemma 4.3.

4.4. Proof of Theorem 1.7

Our approach is inspired by [5], in which Galvin and Kahn obtain a result of a similar

flavour on the lattice Z
d. We begin with (1.12). Write

J = {J ∈ I(Qd) : w ∈ J} and I ′ = {I ∈ J : u ∈ I}.

Further, write I = {I ∈ I ′ : I ∩ E small}. We need to bound

wλ(I ′)
wλ(J )

� (1 + λ)−d(1−o(1)), (4.18)

where wλ(∗) =
∑

I∈∗ λ
|I |. We will show

wλ(I)

wλ(J )
� (1 + λ)−d(1−o(1)). (4.19)

The same argument will show

wλ({I ∈ I ′ : I ∩O small})
wλ({J ∈ I(Qd) : u ∈ J}) � (1 + λ)−d(1−o(1)).

Combining this with (4.19) we get (4.18), noting that for any I ∈ I(Qd), either I ∩ E or

I ∩O small, and that by symmetry wλ({J ∈ I(Qd) : u ∈ J}) = wλ(J ).

We will obtain (4.19) by producing, for each I ∈ I , a set ϕ(I) ⊆ J , as well as a map

ν : I × J → R supported on pairs (I, J) with J ∈ ϕ(I) and satisfying∑
J∈ϕ(I)

ν(I, J) = 1 (4.20)

for each I ∈ I , and ∑
I∈ϕ−1(J)

λ|I |−|J|ν(I, J) � (1 + λ)−d(1−o(1)) (4.21)
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for each J ∈ J . It is not difficult to see that the existence of such a ϕ and ν satisfying

(4.20) and (4.21) gives (4.19).

We produce ϕ as follows. Given I ∈ I , write W (I) for the 2-component of I ∩ E
containing u. Set

W(a, g) = {W ⊆ E : |W | = a, |N(W )| = g, u ∈W, W small and 2-linked}

and

I(a, g) = {I ∈ I : W (I) ∈W(a, g)}.

Set I ′ = I \W . Note that N(W (I)) ∩ I = ∅ and N(W (I)) is not adjacent to anything in

I ′ (if it were, then W (I) would not be the 2-component of u in I ∩ E). We may therefore

add any subset of N(W (I)) to I ′ and still have an independent set. Set

ϕ(I) = {I ′ ∪ S : S ⊆ N(W (I))}.

We have just observed that indeed ϕ(I) ⊆ J .

For each J ∈ ϕ(I), write S(J) for J \ I ′ and set

ν(I, J) =
λS (J)

(1 + λ)|N(W (I))|

(
=

λ|J|−|I |+|W (I)|

(1 + λ)|N(W (I))|

)
.

Since S(J) runs over all subsets of N(W (I)) it is clear that (4.20) holds. To see that (4.21)

holds, observe that for fixed J ∈ J we have∑
I∈ϕ−1(J)

λ|I |−|J|ν(I, J) =
∑

I∈ϕ−1(J)

λ|W (I)|(1 + λ)−N(W (I))

�
∑
a,g,W

∑
I∈ϕ−1(J), I∈I(a,g), W (I)=W

λa(1 + λ)−g

�
∑
a,g

∑
W∈W(a,g)

λa(1 + λ)−g. (4.22)

The main point here is (4.22), which follows from the fact that for each W ∈W(a, g) and

J ∈ J there is at most one I ∈ I such that I ∈ I(a, g), W (I) = W and I ∈ ϕ−1(J).

For each g > d4 we have W(a, g) ⊆ ∪a′�gG(a′, g), and so, using Lemma 3.10 for (4.23),∑
a,g>d4 , W∈W(a,g)

λa(1 + λ)−g �
∑

g>d4 , a′�g
(1 + λ)−g

∑
A∈G(a′ ,g,u)

λ|A|

� 2d
∑

g>d4 , a′�g
(1 + λ)

− c′(g−a′) log d

d2/3 . (4.23)

By Lemma 3.9 we have g − a′ = Ω(d7/2) in the range g > d4, and we have at most 2d

choices for each of a′ and g, and so∑
a,g>d4 ,W∈W(a,g)

λa(1 + λ)−g � (1 + λ)−d(1−o(1)). (4.24)
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For g � d4 we have |W(a, g)| � 2O(a log d) � 2O(g log d/d), and so∑
a,g�d4 , W∈W(a,g)

λa(1 + λ)−g �
∑
a,g�d4

(1 + λ)−g2O(g log d/d)(1 + λ)O(g/ log d)

�
∑
g�d

(1 + λ){O
(

log d
log(1+λ)

)
−g+O

(
g log d

d log(1+λ)

)
+ g

log d}.

� (1 + λ)−d(1−o(1)). (4.25)

Combining (4.24) with (4.25) we obtain (4.19), and so (4.18) and (1.12).

We obtain (1.13) from (1.12) easily. Conditioned on v ∈ I , the probability that a

particular neighbour of u is in I is, by (1.12), at most (1 + λ)−d(1−o(1)), and so the probability

that none of the d neighbours of u are in I is at least 1− d(1 + λ)−d(1−o(1)) = 1− o(1). The

probability that u is in I is at least the probability that it is in I conditioned on none of

neighbours being in I times the probability that none of neighbours are in I , and so is at

least (1− o(1))λ/(1 + λ).

5. Proof of Lemma 3.10

There are three steps to the proof. In the first step (Lemma 5.1), we associated to each

A ∈ G(a, g) a pair (F
, S
) that approximates A in the sense that F
 ⊆ N(A), S
 ⊇ [A] and

both of |N(A) \ F
|, |[A] \ S
| � x hold for some suitably small x, and we bound the size

of A1, the set of all pairs (F
, S
) that arise as we run over A ∈ G(a, g) (the bound, of

course, depending on x as well as a and g). This first step is the most involved of the

three, and our presentation of it is based closely on Sapozhenko’s original treatment [11].

The first step may be thought of as a partitioning of G(a, g), with the |A1| partition

classes indexed by pairs (F
, S
). The second step (Lemma 5.2) focuses on the individual

partition classes: to each (F
, S
) and A in the class indexed by (F
, S
) we associated a

pair (F, S) that approximates A in the sense that F ⊆ N(A), S ⊇ [A] and |S | � |F |+ y for

some suitably small y, and we bound (uniformly in (F
, S
)) the size of A2, the set of

all pairs (F, S) that arise as we run over A in the class indexed by (F
, S
) (the bound

depending on y). This second step essentially appears in work of Galvin and Kahn [5]

(with a proof also adapted from [11]), and here we only show how the conclusion of [5,

Lemma 2.17] almost immediately yields our desired conclusion.

In the third step (Lemma 5.3) we focus on a particular (F, S) and bound (uniformly in

(F, S)) the sum of the λ|A|s over all those A ∈ G(a, g) for which it holds that F ⊆ N(A),

S ⊇ [A] and |S | � |F |+ y. This comes directly from work of Galvin and Tetali [6] and so

we do not give the proof here.

The steps together give |G(a, g)| � Bλ|A1||A2| where Bλ is the bound from the third

step. We present the steps in more generality than we need, since this adds nothing to the

complexity of the proofs.

Lemma 5.1. Let Σ be a d-regular bipartite graph with bipartition classes X and Y . Let

G = {A ⊆ X 2-linked : |[A]| = a, |N(A)| = g}. Fix 1 � ϕ � d− 1. Let

mϕ = min{N(K) : y ∈ Y ,K ⊆ N(y), |K| > ϕ}.
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Let C > 0 be any constant such that C log d/(ϕd) < 1. Set t = g − a. There is a family

A1 ⊆ 2Y × 2X with

|A1| � |Y | exp
{

78gC log2 d

ϕd
+

78g log d

dCmϕ/(ϕd)
+

78t log2 d

d− ϕ

}( 3gC log d
ϕ

� 3tC log d
ϕ

)(
dg

� dt/(ϕ(d− ϕ))

)
,

where
(
n

�k
)

is shorthand for
∑

i�k
(
n
i

)
, and a map π1 : G → A1 for which π1(A) := (F
, S
)

satisfies F
 ⊆ N(A), S
 ⊇ [A], |N(A) \ F
| � td/(d− ϕ) and |S
 \ [A]| � td/(d− ϕ).

Lemma 5.2. Let Σ and G be as in Lemma 5.1. Let (F
, S
) ∈ 2Y × 2X and x > 0 be given.

Let

G ′ = {A ∈ G : F
 ⊆ N(A), S
 ⊇ [A], |N(A) \ F
| � x and |S
 \ [A]| � x}.

There is a constant c > 0, a family A2 ⊆ 2Y × 2X with

|A2| � exp

{
cx

d
+
ct log d

ψ

}
,

and a map π2 : G ′ → A2 for which π2(A) := (F, S) satisfies F ⊆ N(A), S ⊇ [A] and

|S | � |F |+ 2tψ/(d− ψ). (5.1)

Lemma 5.3 ([6], Lemma 3.4). Let Σ and G be as in Lemma 5.1. Let ψ and γ satisfy

1 � ψ � d/2 and 1 � γ > −2ψ
d−ψ . Fix (F, S) ∈ 2Y × 2X satisfying (5.1). We have

∑
λ|A| � max

{
(1 + λ)g−γt,

(
3dg

� 2tψ
d−ψ + γt

)
(1 + λ)g−t

}
,

where the sum is over all A ∈ G satisfying F ⊆ N(A) and S ⊇ [A].

Before turning to the proofs, we put them together in the case Σ = Qd. We set ϕ = d/2

(which choice allows us to take x = 2t in Lemma 5.2) and ψ = d2/3. By Lemma 3.8 we

have mϕ � d2/(2Ciso), and (for large enough d) we may set C = 2Ciso. Using t � Ω(g/
√
d)

(from Lemma 3.9) and the basic binomial estimate(
n

� k

)
� exp

{
(1 + o(1))

(
k log

n

k

)}
(5.2)

for k = o(n), the first two lemmas combine to give

|A1||A2| � 2d exp

{
O

(
t log d

d2/3

)}
.

We now take

γ =
log(1 + λ)− 6ψ log d

d−ψ
log(1 + λ) + 3 log d

�
c
3
− 3

d1/3
,

with the inequality valid for λ > c log d

d1/3 . By our choices of ψ and γ we have

g

d
� 2tψ

d− ψ + γt � 3g,
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and so (
3dg

� 2tψ
d−ψ + γt

)
� exp

{
(1 + o(1))

(
2tψ

d− ψ + γt

)
log

(
3dg

2tψ
d−ψ + γt

)}

� exp

{
3

(
2tψ

d− ψ + γt

)
log d

}
= (1 + λ)(1−γ)t,

with the first inequality using (5.2) and the equality following from the definition of γ. It

follows that

max

{
(1 + λ)g−γt,

(
3dg

� 2tψ
d−ψ + γt

)
(1 + λ)g−t

}
� (1 + λ)g−γt,

so that

|G(a, g)| � 2d(1 + λ)g exp

{
−γt log(1 + λ) + O

(
t log d

d2/3

)}

� 2d(1 + λ)g exp

{
−c
′t log d

d2/3

}
,

for some c′ > 0 (as long as c > 0 is suitably large), as claimed.

Proof of Lemma 5.1. Fix A ∈ G and set

N(A)ϕ = {y ∈ N(A) : d[A](y) > ϕ}

(where for any K ⊆ V , dK (y) := |N(y) ∩K|). We begin by describing the construction of

an F ′ which satisfies N(A)ϕ ⊆ F ′ ⊆ N(A) and N(F ′) ⊇ [A]. Since each vertex in N(A) \ F ′
is in N(A) \N(A)ϕ and so contributes at least d− ϕ edges to ∇(N(A), X \ [A]), a set of

size gd− ad = td, such a set satisfies |N(A) \ F ′| � td/(d− ϕ). (Here and throughout we

use ∇(A,B) to indicate the set of edges with one endpoint in A and the other in B.)

Set p = C log d/(ϕd). Construct a random subset T̃ of N(A) by putting each y ∈ N(A)

in T̃ with probability p, these choices made independently. We have

E(|T̃ |) = gp, (5.3)

and since |∇(N(A), X \ [A])| = td,

E(|∇(T̃ , X \ [A])|) = tdp. (5.4)

For y ∈ N(A)ϕ we have |N(N[A]({y}))| � mϕ, and so

E(|N(A)ϕ \N(N[A](T̃ ))|) =
∑

y∈N(A)ϕ

Pr(y �∈ N(N[A](T̃ )))

=
∑

y∈N(A)ϕ

Pr(N(N[A]({y})) ∩ T̃ = ∅)

� g(1− p)mϕ

< g exp{−pmϕ}. (5.5)
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Combining (5.3), (5.4) and (5.5) and using Markov’s inequality, we find that there is at

least one T0 ⊆ N(A) satisfying

|T0| �
3Cg log d

ϕd
, (5.6)

|Ω| � 3Ctd log d

ϕd
, (5.7)

where Ω := ∇(T0, X \ [A]), and

|N(A)ϕ \N(N[A](T0))| �
3g

dCmϕ/(ϕd)
. (5.8)

Choose one such T0 and set T ′0 := N(A)ϕ \N(N[A](T0)). Setting L = N(N[A](T0)) ∪ T ′0, we

have L ⊇ N(A)ϕ. Let T1 ⊆ N(A) \ L be a cover of minimum size of [A] \N(L) in the

graph induced by (N(A) \ L) ∪ ([A] \N(L)). Set F ′ = L ∪ T1. By construction, F ′ satisfies

N(A)ϕ ⊆ F ′ ⊆ N(A) and N(F ′) ⊇ [A].

Before estimating how many sets F ′ might be produced in this way as we run over

A ∈ G, we make some observations about the sets described above.

First, note that by Lemma 3.1, F ′ is 4-linked ([A] is 2-linked, every x ∈ [A] is at distance

1 from F ′ and every y ∈ F ′ is at distance 1 from [A]) and so T = T0 ∪ T ′0 ∪ T1 is 8-linked

(every y ∈ T is at distance 2 from F ′ and every y ∈ F ′ is at distance 2 from T ).

Next, note that F ′ is completely determined by the tuple (T0, T
′
0, T1,Ω), since T0 and Ω

together determine N(N[A](T0)).

The sizes of T0, T
′
0 and Ω are bounded by (5.6), (5.8) and (5.7), respectively. To

bound |T1|, note that as previously observed |N(A) \ L| � td/(d− ϕ), d[A]\N(L)(u) � d

for each u ∈ G \ L, and dG\L(v) = d for each v ∈ [A] \N(L). So, by Lemma 3.4, |T1| �
(t/(d− ϕ))(1 + log d) � 3t log d/(d− ϕ).

Combining these observations, we get that T is an 8-linked subset of Y with

|T | � 3gC log d

ϕd
+

3g

dCmϕ/(ϕd)
+

3t log d

d− ϕ =: Tbound.

By Corollary 3.3 there are |Y | exp{24Tbound log d} possible choices for T . Once T has been

chosen, there are at most 2Tbound choices for T0 ⊆ T , at most 2Tbound choices for T1 ⊆ T
and at most ( 3gC log d

ϕ

� 3tC log d
ϕ

)

choices for Ω. So the number of choices for (T0, T
′
0, T1,Ω) is at most

|Y | exp{26Tbound log d}
( 3gC log d

ϕ

� 3tC log d
ϕ

)
. (5.9)

We now describe an algorithmic procedure which produces F
 from F ′, and also

produces S
 (again, for a fixed A). If {u ∈ [A] : dN(A)\F ′ (u) > ϕ} �= ∅, pick the smallest

(with respect to some fixed ordering of the vertices of Σ) u in this set and update F ′ by

F ′ ←− F ′ ∪N(u). Repeat this until {u ∈ [A] : dN(A)\F ′ (u) > ϕ} = ∅. Then set F
 = F ′ and

S
 = {u ∈ X : dF
 (u) � d− ϕ}.
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Observe that F
 thus constructed inherits the properties F
 ⊆ N(A) and |N(A) \ F
| �
td/(d− ϕ) from F ′, since we obtain F
 from F ′ by adding vertices of N(A). We also have

S
 ⊇ [A], since otherwise the algorithm would not have terminated. Since each vertex of

S
 \ [A] contributes at least d− ϕ vertices to ∇(N(A), X \ [A]), a set of size td, we have

|S
 \ [A]| � td/(d− ϕ). Finally, the algorithm is determined by the selection of at most

dt/(ϕ(d− ϕ)) vertices (each iteration removes at least ϕ vertices from N(A) \ F ′, a set of

initial size at most td/(d− ϕ)). These vertices come from [A], which is contained in N(F ′),

a set of size at most dg. So the total number of possibilities for (F
, S
) for each F ′ is at

most (
dg

� dt/(ϕ(d− ϕ))

)
.

Combining this with (5.9), we obtain the claimed bound on |A1|.

Proof of Lemma 5.2. An almost identical statement appears in [5, Lemma 2.17], the

difference being that (5.1) is replaced by the two conditions dF (u) � d− ψ for all u ∈ S
and dX\S (v) � d− ψ for all v ∈ Y \ F . (The proof essentially repeats the algorithmic

procedure described at the end of the proof of Lemma 5.1, with ϕ replaced by ψ.) But

these two degree conditions imply (5.1). Indeed, observe that |∇(S, G)| is bounded above

by d|F |+ ψ|N(A) \ F | and below by d|[A]|+ (d− ψ)|S \ [A]| = d|S | − ψ|S \ [A]|, giving

|S | � |F |+ ψ|(N(A) \ F) ∪ (S \ [A])|/d,

and that each u ∈ (N(A) \ F) ∪ (S \ [A]) contributes at least d− ψ edges to ∇(N(A), X \
[A]), a set of size td, giving

|(N(A) \ F) ∪ (S \ A)| � 2td/(d− ψ).

These two observations together give (5.1).
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