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We consider this general framework. For a non-decreasing 
sequence (a1, a2, . . .) we establish necessary and sufficient 
conditions on the sequence (e1, e2, . . .) for the corresponding 
matrix to be totally non-negative. As corollaries we obtain 
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boards, and of graph Stirling numbers of chordal graphs.
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1. Introduction

A matrix — finite or infinite — is totally non-negative if all minors (determinants of 
square sub-matrices) are non-negative. Totally non-negative matrices occur frequently 
in combinatorics and have been the subject of much investigation. See for example [3,
16,17,26] for an overview. Here are a few of the most prominent examples:

•
[(

m
k

)]
m,k≥0, where 

(
m
k

)
is the usual binomial coefficient;

•
[{

m
k

}]
m,k≥0, where 

{
m
k

}
is the Stirling number of the second kind, counting partitions 

of a set of size m into k non-empty blocks;
•

[[
m
k

]]
m,k≥0, where 

[
m
k

]
is the (unsigned) Stirling number of the first kind, counting 

partitions of a set of size m into k non-empty cyclically ordered blocks; and
• [L(m, k)]m,k≥0, where L(m, k) is a Lah number, counting partitions of a set of size 

m into k non-empty linearly ordered blocks.

These examples can be placed in a common framework. Given two real sequences a =
(a1, a2, . . .) and e = (e1, e2, . . .), either both infinite or both finite and of the same length, 
define a matrix Sa,e = [Sa,e(m, k)]m,k≥0 via the relations

m∏
i=1

(x− ei) =
m∑

k=0

Sa,e(m, k)
k∏

i=1
(x− ai) (1)

for m ≥ 0. If a and e are infinite then Sa,e is infinite with rows and columns indexed by 
{0, 1, 2, . . .}, while if a and e are both of length n then Sa,e is (n + 1) by (n + 1) with 
rows and columns indexed by {0, 1, . . . , n}. Note that (1) uniquely determines Sa,e(m, k)
for each m, k ≥ 0. In this framework,

• taking ei = −1 and ai = 0 for all i yields Sa,e(m, k) =
(
m
k

)
;

• taking ei = 0 and ai = i − 1 for all i yields Sa,e(m, k) =
{
m
k

}
via the identity

xm =
∑
k≥0

{
m

k

}
x(x− 1) · · · (x− (k − 1)) (2)

for m ≥ 0;
• taking ei = −(i − 1) and ai = 0 for all i yields Sa,e(m, k) =

[
m
k

]
via the identity 

x(x + 1) · · · (x + (m − 1)) =
∑

k≥0
[
m
k

]
xk for m ≥ 0; and

• taking ei = −(i − 1) and ai = i − 1 for all i yields Sa,e(m, k) = L(m, k) via the 
identity x(x +1) · · · (x +(m −1)) =

∑
k≥0 L(m, k)x(x −1) · · · (x − (k−1)) for m ≥ 0.

Another familiar object that fits into this framework is the collection of rook numbers 
of a Ferrers board. Let b1, b2, . . . be a non-decreasing sequence of non-negative integers, 
and let Bm be the Ferrers board with m columns that has bi cells in column i. The rook 
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number Rk(Bm) is the number of ways of placing k non-attacking rooks on Bm. The 
factorization theorem of Goldman, Joichi and White [18] says

m∑
k=0

Rm−k(Bm)x(x− 1) · · · (x− (k − 1)) =
m∏
i=1

(x + bi − i + 1).

Taking ei = i − 1 − bi and ai = i − 1, we see from (1) that Sa,e(m, k) = Rm−k(Bm).
The main result of this note is a characterization, for each non-decreasing sequence 

a, of those sequences e such that the matrix Sa,e is totally non-negative.

Definition 1.1. If a is non-decreasing, we say that e is a restricted growth sequence relative 
to a if for each i ≥ 1 it holds that ei ≤ af(i), where f(1) = 1 and for i ≥ 1

f(i + 1) =
{

f(i) if ei < af(i)

f(i) + 1 if ei = af(i).

In other words, each ei is at most a certain cap. The cap for e1 is a1. If e1 < a1 then 
the cap for e2 is also a1, while if e1 = a1 then the cap for e2 is a2. In general, the cap for 
ei is some ai′ , and if ei < ai′ then the cap for ei+1 is also ai′ , while if ei = ai′ then the 
cap for ei+1 is ai′+1. If a = (0, 1, . . . , n − 1, . . .) then a non-negative integral sequence e
is a restricted growth sequence relative to a exactly if it is a restricted growth sequence 
in the usual sense, that is, one satisfying e1 = 0 and ei+1 ≤ 1 + maxj=1,...,i ej for i ≥ 1.

Notice that in the examples of binomial coefficients, Stirling numbers of both kinds and 
Lah numbers above, a is non-decreasing and e is a restricted growth sequence relative to 
a. The total non-negativity of the matrices arising from these examples is thus recovered 
from the following result.

Theorem 1.2. Let a be a non-decreasing sequence. Then

1. the matrix Sa,e is totally non-negative if and only if e is a restricted growth sequence 
relative to a, and

2. if e is not a restricted growth sequence relative to a then the failure of Sa,e to be 
totally non-negative is witnessed by a negative entry in Sa,e.

Also, since the sequence a = (0, 1, 2, . . .) is non-decreasing and for non-negative 
(b1, b2, . . .) the sequence e = (−b1, 1 − b2, 2 − b3) is restricted growth relative to a, 
we immediately have the following corollary concerning matrices of rook numbers.

Corollary 1.3. If (b1, b2, . . .) is a non-deceasing sequence of positive integers, and Bm

is the Ferrers board with m columns and with bi cells in the ith column, then the ma-
trix (Rm−k(Bm))m,k≥0 is totally non-negative, where Rk(Bm) is the number of ways of 
placing k non-attacking rooks on Bm.
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En route to proving Theorem 1.2 we will show that for arbitrary a and e total non-
negativity of Sa,e is guaranteed by the condition inf a ≥ sup e (equivalently, ai − ej ≥ 0
for all i, j). This observation (Corollary 3.6, suggested to us by Gonzales [20]) represents 
all we can say at present when a is not assumed to be non-decreasing.

Problem 1.4. For a which is not non-decreasing, characterize those e for which Sa,e is 
totally non-negative.

The proof of Theorem 1.2 involves producing a weighted planar network whose path 
matrix is Sa,e, and then appealing to Lindström’s lemma (see Section 3 for details). The 
network that we initially produce, however, does not have all non-negative entries, pre-
cluding an immediate application of Lindström. A substantial part of the proof involves 
carefully modifying the weights of the initial network to remove the negative entries, 
without changing the associated path matrix. We prove Theorem 1.2 in Section 3. Be-
fore that, in Section 2, we consider an application to graph Stirling numbers of chordal 
graphs.

The numbers Sa,e(m, k) defined in (1) satisfy the recurrence

Sa,e(m, k) = Sa,e(m− 1, k − 1) + (ak+1 − em)Sa,e(m− 1, k) for m, k > 0 (3)

with initial conditions Sa,e(0, 0) = 1, Sa,e(0, k) = 0 for k > 0 and Sa,e(m, 0) =
∏m

i=1(a1−
ei) for m > 0 (we prove this in Section 3, see (7)). Various forms of this recurrence have 
appeared in the literature. As observed in [20], with suitable choices of a and e the 
recurrence (3) can encode

• some generalizations of the classical rook numbers [6],
• the normal order coefficients of the word (V U)n in the Weyl algebra generated by 

symbols V, U satisfying UV − V U = hV s [6],
• Hsu and Shiue’s generalized Stirling numbers [21],
• the Jacobi-Stirling numbers (coefficients of the Jacobi differential operator) [6,14],

as well as encoding Binomial coefficients, Stirling numbers of both kinds, Lah numbers 
and rook numbers.

A number of authors have considered the question of total non-negativity of matrices 
[am,k]m,k≥0 with the am,k defined via recurrences similar to (3). Brenti [3], for exam-
ple, considered the recurrence am,k = zmam−t,k−1 + ymam−1,k−1 + xmam−1,k (t ∈ N). 
More recently Chen, Liang and Wang [7,8] considered am,k = rkam−1,k−1 + skam−1,k +
tk+1am−1,k+1 and also the more general situation where the am,k’s form a Riordan array. 
The recurrence (3) does not seem to fit these settings.

To conclude the introduction, we mention a nice conjecture of Brenti [4, Conjecture 
6.10] to which the present work may be related. The Eulerian number A(m, k) is the 
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number of permutations of {1, . . . , m} with exactly k ascents. It satisfies a recurrence 
that is very similar to (3), namely

A(m, k) = (m− k)A(m− 1, k − 1) + (k + 1)A(m− 1, k).

Conjecture 1.5. The matrix [A(m, k)]m,k≥0 is totally non-negative.

2. Graph Stirling numbers of chordal graphs

The Stirling numbers of the second kind have a natural generalization to the setting of 
graphs. For a graph G and an integer k, the graph Stirling number of the second kind

{
G
k

}
is the number of ways of partitioning the vertex set of G into k non-empty independent 
sets (an independent set being a set of pairwise non-adjacent vertices). This is indeed a 
generalization, since if Em is the graph on m vertices with no edges, then 

{
Em

k

}
=

{
m
k

}
.

This notion of graph Stirling number of the second kind was probably first introduced 
by Tomescu [27] and was subsequently reintroduced by numerous authors including 
Korfhage [22], Goldman, Joichi and White [19] and Duncan and Peele [10]. Its properties 
have been well studied, see for example [2,5,9,11,15,24,25].

The Stirling number of the first kind does not have such a natural graph analog. In 
[13] Eu, Fu, Liang and Wong present a notion of a graph Stirling number of the first 
kind for the family of quasi-threshold graphs, based on generalizations of the relation 
xmDm =

∑
k≥0(−1)m−k

[
m
k

]
(xD)k in the Weyl algebra on symbols x and D (the algebra 

over the reals generated by the relation Dx = xD + 1).
Here we take a different approach. It is well-known that the inverse of the matrix of 

Stirling numbers of the second kind is the matrix of signed Stirling numbers of the first 
kind:

[{
m

k

}]−1

m,k≥0
=

[
(−1)m−k

[
m

k

]]
m,k≥0

.

This suggests the following. For a graph G on n vertices, ordered v1, . . . , vn, let Gm

denote the subgraph of G induced by v1, . . . , vm, and consider the matrices

SG =
[{

Gm

k

}]n
m,k=0

and sG = S−1
G .

So the (m, k) entry of sEn
is (−1)m−k

[
m
k

]
, and the (non-negative) quantity 

[
m
k

]
has a 

clean combinatorial interpretation, as the size of a set of permutations.
It would be of interest to have a combinatorial interpretation of the absolute value of 

the (m, k) entry of sG for general G, leading to a combinatorial notion of graph Stirling 
numbers of the first kind for all graphs. To this end, it would be helpful to know the sign 
of the (m, k) entry of sG. The reason for this is as follows. If M is a lower triangular 
matrix with non-negative integer entries and 1’s down the diagonal (note SG is of this 
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form) then it is possible to express the (m, k) entry of M−1 as 
∑

a∈A(m,k) signm,k(a)
where A(m, k) is some combinatorially defined set and signm,k is a sign function taking 
values in {1, −1} (see, for example, [1], where A(m, k) is a certain set of paths in a 
bipartite multigraph). If the sign of the (m, k) entry of M−1 is known, and happens to 
be positive, then one could find a combinatorial interpretation of the entry as a count 
of a set (rather than a signed count of a set, or as the difference in the sizes of two 
sets) by constructing an injection from A− := {a ∈ A(m, k) : signm,k(a) = −1} into 
A+ := {a ∈ A(m, k) : signm,k(a) = 1}, and finding a description of those a ∈ A+ that 
are not in the range of the injection. If the sign of the (m, k) entry of M−1 is known 
to be negative, one would seek instead an injection from A+ into A−. See, for example, 
[12], where this strategy is employed to provide combinatorial interpretations of entries 
of inverses of matrices of certain restricted Stirling and Lah numbers.

It is easy to find examples of graphs G such that however the vertices are ordered the 
pattern of signs in the matrix sG is quite chaotic, making the approach just discussed 
difficult to implement. However, there is a class of graphs which admit a natural ordering 
of the vertices with respect to which the pattern of signs in sG is very well behaved, and 
in fact has the same checkerboard sign pattern as sEn

, that is, with the (m, k) entry 
having sign (−1)m−k. A chordal graph is a graph in which every cycle of length four or 
greater has a chord, that is, it is a graph that contains no induced cycles of length four 
or greater. A useful characterization of chordal graphs is that G is chordal if and only 
if it is possible to order the vertices as v1, . . . , vn so that for each m ∈ {1, . . . , n} the 
neighbors of vm among v1, . . . , vm−1 induce a clique (see for example [28, Section 5.3]). 
Such an ordering is referred to as a perfect elimination order.

Theorem 2.1. Let G be a chordal graph with perfect elimination order v1, . . . , vn, and let 
Gm be the subgraph of G induced by v1, . . . , vm. Let SG =

[{
Gm

k

}]n
m,k=0

and sG = S−1
G . 

For all m, k the (m, k) entry of sG has sign (−1)m−k.

A stronger result than Theorem 2.1 holds. Notice that the matrix SG has determinant 
1 and so by Cramer’s rule the (m, k) entry of the inverse is (−1)m−k times the determi-
nant of the n − 1 by n − 1 minor obtained from SG by deleting the kth row and the mth 
column. It follows that if SG is totally non-negative then the (m, k) entry of sG has sign 
(−1)m−k, and so the following result generalizes Theorem 2.1.

Theorem 2.2. Let G be a chordal graph with perfect elimination order v1, . . . , vn, and let 
Gm be the subgraph of G induced by v1, . . . , vm. Let SG =

[{
Gm

k

}]n
m,k=0

. Then SG is 
totally non-negative.

As we will now see, Theorem 2.2 is a special case of Theorem 1.2. The chromatic 
polynomial χG(x) of a graph G is the polynomial in x whose value at positive integers x
is the number of ways of coloring G from a palette of x colors in such a way that adjacent 
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vertices receive distinct colors. That χG(x) is indeed a polynomial in x follows from the 
following identity: for G a graph on m vertices,

χG(x) =
m∑

k=0

{
G

k

}
x(x− 1) · · · (x− (k − 1)). (4)

Indeed, one way to enumerate the colorings of G from a palette of x colors in such a way 
that adjacent vertices receive distinct colors is to first specify k, the number of colors 
used, then specify a partition of the vertex set of G into k non-empty independent sets 
(
{
G
k

}
options), which will be the color classes, and finally specify the colors that appear 

on each of the classes (x(x − 1) · · · (x − (k − 1)) options). (Observe that by taking G to 
be the graph on m vertices with no edges we recover (2) from (4).)

For a chordal graph G with perfect elimination order v1, . . . , vn, for i ≥ 1 denote 
by ei = ei(G) the number of neighbors that vi has among v1, . . . , vi−1. We have that 
χGm

(x) = (x − e1)(x − e2) · · · (x − em) (coloring the vertices of Gm sequentially from v1
to vm, at the step when vj is colored all colors are available except those used on the ej
neighbors of vj among {v1, . . . , vj−1}; since these neighbors form a clique, between them 
they account for ej colors, leaving x − ej available for vj). Thus, in light of (4), if we 
knew that (e1, . . . , en) formed a restricted growth sequence relative to (0, 1, . . . , n − 1), 
then the total non-negativity of 

[{
Gm

k

}]n
m,k=0

would follow from Theorem 1.2.
In fact, we have the following.

Claim 2.3. Let G be a chordal graph with perfect elimination order v1, . . . , vn. Defining 
ei = ei(G) as above, we have that (e1, . . . , en) is a restricted growth sequence relative to 
(0, 1, . . . , n − 1). Moreover, if (e′1, . . . , e′n) is any restricted growth sequence relative to 
(0, 1, . . . , n − 1) then there is a chordal graph G with perfect elimination order v1, . . . , vn
such that ei(G) = e′i for all i ≤ n.

Proof. We begin by showing that (e1, . . . , en) is a restricted growth sequence relative to 
(0, 1, . . . , n − 1). Certainly e1 = 0. Now consider vertex vk for k > 1. It is adjacent to 
ek vertices among v1, . . . , vk−1, with the largest of these (in the ordering v1 < v2 < · · · ) 
being, say, vj . Because vk forms a clique with its neighbors among v1, . . . , vk−1, it follows 
that vj has at least ek − 1 neighbors among v1, . . . , vj−1, so ej ≥ ek − 1. From this it 
follows that ek ≤ ej +1 ≤ 1 +maxi<k ei, exactly the condition that says that (e1, . . . , en)
is a restricted growth sequence relative to (0, 1, . . . , n − 1).

Next suppose (e′1, . . . , e′n) is a restricted growth sequence relative to (0, 1, . . . , n − 1). 
We inductively construct a chordal graph G with perfect elimination order v1, . . . , vn
such that ei(G) = e′i for all i = 1, . . . , n, starting with an isolated vertex v1. Suppose 
that the adjacency structure among v1, . . . , vk−1 has been determined. We have that 
ek ≤ 1 +maxi<k ei, which means that (by induction) among v1, . . . , vk−1 there are some 
ek vertices that form a clique. The construction can be continued by joining vk to any 
such ek vertices. �
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3. Proof of Theorem 1.2

A key tool will be the following explicit expression for Sa,e(m, k).

Lemma 3.1. For arbitrary a and e we have

Sa,e(m, k) =
∑

S={s1,...,sm−k}⊆{1,...,m}
s1<...<sm−k

m−k∏
i=1

(asi−i+1 − esi), (5)

and, equivalently, denoting the (m, k) entry of (Sa,e)−1 by sa,e(m, k),

(−1)m−ksa,e(m, k) =
∑

S={s1,...,sm−k}⊆{1,...,m}
s1<...<sm−k

m−k∏
i=1

(asi − esi−i+1). (6)

Notice that in the chordal graph setting esi−i+1 is the number of edges from vertex 
vsi−i+1 to earlier vertices, so is at most si−i, which is at most si−1, which is asi , and so 
the quantity on the right-hand side of the formula for (−1)m−ks(m, k) is non-negative. 
This establishes directly that the sign of the (m, k) entry of sG is (−1)m−k, as asserted 
by Theorem 2.1.

Proof of Lemma 3.1. We begin by noting that (5) implies (6). Indeed, from (1) we have 
that Sa,e(m, k) is the coefficient of (x − a1) · · · (x − ak) in the unique expansion of 
(x −e1) · · · (x −em) as a linear combination of 1, x −a1, . . . , (x −a1) · · · (x −am), and so from 
basic linear algebra considerations we see that the sa,e(m, k) are uniquely determined 
by the relations

m∏
i=1

(x− ai) =
m∑

k=0

sa,e(m, k)
k∏

i=1
(x− ei)

for m ≥ 0. Since in (5) a and e are arbitrary, a direct application of that identity yields

(−1)m−ksa,e(m, k) = (−1)m−k
∑

S={s1,...,sm−k}⊆{1,...,m}
s1<...<sm−k

m−k∏
i=1

(esi−i+1 − asi)

=
∑

S={s1,...,sm−k}⊆{1,...,m}
s1<...<sm−k

m−k∏
i=1

(asi − esi−i+1).

Of course the same argument in reverse shows that also (6) implies (5).
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We now show that both sides of (5) satisfy the same recurrence relation and initial 
conditions. To that end write f(m, k) for the expression on the right-hand side of (5). 
We begin by establishing some boundary values for f(m, k).

• We have f(0, 0) = 1 (the sum has one summand, associated with S = ∅, and this 
summand is the empty product and so has value 1), and more generally f(m, m) = 1
for all m.

• For m > 0, f(m, 0) = (a1 − e1) · · · (a1 − em).
• For k > 0, f(0, k) = 0 (the sum defining f in this case is empty), and more generally 

for k > m, f(m, k) = 0.

Next we establish a recurrence for f(m, k). For m > k > 0 we have

f(m, k) = f(m− 1, k − 1) + (ak+1 − em)f(m− 1, k).

The terms on the right-hand side here come from considering first those S with m /∈ S

and then those with m ∈ S; in the latter case m is always the greatest element of S and 
so contributes a factor am−(m−k)+1 − em = ak+1 − em to each summand.

Next consider the quantity Sa,e(m, k). We easily have Sa,e(0, 0) = 1, and more gen-
erally Sa,e(m, m) = 1 for all m, as well as Sa,e(m, 0) = (a1 − e1) · · · (a1 − em) for m > 0
(evaluate both sides of (1) at x = a1). We also have Sa,e(0, k) = 0 for k > 0 and more 
generally Sa,e(m, k) = 0 for k > m. We also have the recurrence

Sa,e(m, k) = Sa,e(m− 1, k − 1) + (ak+1 − em)Sa,e(m− 1, k) (7)

for m > k > 0. To verify this, consider the expression

Sa,e(m, 0) + Sa,e(m− 1,m− 1)(x− a1) · · · (x− am)
+
∑m−1

k=1 (Sa,e(m− 1, k − 1) + (ak+1 − em)Sa,e(m− 1, k)) (x− a1) · · · (x− ak)
(8)

(a linear combination of the polynomials 1, x −a1, . . . , (x −a1) · · · (x −am)). Rearranging 
terms (8) becomes

Sa,e(m, 0) + Sa,e(m− 1, 0)(x− a1)
+(x− em)

∑m−1
k=1 Sa,e(m− 1, k)(x− a1) · · · (x− ak).

(9)

Writing x − a1 = (x − em) − (a1 − em) in the second term of (9) yields

Sa,e(m, 0) − Sa,e(m− 1, 0)(a1 − em)
+(x− em)

∑m−1
k=0 Sa,e(m− 1, k)(x− a1) · · · (x− ak).

(10)

Via the initial conditions the first two terms of (10) sum to 0, and via the defining 
relation for Sa,e(m − 1, ·) ((1) with m replaced by m − 1) the remaining terms sum to ∏m

i=1(x − ei). The recurrence (7) now follows from (1) via linear algebra considerations.
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Since f(m, k) and Sa,e(m, k) satisfy the same recurrence and initial conditions, they 
are equal. �

Lemma 3.1 allows us to express Sa,e(m, k) in terms of complete symmetric and ele-
mentary symmetric functions. Denote by h�(x1, . . . , xt) the degree � complete symmetric 
polynomial in x1, . . . , xt (the sum of all degree � monomials with coefficients 1) and 
by s�(x1, . . . , xt) the degree � elementary symmetric polynomial in x1, . . . , xt (the sum 
of all degree � linear monomials with coefficients 1); so, for example, h2(x1, x2, x3) =
x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3 while s2(x1, x2, x3) = x1x2 + x1x3 + x2x3. (We will 
later also use s· for a source in a planar network, but this should not cause confusion as 
the meaning will be clear from the context.)

Lemma 3.2. For arbitrary a and e,

Sa,e(m, k) =
m−k∑
�=0

(−1)�hm−k−�(a1, . . . , ak+1)s�(e1, . . . , em). (11)

Proof. One possible approach is to show that the expressions on the right-hand sides of 
(5) and (11) are equal. This can be achieved by noting that when the right-hand side of (5)
is expanded as a polynomial in the ei’s, the monomials that arise are precisely the linear 
monomials in e1, . . . , em. For a given �, 0 ≤ � ≤ m −k, and T = {t1, . . . , t�} ⊆ {1, . . . , m}
with t1 < . . . < t�, the coefficient of et1 . . . et� turns out to be (−1)�hm−k−�(a1, . . . , ak+1)
(independent of the particular choice of T ); this proves the lemma.

We take instead a linear algebra approach. From (1) we have

m∏
i=1

(x− ei) =
∑
k

Sa,e(m, k)
k∏

i=1
(x− ai)

(where the sum runs over all integers k, although the summand will only be non-zero for 
k ∈ {0, 1, . . . , m}). It follows that

m∏
i=1

(x− ei) =
∑
j

S0,e(m, j)xj

=
∑
j

S0,e(m, j)
∑
k

Sa,0(j, k)
k∏

i=1
(x− ai)

=
∑
k

⎛
⎝∑

j

S0,e(m, j)Sa,0(j, k)

⎞
⎠ k∏

i=1
(x− ai)

so that

Sa,e(m, k) =
∑

S0,e(m, j)Sa,0(j, k). (12)

j
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Now Lemma 3.1 gives

S0,e(m, j) =
∑

S={s1,...,sm−j}⊆{1,...,m}
s1<...<sm−j

m−j∏
i=1

(−esi)

= (−1)m−jsm−j(e1, . . . , em) (13)

and

Sa,0(j, k) =
∑

S={s1,...,sj−k}⊆{1,...,j}
s1<...<sj−k

j−k∏
i=1

asi−i+1

= hj−k(a1, . . . , ak+1). (14)

Combining (13) and (14) with (12), and re-indexing via � = m − j, leads to (11). �
We now require some well-known results from the theory of totally non-negative ma-

trices. A planar network P is a directed planar graph with a subset {si : i = 0, 1, 2, . . .}
of vertices designated as sources and a subset {ti : i = 0, 1, 2, . . .} of vertices designated 
as sinks, where we assume that the sources and sinks are on the boundary of the graph, 
and are ordered cyclically as . . . , s2, s1, s0, t0, t1, t2, . . . . A weighted planar network (P, w)
is a planar network P together with a function w : �E(P ) → R, which we think of as 
an assignment of weights to the edges of P . Fig. 1 shows a particular weighted planar 
network. The vertices are the sources, the sinks, and the points of intersection between 
the vertical and horizontal lines. Horizontal lines are oriented to the right and vertical 
lines are oriented upward. All horizontal edge weights are 1, while the weights of the 
vertical edges are given by the xij ’s.

The planar network shown in Fig. 1 is the only one that we will consider in the sequel, 
and while we will consider many weight functions, they will all have the same form as 
that shown in Fig. 1 (that is, with all horizontal edge weights being 1). We will represent 
a generic such weight function by a doubly infinite lower triangular array, viz:

x11
x21 x22
x31 x32 x33
x41 x42 x43 x44
x51 x52 x53 x54 x55
...

...
...

...
. . .

xm1 xm2 xm3 xm4 · · · xm(m−1) xmm

...
...

...
...

. . . .

(15)
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s0

s1

s2

s3

...

sn−1

sn

t0

t1

t2

t3

...

tn−1

tn

x11

x21

x31

xn1

x22

x32

xn2

x33

xn3 xn4 xnn

. . .

...
...

...

Fig. 1. A weighted planar network.

We will refer to the location of the weight xmk in this array as the [m, k] position of the 
array (using square brackets to distinguish this from an entry in a matrix), and we will 
refer to the corresponding edge of the planar network as the [m, k] edge. For each fixed 
k, the collection of [m, k] edges, m = k, k + 1, . . . , is referred to as the k-th column of 
the planar network.

By the path matrix of a weighted planar network we mean the doubly infinite matrix 
whose (i, j) entry (with rows and columns indexed by {0, 1, 2, . . .}) is the sum of the 
weights of all the directed paths from si to tj , where the weight of one such path is 
the product, over all edges traversed, of the weight of the edge. For example, the (3, 1)
entry of the path matrix of the weighted planar network shown in Fig. 1 is x31x21 +
x31x22 + x32x22. Notice that the path matrix of the weighted planar network shown in 
Fig. 1 is lower-triangular with 1’s down the main diagonal. The following [23] (see also, 
for example, [26]) is a standard result from the theory of totally non-negative matrices.

Lemma 3.3 (Lindström’s Lemma). If the matrix M is the path matrix of a weighted 
planar network in which all weights are non-negative, then M is totally non-negative.

Lindström’s Lemma in fact says more: the minor corresponding to selecting the rows 
indexed by I and columns indexed by J (with indexing of rows and columns starting 
from 0) equals the sum of the weights of all the collections of |I| vertex disjoint paths 
from the sources {si : i ∈ I} to the sinks {tj : j ∈ J}, where the weight of a collection 
of paths is the product of the weights of the individual paths in the collection. We will 
not need this level of precision in our analysis.
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In the presence of Lindström’s Lemma, to prove item 1 of Theorem 1.2 it suffices to 
construct, for each a and e with a non-decreasing and e a restricted growth sequence 
relative to a, a weighted planar network all of whose weights are non-negative and whose 
path matrix is Sa,e. We will achieve this construction in stages, first producing a weighted 
planar network whose path matrix is Sa,e but which may have some negative weights, 
and then modifying the weight function in a way that makes all the negative weights 
non-negative, without changing the associated path matrix.

Convention 3.4. Throughout the arguments that follow we will work with only one un-
derlying planar network (the one shown in Fig. 1), and from here on we will drop the 
qualifier “planar”. All assignments of weights to this network will be of the form shown in 
(15), that is, we will always assign weight 1 to the horizontal edges in the network. From 
here on, given an array of weights V of the form shown in (15), rather than referring to 
“the path matrix of the weighted network whose array of weights is V ”, we will simply 
refer to “the path matrix of the array of weights V ”.

Lemma 3.5. For arbitrary a and e, the following array of weights has Sa,e as its path 
matrix:

a1 − e1
a1 − e2 a2 − e1
a1 − e3 a2 − e2 a3 − e1
a1 − e4 a2 − e3 a3 − e2 a4 − e1
a1 − e5 a2 − e4 a3 − e3 a4 − e2 a5 − e1

...
...

...
...

. . .
a1 − en a2 − en−1 a3 − en−2 a4 − en−3 · · · an−1 − e2 an − e1

...
...

...
...

. . . .
(16)

Proof. Denote by W the array shown in (16), and by M its path matrix. Clearly the 
first row and column of M , as well as the main diagonal and everything above the main 
diagonal, agree with Sa,e, so we focus on the entries Mm,k with m > k ≥ 1.

For each such fixed m and k the only weights which may appear on a path from sm
to tk are those appearing in the subarray

a1 − ek+1 a2 − ek a3 − ek−1 . . . ak+1 − e1
a1 − ek+2 a2 − ek+1 a3 − ek . . . ak+1 − e2
a1 − ek+3 a2 − ek+2 a3 − ek+1 . . . ak+1 − e3

...
...

...
...

a1 − em−1 a2 − em−2 a3 − em−3 · · · ak+1 − em−k−1
a1 − em a2 − em−1 a3 − em−2 · · · ak+1 − em−k.

(17)
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(Specifically these are the weights in the [i, j] position of W for k + 1 ≤ i ≤ m and 
1 ≤ j ≤ k + 1; there are m − k rows and k + 1 columns in the subarray.)

Now consider the array of weights W ′ whose weights are identical to those of W , 
except that for i = k + 1, . . . , m and j = 1, . . . , k + 1 the weight aj − ei−j+1 is replaced 
by aj − em−i+j . That is, W ′ is obtained from W by replacing the portion of W shown 
in (17) with

a1 − em−k a2 − em−k+1 a3 − em−k+2 . . . ak+1 − em
a1 − em−k−1 a2 − em−k a3 − em−k+1 . . . ak+1 − em−1
a1 − em−k−2 a2 − em−k−1 a3 − em−k . . . ak+1 − em−2

...
...

...
...

a1 − e2 a2 − e3 a3 − e4 · · · ak+1 − ek+2
a1 − e1 a2 − e2 a3 − e3 · · · ak+1 − ek+1.

(18)

Note that in going from (17) to (18) we are permuting e by the permutation that maps 
ei to em−i+1 for each i = 1, . . . , m.

A path from sm to tk in the underlying network corresponds to a composition b1 +
· · · + bk+1 = m − k of m − k into k + 1 non-negative parts, via: from sm take one 
horizontal step, then b1 vertical steps along the first column of the network, then one 
horizontal step, then b2 vertical steps along the second column of the network, and 
so on.

In the network whose array of weights is W ′, the weight of the path corresponding to 
the composition b1 + · · · + bk+1 = m − k is a product of the form 

∏m−k
i=1

(
af(i) − eg(i)

)
, 

where the sequence (f(1), . . . , f(m − k)) consists of b1 1’s, followed by b2 2’s, and so on, 
and the sequence (g(1), . . . , g(m − k)) starts 1, 2, . . . , b1, then moves on to an increasing 
sequence of consecutive integers of length b2 starting from b1 + 2, and so on. In other 
words, the weight is

m−k∏
i=1

(asi−i+1 − esi)

where {s1, . . . , sm−k} = {1, . . . , b1, ̂b1 + 1, b1 + 2, . . . , b1 + b2 + 1, ̂b1 + b2 + 2, . . .} (the 
hats indicating missing elements). As (b1, . . . , bk+1) runs over all 

(
m

m−k

)
compositions of 

m − k into k + 1 parts, the sets {s1, . . . , sm−k} run over all 
(

m
m−k

)
subsets of {1, . . . , m}

of size m − k, and so we get that in the network whose array of weights is W ′ the sum 
of the weights of the paths from sm to tk is

∑
S = {s1, . . . , sm−k} ⊆ {1, . . . ,m}

m−k∏
i=1

(asi−i+1 − esi). (19)
s1 < . . . < sm−k
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By Lemma 3.1 the expression in (19) is equal to Sa,e(m, k). Thus by Lemma 3.2 it 
is invariant under permutations of the ei’s, i = 1, . . . , m, and so in particular, by 
considering the permutation that maps ei to em−i+1 for each i = 1, . . . , m we get 
that

Sa,e(m, k) =
∑

S = {s1, . . . , sm−k} ⊆ {1, . . . ,m}
s1 < . . . < sm−k

m−k∏
i=1

(asi−i+1 − em−si+1). (20)

Now using the same reasoning that led to (19) we see that in the network whose array 
of weights is W the sum of the weights of the paths from sm to tk is the right-hand side 
of (20), and the lemma is proved. �

If inf a ≥ sup e then all the weights in W are non-negative (monotonicity of a is not 
required for this), and so combining Lemma 3.5 and Lindström’s Lemma we immediately 
get the following, discussed in the introduction.

Corollary 3.6. For arbitrary a and e satisfying inf a ≥ sup e, the matrix Sa,e is totally 
non-negative.

Even if a is non-decreasing and e is a restricted growth sequence relative to a, it may 
be that some of the weights in the array (16) are negative (a1 − e2, for example). We 
now describe a transformation that iteratively turns this array into one that has only 
non-negative weights, without changing the associated path matrix.

Lemma 3.7. For arbitrary a and e, if a1 = e1 then the following array of weights has 
Sa,e as its path matrix:

a1 − e1
a1 − e1 a2 − e2
a1 − e1 a2 − e3 a3 − e2
a1 − e1 a2 − e4 a3 − e3 a4 − e2
a1 − e1 a2 − e5 a3 − e4 a4 − e3 a5 − e2

...
...

...
...

. . .
a1 − e1 a2 − en a3 − en−1 a4 − en−2 · · · an−1 − e3 an − e2

...
...

...
...

. . . .

(21)

Note that the array shown in (21) is obtained from that shown in (16) by, in each 
row, moving the −e1’s from the last position in the row to the first, and then shifting 
all other −ej ’s in the row one place to the right.

Proof of Lemma 3.7. Denote by W p the array shown in (21), and by Mp its path matrix. 
(We will shortly generalize the operation that transforms W into W p, and refer to it as a 
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“pivoting” operation; hence the notation W p and Mp.) Clearly the first row and column 
of Mp, as well as the main diagonal and everything above the main diagonal, agree with 
Sa,e, so we focus on the entries Mp

m,k with m > k ≥ 1.
For each such fixed m and k the only weights which may appear on a path from sm to 

tk are a subset of those appearing in the subarray consisting of the weights at the [i, j]
position for m ≥ i ≥ j ≥ 1. Because a1 = e1, this subarray takes the following form:

0
0 a2 − e2
0 a2 − e3 a3 − e2
0 a2 − e4 a3 − e3 a4 − e2
0 a2 − e5 a3 − e4 a4 − e3 a5 − e2
...

...
...

...
. . .

0 a2 − em a3 − em−1 a4 − em−2 · · · am−1 − e3 am − e2.

The sum of the weights of the paths from sm to tk in the network whose array of weights 
is W p is evidently the same as the sum of the weights of the paths from sm−1 to tk−1 in 
the network whose array of weights has the following as its first m − 1 rows:

a2 − e2
a2 − e3 a3 − e2
a2 − e4 a3 − e3 a4 − e2
a2 − e5 a3 − e4 a4 − e3 a5 − e2

...
...

...
. . .

a2 − em a3 − em−1 a4 − em−2 · · · am−1 − e3 am − e2.

From the proof of Lemma 3.5 this quantity is symmetric in e2, . . . , em. So, if W p′ is 
the array of weights obtained from W p by the transformation e2 → em, e3 → em−1, et 
cetera (that is, by replacing ei with em−i+2 for i = 2, . . . , m), then although this perhaps 
changes the path matrix, it does not change the sum of the weights of the paths from 
sm to tk (that is, the (m, k) entry of the path matrix).

Now consider the array of weights W p′′ obtained from W p′ by changing the weight 
at the [i, 1] position from a1 − e1 to a1 − em−i+1, for i = 1, . . . , m. The first m rows of 
W p′′ have the following form:

a1 − em
a1 − em−1 a2 − em
a1 − em−2 a2 − em−1 a3 − em
a1 − em−3 a2 − em−2 a3 − em−1 a4 − em
a1 − em−4 a2 − em−3 a3 − em−2 a4 − em−1 a5 − em

...
...

...
...

. . .
a − e a − e a − e a − e · · · a − e a − e .
1 1 2 2 3 3 4 4 m−1 m−1 m m
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The sum of the weights of the paths from sm to tk in the network whose array of weights 
is W p is, as has been observed, the same as that for the network whose array of weights 
is W p′ . We now argue that this sum is the same as that for the network whose array of 
weights is W p′′ . Indeed, the only weights that have (potentially) changed in going from 
W p′ to W p′′ are those in the [1, 1] through [m − 1, 1] positions, and any path from sm
to tk that uses the [k, 1] edge for some k < m must also use the [m, 1] edge, which has 
weight 0.

The only weights in W p′′ which may appear on a path from sm to tk are those in the 
[i, j] position of W p′′ for k + 1 ≤ i ≤ m and 1 ≤ j ≤ k + 1. The rectangular subarray 
of weights in W p′′ in those positions is exactly the subarray (18), and so the proof of 
Lemma 3.5 shows that in the network whose array of weights is W p′′ , the sum of the 
weights of the paths from sm to tk is Sa,e(m, k). �

We refer to the operation that transforms the array of weights W of Lemma 3.5 (shown 
in (16)) to the array of weights W p of Lemma 3.7 (shown in (21)) as pivoting on the 
[1, 1] position of the array. We now define a more general pivoting operation:

Definition 3.8. Let V be a doubly infinite lower triangular array of weights (as shown in 
(15)) associated with the network shown in Fig. 1. If for each m ≥ 1 and 1 ≤ k ≤ m

the weight in the [m, k] position of V is of the form af(m,k) − eg(m,k) (for some functions 
f, g) then we denote by V [m,k] the array of weights constructed from V by the following 
process:

• the weight in the [m, k] position remains unchanged;
• in row m + 1, the weights af(m+1,k) − eg(m+1,k) and af(m+1,k+1) − eg(m+1,k+1) (in 

the [m +1, k] and [m +1, k+1] positions, respectively) are replaced with af(m+1,k)−
eg(m+1,k+1) and af(m+1,k+1) − eg(m+1,k);

• in general, for � ≥ 1 the weights

af(m+�,k) − eg(m+�,k), af(m+�,k+1) − eg(m+�,k+1), . . . , af(m+�,k+�) − eg(m+�,k+�)

(in the [m + �, k] through [m + �, k + �] positions, respectively) are replaced with

af(m+�,k) − eg(m+�,k+�), af(m+�,k+�) − eg(m+�,k), . . . , af(m+�,k+�) − eg(m+�,k+�−1);

• and all other weights remain unchanged.

We refer to V [m,k] as the array of weights obtained from V by pivoting on the [m, k]
position.

For a doubly infinite lower triangular array (such as the one shown in (15)) we refer 
to the triangle consisting of the [m + �1, k + �2] positions for all �1 ≥ 0 and 0 ≤ �2 ≤ �1
as the triangle headed at the [m, k] position, and we refer to the collection of positions 
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[1, 1]
[2, 1] [2,2]
[3, 1] [3, 2] [3,3]
[4, 1] [4, 2] [4, 3] [4,4]
[5, 1] [5, 2] [5, 3] [5, 4] [5,5]

...
...

. . .
. . .

[m, 1] [m, 2] [m, 3] [m, 4] · · · [m,m − 1] [m,m]
...

...
. . .

. . .

Fig. 2. The triangle headed at the [3, 2] position (bolded entries), and the positions that lie above the triangle 
(italicized entries).

that are in the ith column of the array, for i ≥ k, but that are not in the triangle headed 
at the [m, k] position, as the positions that lie above the triangle. Fig. 2 shows a portion 
of the triangle headed at the [3, 2] position (the bolded entries), and the positions lying 
above that triangle (the italicized entries).

We now generalize Lemma 3.7.

Lemma 3.9. Let a and e be arbitrary. Let W be the array of weights shown in (16). If 
the weight in the [m, k] position of W is 0, then the path matrix of the array of weights 
W [m,k] is the same as that of W , that is, it is Sa,e.

Furthermore, let (m1, m2, . . .) and (k1, k2, . . .) be sequences satisfying that for each 
i ≥ 1, the [mi+1, ki+1] position is located in the triangle headed at the [mi, ki] position. 
Let W be the array of weights obtained from W by first pivoting on the [m1, k1] position, 
then pivoting on the [m2, k2] position of the resulting array, and so on. If the weight at 
each position at which pivoting occurs is 0 (at the moment when the pivoting occurs at 
that position), then the path matrix of W is still Sa,e.

Proof. We begin with the first statement. Say that an edge in the network is in the 
triangle headed at the [m, k] position if it is the [i, j] edge of the network for some i, j
such that the [i, j] position is in the triangle (see the paragraph after (15) for relevant 
definitions). Fix a source sp and sink tq. Each path from sp to tq starts with a (non-empty) 
path A consisting of edges all not in the triangle headed at the [m, k] position, then 
continues with a (possibly empty) path B consisting of edges all in the triangle, and then 
ends with a (also possibly empty) path C consisting of edges all not in the triangle. The 
collection of paths from sp to tq thus can be partitioned into a collection of blocks indexed 
by pairs (vf , v�), where vf is the first vertex along B and v� is the last vertex along B, 
and an exceptional block consisting of those paths for which B (and so also C) is empty.

For a block indexed by the pair (vf , v�), the sum of the weights of the paths from sp
to tq is the product of three factors: the sum of the weights of the paths from sp to vf , 
the sum of the weights of the paths from vf to vl, and sum of the weights of the paths 
from vl to tq. The first and third of these sums remain unchanged after pivoting on the 
[m, k] position, because the pivoting does not change the weight at any position not 
in the triangle headed at the [m, k] position. The middle sum also remains unchanged 
after pivoting, by Lemma 3.7 (applied in the obvious way to the array of weights in the 
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triangle headed at the [m, k] position). For the exceptional block, the sum of the weights 
of the paths from sp to tq clearly also remains unchanged after pivoting on the [m, k]
position. Summing over blocks, the first statement of the lemma follows.

The second statement of the lemma is obtained by iterating the above argument. �
We can now fairly swiftly present the proof of Theorem 1.2.

Proof of Theorem 1.2. Let a be non-decreasing. We begin by arguing that if e is a re-
stricted growth sequence relative to a, then Sa,e is totally non-negative (item 1).

• If all ei are at most a1, then the array of weights W shown in (16) evidently has 
all non-negative weights, and by Lemma 3.5 has path matrix Sa,e. By Lemma 3.3
(Lindström’s Lemma) we are done.

• If it is not the case that all ei are at most a1, then there is some index j such that 
ej = a1 and ej′ < a1 for all j′ < j. We pivot on the [j, 1] position of W . Note that 
the weight in this position is a1 − ej = 0, so from the first part of Lemma 3.9 the 
path matrix of the resulting array of weights W [j,1] is Sa,e. Notice that all weights 
in the first column of W [j,1] are either positive (the weights in the first j−1 rows) or 
0 (the remaining weights), and that all weights in W [j,1] that lie above the triangle 
headed at the [j, 1] position are positive (they are positive in W — here we use that 
a is non-decreasing — and remain unchanged after pivoting). In other words, after 
pivoting all weights in the new array in positions outside the triangle headed at the 
[j, 1] position are non-negative.

• If all ei for i > j are at most a2, then array W [j,1] has only non-negative weights, and 
again by Lemma 3.3 we are done. If not, there is some index j′ such that ej′ = a2
and ej′′ < a2 for all j < j′′ < j′. We now pivot on the [j′, 2] position in W [j,1] (which 
has weight a2 − ej′ = 0). Because the [j′, 2] position is in the triangle headed at 
the [j, 1] position, we can apply the second part of Lemma 3.9 to conclude that the 
path matrix of the resulting array of weights is still Sa,e. Arguing as before, the new 
array of weights has non-negative weights outside the triangle headed at the [j′, 2]
position.

• Iterating this process (either finitely many times or countably many times, depending 
on whether a and e are finite or countably infinite) we arrive at an array of weights 
all of whose entries are non-negative and whose path matrix is Sa,e; the result now 
follows from Lemma 3.3.

To complete the proof of Theorem 1.2, we show that if e is not a restricted growth 
sequence relative to a, then Sa,e is not totally non-negative, and that moreover the 
failure of total non-negativity is witnessed by a negative matrix entry (item 2).

• Suppose that the failure of e to be a restricted growth sequence relative to a is 
witnessed by some index j such that ei < a1 for all i < j, and ej > a1. Then 
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evidently the path matrix of the array of weights W has the negative entry (a1 −
ej)(a1 − ej−1) · · · (a1 − e1) — it is the (j, 0) entry.

• Otherwise, there is some index j such that ei < a1 for all i < j, and ej = a1. Consider 
the array of weights W [j,1]. As established in the proof of item 1 above, W [j,1] has 
path matrix Sa,e. Also, it has strictly positive weights in the first j − 1 entries of 
the first column, the weights in the rest of the first column are all 0, and all weights 
above the triangle headed at the [j, 1] position are strictly positive.
Now suppose that the failure of e to be a restricted growth sequence relative to a
is witnessed by some index j′ such that ei < a2 for all j < i < j′, and ej′ > a2. 
Evidently the (j′, 1) entry of the path matrix of the array W [j,1] is negative, because 
all paths from sj′ to t1 that do not have weight 0 have a weight which is a product 
of strictly positive terms, together with the term a2 − ej′ , which is negative.

• Repeating this argument, we obtain the general result that if the earliest witness of 
the failure of e to be a restricted growth sequence relative to a is some index j̃ with 
ej̃ > a� for some �, then the (j̃, � − 1) entry of Sa,e is negative. �
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