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Abstract For a simple finite graphG denote by
{G
k

}
the number ofways of partitioning

the vertex set of G into k non-empty independent sets (that is, into classes that span
no edges of G). If En is the graph on n vertices with no edges then

{En
k

}
coincides

with
{n
k

}
, the ordinary Stirling number of the second kind, and so we refer to

{G
k

}
as

a graph Stirling number. Harper showed that the sequence of Stirling numbers of the
second kind, and thus the graph Stirling sequence of En , is asymptotically normal—

essentially, as n grows, the histogram of
({En

k

})

k≥0
, suitably normalized, approaches

the density function of the standard normal distribution. In light of Harper’s result, it
is natural to ask for which sequences (Gn)n≥0 of graphs is there asymptotic normality

of
({Gn

k

})

k≥0
. Thanh and Galvin conjectured that if for each n, Gn is acyclic and

has n vertices, then asymptotic normality occurs, and they gave a proof under the
added condition that Gn has no more than o(

√
n/ log n) components. Here we settle

Thanh and Galvin’s conjecture in the affirmative, and significantly extend it, replacing
“acyclic” in their conjecturewith “co-chromaticwith a quasi-threshold graph, andwith
negligible chromatic number”.Our proof combines oldwork ofNavon and recentwork
of Engbers, Galvin and Hilyard on the normal order problem in the Weyl algebra, and
work of Kahn on the matching polynomial of a graph.
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1 Introduction

Let G = (V, E) be a (simple, finite, loopless) graph. An independent set in G is a
subset of the vertices, no two of which are adjacent. For each integer k set

{
G

k

}
= |{partitions of V into k non-empty independent sets}| .

Equivalently,
{G
k

}
is the number of proper k-colorings of G that use all k colors, with

two colorings identified if they are identical up to the names of the colors. As far as we
know, this parameter was first explicitly considered by Tomescu [1]. When G = En ,
the n-vertex graph with no edges,

{G
k

}
is just the Stirling number of the second kind{n

k

}
, the number of partitions of a set of size n into k non-empty classes; for this reason

we refer to
{G
k

}
as a graph Stirling number, and to the sequence

({G
k

})

k∈Z as the

Stirling sequence (of the second kind) of G. For a brief history of the study of the
Stirling sequence of graphs, see [2] and the references therein.

A seminal result in the study of the (ordinary) Stirling numbers of the second kind is
Harper’s theorem [3], which concerns asymptotic normality. Suppose that for each n ≥
0we have a sequence sn = (an,k)k∈Z of non-negative termswith 0 <

∑
k∈Z an,k < ∞.

Informally, asymptotic normality of sn means that its histogram, suitably normalized,
approaches the density function of the standard normal distribution as n grows. For-
mally, associate with each n a random variable Xn taking values on Z by

Pr (Xn = k) = an,k∑
j≥0 an, j

.

(Note that if a set consists of objects of sizes 0, 1, 2, . . ., with the objects of size n
divided into classes (indexed by 0, 1, 2, . . .), and if an,k counts the number of objects
of size n that are in the kth class, then Xn may be interpreted as observing the class
of a uniformly chosen element of size n.) We say that sn is asymptotically normal if
Xn approaches a normal distribution in probability as n grows, that is, if for all x ∈ R

we have uniformly in x

Pr

(
Xn − μn

σn
≤ x

)
→ Pr(Z ≤ x)

as n → ∞, where μn and σn are the mean and standard deviation of Xn , and Z is the
standard normal random variable. From [3] we have the following.

Theorem 1 The ordinary Stirling sequence of the second kind,
({n

k

})
k∈Z, is asymp-

totically normal.

Equivalently, the Stirling sequence of the empty graph,
({En

k

})

k∈Z, is asymptotically

normal, raising a natural question.
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Question 1 Forwhich sequences (Gn)n≥0 of graphs is the associated Stirling sequence({Gn
k

})

k∈Z asymptotically normal?

We might expect that if Gn is obtained from En by a suitably small perturbation,
then asymptotic normality should be preserved.Thinking along these lines, Thanh and
Galvin [2] conjectured the following extension of Theorem 1.

Conjecture 1 IfGn is an acyclic graph on n vertices then
({Gn

k

})

k∈Z is asymptotically

normal.

A standard approach to demonstrating asymptotic normality of a sequence sn =
(an,k)k∈Z that is supported on a finite subset of N is to show that the generating
polynomial

∑
k∈Z an,k xk has all real zeros, and so factors into linear terms over the

reals. This implies that Xn can be represented as a sum of independent Bernoulli
random variables, and the central limit theorem then shows that asymptotic normality
is implied by the condition σn → ∞ as n → ∞. (This approach, which has often
been rediscovered, is originally due to Levy [4].)

For acyclic Gn , showing that
∑

k∈Z
{Gn

k

}
xk has only real zeros is not too hard, but

due to the complexity of the expressions involved Thanh and Galvin were only able to
establish the condition σn → ∞ under the addition assumption that Gn has no more
than c

√
n/ log n components for some suitably small c, and thus were only able to

establish Conjecture 1 under this assumption.
Here we take a different approach that allows us to prove Conjecture 1, and to

generalize it considerably. To state our main theorem, we need a little notation. We
begin by introducing the family of quasi-threshold graphs,whichwe define inductively
by three rules:

1. The graph K1 (on a single vertex) is a quasi-threshold graph.
2. If G is quasi-threshold, and G ′ = G + K1, the graph obtained from G by adding

a dominating vertex (a new vertex adjacent to all the vertices of G), then G ′ is
quasi-threshold.

3. If G1 and G2 are quasi-threshold, then G1 ∪G2, the disjoint union of G1 and G2,
is quasi-threshold.

Quasi-threshold graphs, which are sometimes called trivially perfect graphs, are well-
known and well-studied; see e.g. [5] for more information. Note that if a graph is
constructed using only rules 1 and 2 above, then it is an example of a threshold graph.

WriteχG(x) for the chromatic polynomial ofG andχ(G) for its chromatic number.
Say that G and H are co-chromatic if χG(x) = χH (x) (as polynomials in x). Our
main theorem is the following.

Theorem 2 For each n, let Gn be either a quasi-threshold graph, or co-chromatic
with some quasi-threshold graph. Let f (n) be the number of vertices of Gn, and let
g(n) = χ(Gn)/ f (n). If f (n) → ∞ and g(n) → 0 as n → ∞ then the Stirling
sequence of Gn is asymptotically normal.

To see that this implies Conjecture 1, let Gn be an acyclic graph on n vertices. We
clearly have f (n) → ∞ as n → ∞, and since χ(Gn) ≤ 2 we also have g(n) → 0. If
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Gn has k components then χGn (x) = xk(x − 1)n−k and so Gn is co-chromatic with
the quasi-threshold graph K1,n−k ∪K1∪· · ·∪K1 (a star on n−k+1 vertices together
with k − 1 isolated vertices).

The proof of Theorem 2 unexpectedly passes through the normal order problem in
theWeyl algebra, and in particular itmakes use of four different combinatorial interpre-
tations, due to Navon and to Engbers, Galvin and Hilyard, of the normal order coeffi-
cients of an arbitrary word in that algebra. These interpretations allow us to convert the
graph Stirling number of a quasi-threshold graph into a count of matchings in a certain
bipartite graph. A very general result of Kahn on asymptotic normality of matching
sequences then completes the proof. In Sect. 2 we review all the necessary background
to understand these results, and the (short) proof of Theorem 2 is given in Sect. 3.

2 The Pieces of the Puzzle

Theproof ofTheorem2 involves various aspects of each of four different combinatorial
interpretations the normal order of a word in theWeyl algebra.We begin by explaining
these terms.

TheWeyl algebra is generated by two symbols x and D, satisfying the single relation
Dx = xD + 1. The choice of symbol names is motivated by the fact that we may
represent the Weyl algebra as a set of operators on a space of infinitely differentiable
functions in a single variable x by interpreting the symbol “x” as multiplication by x
and “D” as differentiation with respect to x (and “1” as the identity); so, for example,
the word Dx , when applied to a function f (x), results in (d/dx)(x f (x)) = x f ′(x) +
f (x). This is the same result as would be obtained by applying xD+1, justifying that
in this representation we have the relation Dx = xD + 1.

If w is a word in a Weyl algebra with m x’s and n D’s, then one can show by
induction on the length of w that it has a unique representation of the form

w = xm−n
∑

k∈Z
Sw(k)xk Dk, (1)

called the normal order of w. The study of the normal order of words goes back to the
1800’s (in particular to Scherk’s thesis [6]), and has recently seen significant activity
owing to its occurrence in quantum mechanics; see e.g. [7] for an introduction to this
perspective.

Numerous combinatorial interpretations for the coefficients Sw(k) from (1) have
been given.Herewe explain the four that are of interest to us for the proof ofTheorem2.
We will confine our discussion to those w which are Dyck words—non-empty words
with the same number of x’s as D’s, and such that, reading the word from left to right,
every initial segment has at least as many x’s as D’s. We will use n for the number of
x’s in w.

All but the first combinatorial interpretation depend on a certain representation in
Z
2 of a Dyck word. A Dyck path in R

2 is a staircase path (a path that proceeds by
taking unit steps, either in the positive x direction or the positive y direction) that
starts at (0, 0), ends on the line x = y, any never goes below this line. There is
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a natural correspondence between Dyck paths and Dyck words, given by mapping
steps in the positive y direction to x , and steps in the positive x direction to D. For
example, the word xxDxxDxDDD (which we will use as a running example for our
interpretations) corresponds to the path that goes from (0, 0) to (0, 1) to (0, 2) to (1, 2)
to (1, 3) to (1, 4) to (2, 4) to (2, 5) to (3, 5) to (4, 5) to (5, 5).

2.1 Sw(k) in Terms of Partitions of a Quasi-threshold Graph

To a Dyck word w we can naturally associate a quasi-threshold graph Gw inductively
as follows.

1. If w = xD, then Gw = K1.
2. Ifw can be written in the form xw′D withw′ a Dyck word, then Gw = Gw′ +K1.
3. If w can be written in the form w1 . . . w�, � ≥ 2, with each wi a Dyck word, then

Gw = Gw1 ∪ · · · ∪ Gw�
.

For example, if w = xxDxxDxDDD then we construct Gw by adding a dominating
vertex to the graph associated with xDxxDxDD. This is the union of K1 (the graph
associated with xD) and the graph associated with xxDxDD. This latter is obtained
by adding a dominating vertex to K1 ∪ K1 (the graph associated with xDxD), so is a
path on three vertices. The graph we end up with has a vertex, v1 say, adjacent to each
of four vertices, v2, v3, v4, v5 say, with two edges among these four vertices, v3v4,
v4v5 say, inducing a path on three vertices; call this graph Gex.

From [8] we have the following.

Theorem 3 For every Dyck word w and integer k, Sk(w) = {Gw

k

}
.

For example,

S3(xxDxxDxDDD) =
{
Gex

3

}
= 2

(the partitions of V (Gex) into three non-empty independent sets being v1|v2v4|v3v5
and v1|v2v3v5|v4).

As well as going from Dyck words to quasi-threshold graphs, we will need to go
in the other direction.

Lemma 1 If G is a quasi-threshold graph on n vertices then there is a Dyck word
w(G) with n x’s such that Gw(G) = G.

Proof We proceed by induction on the number of vertices of G. If G = K1, we just
take w(G) = xD. If G on more than one vertex is of the form G ′ + K1 for some
quasi-threshold graphG ′ then we takew to be xw′D wherew′ = w(G ′). IfG onmore
than one vertex breaks into components G1, . . . ,G�, each a quasi-threshold graph,
then we take w to be w1w2 . . . w� where for each i wi = w(Gi ). 
�
For example, because Gex has a dominating vertex (v1) we have w(Gex) = xw′D
wherew′ = w(Gex−v1). SinceGex−v1 has components K1 and P3 (the path on three
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vertices), w′ is the concatenation of xD and w′′ = w(P3). Since P3 has a dominating
vertex joined to two isolated vertices,w′′ = x ((xD)(xD)) D. Putting all this together
leads to w(G) = xxDxxDxDDD, as we would expect.

2.2 Sw(k) in Terms of Rook Placements on a Ferrers Board

Label each unit square in Z
2 with the coordinates of its top-right corner (so, for

example, the square with corners at (0, 0), (1, 0), (0, 1) and (1, 1) gets label (1, 1)).
Let Bw be the set of labels of the unit squares that lie above the Dyck (staircase) path
of w and inside the box [0, n] × [0, n] (note that Bw forms a Ferrers board), and let
rk(Bw) be the number of ways of placing k non-attacking rooks on Bw (that is, the
number of ways of selecting a subset of Bw of size k, with no two elements of the
subset sharing a first coordinate, and no two sharing a second coordinate). Navon [9]
proved the following.

Theorem 4 For every Dyck word w and integer k, Sk(w) = rn−k(Bw).

For example, if w = xxDxxDxDDD then Bw = {(1, 3), (1, 4), (1, 5), (2, 5)}, and

S3(xxDxxDxDDD) = r2({(1, 3), (1, 4), (1, 5), (2, 5)}) = 2

(the two valid rook placements of size two being {(1, 3), (2, 5)} and {(1, 4), (2, 5)}).

2.3 Sw(k) in Terms of Partitions of an Indifference Graph

Let Ww be the set of (labels of) unit squares that lie below the Dyck path of w, and
completely above the line x = y. Define a graph Hw on vertex set {1, . . . , n} by
putting an edge from i to j (i < j) if and only if (i, j) ∈ Ww; Hw is an example of
an indifference graph (see [10]). For example, if w = xxDxxDxDDD then Ww =
{(1, 2), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}, and Hw has vertex set {1, 2, 3, 4, 5} and
edge set {12, 23, 24, 34, 35, 45}. Call this graphGex′

(notice thatGex′
is not isomorphic

to Gex, since the former does not have a dominating vertex but the latter does). From
[8] we have the following.

Theorem 5 For every Dyck word w and integer k, Sk(w) = {Hw

k

}
.

So, for example,

S3(xxDxxDxDDD) =
{
Gex′

3

}
= 2

(the two partitions of V (Gex′
) into three non-empty independent sets being 13|25|4

and 14|25|3).
It is worth noting that Hw is determined by the places where the Dyck path of

w takes a step up followed by a step to the right. To make this precise, say that the
Dyck path of w turns around the unit square labeled (x, y) if it takes a step from
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(x − 1, y− 1) to (x − 1, y) and then steps to (x, y). Let Tw = {(x1, y1), . . . , (xk, yk)}
be the set of (labels of) unit squares that the path of w turns around. Then it is easy
to see that the edge set of Hw can be covered by putting a clique on each of the
consecutive segments {xi , . . . , yi }, 1 ≤ i ≤ k. For example, if w = xxDxxDxDDD
then Tw = {(1, 2), (2, 4), (3, 5)} and Gex′

can be constructed by forming cliques on
{1, 2}, {2, 3, 4} and {3, 4, 5}.

2.4 Sw(k) in Terms of Matchings of a Bipartite Graph

To Bw associate a bipartite graph Γw, with partition classes X = {x1, . . . , xn} and
Y = {y1, . . . , yn}, by putting an edge from xi to y j if and only if (i, j) ∈ Bw. A
placement of k non-attacking rooks on Bw is easily see to correspond bijectively to
a selection of k independent edges (edges sharing no endvertices) in Γw, that is, to a
matching of size k in Γw. Write mk(Γw) for the number of matchings of size k in Γw.
From Theorem 4 we immediately get the following.

Theorem 6 For every Dyck word w and integer k, Sk(w) = mn−k(Γw).

For example, if w = xxDxxDxDDD then X = {x1, x2, x3, x4, x5}, Y =
{y1, y2, y3, y4, y5} and Γw has edges from x1 to each of y3, y4 and y5 and also an
edge from x2 to y5 (so x3, x4, x5, y1 and y2 are all isolated). In this case we get

S3(xxDxxDxDDD) = m2(Γw) = 2

(the two matchings of size two being {x1y3, x2y5} and {x1y4, x2y5}).
Taken together these combinatorial interpretations allow us to transform the study

of the Stirling sequence of a quasi-threshold graph into the study of the matching
polynomial of a bipartite graph, a realm with powerful results on which we can draw.
A celebrated result of Heilmann and Lieb [11] says that for any graph G, the polyno-
mial

∑
k∈Zmk(G)xk has all real zeros, reducing the problem of showing asymptotic

normality to that of showing that the variance of the size a uniformly chosen matching
is sufficiently large. This is not an easy task in general; but Kahn [12] found a collec-
tion of conditions, in general easier to verify than σn → ∞, that imply asymptotic
normality of the matching sequence. In particular, from [12] we have the following.

Theorem 7 Let (Gn)n≥0 be a sequence of graphs all with minimum degree at least
one, with Gn having order an, and matching number (size of largest matching) νn. If
an → ∞ and νn ∼ an/2 as n → ∞, then the matching sequence (mk(Gn))k∈Z is
asymptotically normal.

3 Putting the Pieces Together

Here we use the results of Sect. 2 to prove Theorem 2. Let Gn be as given in the
statement of Theorem 2. Without loss of generality we may assume that Gn is quasi-
threshold. This is because the chromatic polynomial of a graph G determines its
Stirling sequence, and vice-versa; on the one hand, by inclusion–exclusion,
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{
G

k

}
= 1

k!
k∑

i=0

(−1)i
(
k

i

)
χG(k − i),

while on the other hand, for each positive integer q,

χG(q) =
∑

k≥0

{
G

k

}
q(k)

where q(k) = q(q − 1) . . . (q − k + 1).
Let wn be the Dyck word with f (n) x’s, given by Lemma 1, satisfying Gwn = Gn .

Let Hn be the indifference graph associated with wn , as described in Sect. 2.3, and let
Γn be the bipartite graph associated with wn , as described in Sect. 2.4.

Combining Theorems 3, 5 and 6 we have that for each k,

Swn (k) =
{
Gn

k

}
=

{
Hn

k

}
= m f (n)−k(Γn). (2)

Using the symmetry of the standard normal, and the fact that the random variable
(Xn − μn)/σn in the definition of asymptotic normality is invariant under a shift in

the sequence (an,k)k∈Z, (2) shows that asymptotic normality of
({Gn

k

})

k∈Z is implied

by asymptotic normality of (mk(Γn))k∈Z.
We cannot (yet) apply Theorem 7, because Γn may have isolated vertices. Indeed,

if wn begins with � x’s in a row and ends with m D’s in a row, then from the
construction of Γn it is clear that the isolated vertices of Γn are exactly y1, . . . , y�
and x f (n)−m+1, . . . , x f (n) (as we saw with the example w = xxDxxDxDDD in
Sect. 2.4). Removing these �+m vertices we get a graph Γ ′

n , with no isolated vertices,
that has the samematching sequence asΓn ; we will use Theorem 7 to show asymptotic
normality of

(
mk(Γ

′
n)

)
k∈Z, which will complete the proof of Theorem 2.

To apply Theorem 7wemust verify that the order an andmatching number νn of Γ ′
n

are sufficiently large. We deal first with an , which is evidently 2 f (n) − � − m. Since
f (n) → ∞ by hypothesis, to show an → ∞ we need only show that � and m are
negligible compared to f (n). From Sect. 2.3 we known that Hn can be constructed by
forming various cliques on {1, . . . , f (n)}, including one on the � vertices {1, . . . , �}
and one on them vertices { f (n)−m+1, . . . , f (n)}. This shows that � andm are both
bounded above by the clique number of Hn , which is in turn bounded above by χ(Hn),
which [by (2), which shows that Gn and Hn are co-chromatic] is equal to χ(Gn). The
hypothesis g(n) → 0 now gives an → ∞.

We now deal with νn . The smallest value of k for which
{Gn

k

}
, and so by (2) Swn (k),

is strictly positive is k = χ(Gn), which means, again by (2), that νn = f (n)−χ(Gn).
From the last paragraphweknow that 2 f (n)−2χ(Gn) ≤ an ≤ 2 f (n). The hypotheses
on f (n) and g(n) now easily give νn ∼ an/2.
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