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Let a = (a1, a2, . . . , an) and e = (e1, e2, . . . , en) be real 
sequences. Denote by Me→a the (n + 1) × (n + 1) matrix 
whose (m, k) entry (m, k ∈ {0, . . . , n}) is the coefficient 
of the polynomial (x − a1) · · · (x − ak) in the expansion of 
(x −e1) · · · (x −em) as a linear combination of the polynomials 
1, x − a1, . . . , (x − a1) · · · (x − am). By appropriate choice 
of a and e the matrix Me→a can encode many familiar 
doubly-indexed combinatorial sequences, such as binomial 
coefficients, Stirling numbers of both kinds, Lah numbers and 
central factorial numbers.
In all four of these examples, Me→a enjoys the property of 
total non-negativity — the determinants of all its square 
submatrices are non-negative. This leads to a natural question: 
when, in general, is Me→a totally non-negative?
Galvin and Pacurar found a simple condition on e that 
characterizes total non-negativity of Me→a when a is non-
decreasing. Here we fully extend this result. For arbitrary real 
sequences a and e, we give a condition that can be checked 
in O(n2) time that determines whether Me→a is totally non-
negative. When Me→a is totally non-negative, we witness this 
with a planar network whose weights are non-negative and 
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whose path matrix is Me→a. When it is not, we witness this 
with an explicit negative minor.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Let a = (a1, a2, . . . , an) and e = (e1, e2, . . . , en) be real sequences. Each gives rise to 
a basis for the space of polynomials in one variable (x, say) of degree at most n, in the 
following way: set

Ba = {1, x− a1, (x− a1)(x− a2), . . . ,
n∏

i=1
(x− ai)}

and define Be analogously.
Associated with Ba and Be there is an (n +1) × (n +1) change-of-basis matrix Me→a, 

whose (m, k) entry (0 ≤ m ≤ n, 0 ≤ k ≤ n) is the coefficient of the polynomial (x −
a1) · · · (x − ak) in the expansion of (x − e1) · · · (x − em) as a linear combination of the 
polynomials in Ba. (We adopt the standard convention here that the empty product 
evaluates to 1).

Evidently Me→a is lower-triangular, with 1’s down the main diagonal. There are 
numerous combinatorial matrices that are instances of Me→a, for suitable choices of 
a and e. We present some examples now (see [10, Section 1] for the mostly standard 
justifications).

1. Taking ei = −1 and ai = 0 for all i yields Me→a =
[(

m
k

)]
, the matrix of binomial 

coefficients.
2. Taking ei = 0 and ai = i − 1 for all i yields Me→a =

[{
m
k

}]
, the matrix of Stirling 

numbers of the second kind.
3. Taking ei = −(i − 1) and ai = 0 for all i yields Me→a =

[[
m
k

]]
, the matrix of 

(unsigned) Stirling numbers of the first kind.
4. Taking ei = −(i − 1) and ai = i − 1 for all i yields Me→a = [L(m, k)], the matrix of 

Lah numbers.
5. Taking ei = i − 1 − bi and ai = i − 1, the (m, k) entry of Me→a is the Rook number 

Rm−k(Bm), where b1, b2, . . . is any non-decreasing sequence of non-negative integers, 
Bm is the Ferrers board with m columns that has bi cells in column i, and Rk(Bm)
is the number of ways of placing k non-attacking rooks on Bm.

A matrix is totally non-negative (TNN) if all its minors (determinants of square 
sub-matrices) are non-negative. Totally non-negative matrices occur frequently in com-
binatorics and have been the subject of much investigation. See for example [5,6,9,11,15]
for an overview. In particular, all of the matrices listed above are known to be totally 
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non-negative. Motivated by the first four of the examples above, in [10] Galvin and 
Pacurar asked the following question.

Question 1.1. For which pairs of real sequences (a, e) is Me→a TNN?

A partial answer was given in [10]. Specifically, a characterization was given of those e-
sequences for which Me→a is TNN, when a is weakly increasing. We now briefly describe 
that characterization, which depends on a notion of restricted growth (introduced, as far 
as we are aware, by Arndt [4]).

Definition 1.2. For weakly increasing a, say that e is a restricted growth sequence relative 
to a if for each i ≥ 1 it holds that ei ≤ af(i), where f(1) = 1 and for i ≥ 1

f(i + 1) =
{

f(i) if ei < af(i)
f(i) + 1 if ei = af(i).

In other words, each ei is at most a certain cap. The cap for e1 is a1. If e1 < a1 then 
the cap for e2 is also a1, while if e1 = a1 then the cap for e2 is a2. In general, the cap for 
ei is some ai′ , and if ei < ai′ then the cap for ei+1 is also ai′ , while if ei = ai′ then the 
cap for ei+1 is ai′+1. If a = (0, 1, . . . , n − 1, . . .) then a non-negative integer sequence e
is a restricted growth sequence relative to a exactly if it is a restricted growth sequence 
in the usual sense, that is, one satisfying e1 = 0 and ei+1 ≤ 1 + maxj=1,...,i ej for i ≥ 1.

Theorem 1.3. ([10, Theorem 1.2]) Let a be a weakly increasing sequence, and let e be an 
arbitrary sequence. Then

1. the matrix Me→a is TNN if and only if e is a restricted growth sequence relative to 
a, and

2. if e is not a restricted growth sequence relative to a then the failure of Me→a to be 
TNN is witnessed by a negative entry in Me→a.

Galvin and Pacurar left open the major part of Question 1.1, that of determining 
when Me→a is TNN when no restriction is placed on a (or e). In this note, we completely 
resolve this question. Our resolution involves extending the notion of restricted growth 
to the case when a is arbitrary, via the following algorithm.

Algorithm 1.4. The input is a pair of real sequences a = (a1, . . . , an) and e = (e1, . . . , en).

1. Initialize X = (e1, . . . , en) (an ordered list), and i = 1.
2. While i ≤ n, locate the first element, e′ say, of X that is greater than or equal to ai.

(a) If there is no such element, then delete the last element of X, and increment i
by 1.
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(b) If e′ = ai, then delete e′ from X, and increment i by 1.
(c) If e′ > ai, then STOP and report the current value of i.

3. When i = n + 1, STOP and report the value n + 1.

Definition 1.5. For arbitrary real sequences a and e, say that e is a restricted growth 
sequence relative to a if Algorithm 1.4 (on input a and e) terminates with the report 
n + 1.

Example 1.6. With a = (3, 8, 7, 5, 2, 7) and e = (2, 1, 3, 7, 3, 4) (so n = 6), Algorithm 1.4
proceeds as follows:

• Initially X = (2, 1, 3, 7, 3, 4), i = 1 and a1 = 3. The first element of X which is 
greater than or equal to 3 is the third element, which has value 3, so e′ = 3.

• Since e′ = a1 = 3, we update X to (2, 1, 7, 3, 4) and set i = 2.
• Since there is no e′ (in updated X) with e′ ≥ a2 = 8, we update X to (2, 1, 7, 3) and 

set i = 3.
• Now e′ = 7, so we update X to (2, 1, 3) and set i = 4.
• No element of X is greater than of equal to a4 = 5, so X becomes (2, 1) and i

becomes 5.
• Now e′ = 2, X updates to (1) and i to 6.
• In this final iteration there is no valid e′ so X updates to the empty list, i to 7 (=

n + 1), and the algorithm terminates with report 7. It follows that (2, 1, 3, 7, 3, 4) is 
a restricted growth sequence relative to (3, 8, 7, 5, 2, 7).

Example 1.7. With a = (11, 8, 3, 1) and e = (10, 9, 2, 1) (so n = 4), Algorithm 1.4
proceeds as follows:

• Initially X = (10, 9, 2, 1) and i = 1; there is no e′ with e′ ≥ a1, so X updates to 
(10, 9, 2).

• At i = 2 (a2 = 8) we have e′ = 10 > 8, so the algorithm terminates with report 
2 (< n +1). It follows that (10, 9, 2, 1) is not a restricted growth sequence relative to 
(11, 8, 3, 1).

It is easy to check that if a is weakly increasing then the notions of restricted growth 
given in Definitions 1.2 and 1.5 coincide, so that the following theorem, the main point 
of this note, is an extension of item 1 of Theorem 1.3.

Theorem 1.8. Let a and e be arbitrary real sequences of length n. The matrix Me→a is 
TNN if and only if e is a restricted growth sequence relative to a.

Example 1.9. (Continuing Example 1.6) With a = (3, 8, 7, 5, 2, 7) and e = (2, 1, 3, 7, 3, 4)
we have, by Example 1.6 and Theorem 1.8, that
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Me→a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 8 1 0 0 0 0
0 42 12 1 0 0 0
0 42 42 10 1 0 0
0 210 210 62 9 1 0
0 840 840 272 44 12 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is TNN (and this may be readily verified directly).

Example 1.10. (Continuing Example 1.7) With a = (11, 8, 3, 1) and e = (10, 9, 2, 1) we 
have that

Me→a =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
2 0 1 0 0
18 2 1 1 0
180 32 4 1 1

⎤
⎥⎥⎥⎥⎥⎦

is not TNN. This may be readily verified directly, for example by noting that the minor 
corresponding to rows 1 and 2, columns 0 and 1 is −2 (recall that our indexing of rows 
and columns starts at 0). Note that this is an example of a non-TNN matrix of the form 
Me→a where the failure to be TNN is not witnessed by a negative entry in the matrix; 
in the setting of [10], where a is weakly increasing, such an example cannot occur.

Some remarks are in order. Firstly, note that an (n +1) ×(n +1) matrix has Θ (4n/
√
n)

square submatrices and that calculating the determinant of a k×k matrix requires Ω(k2)
operations. So the obvious naive algorithm for determining whether such a matrix is TNN 
requires Ω(n3/24n) operations. Ando [3, Corollary 2.2] established that to test the total 
non-negativity of a lower-triangular matrix it suffices to test the Θ (n2n) square subma-
trices whose columns are consecutive and include the first column. Since a proportion 
1 − o(1) of these submatrices have dimension Θ(n), using Ando’s criterion still requires 
Ω(2n) operations. Standing in contrast to this, Theorem 1.8 allows one to check whether 
Me→a is TNN using O(n2) arithmetic operations.

Our next remark is that, unsurprisingly, the proof of Theorem 1.8 involves the theory 
of planar networks, and crucially uses the pivot operation of [10]. We postpone a detailed 
discussion of this to Section 2. For the moment, let us note that our proof passes through 
an intermediate algorithm that takes as input arbitrary real sequences a and e of length 
n, and outputs either

• a planar network with all non-negative weights whose path matrix is Me→a, witness-
ing that Me→a is TNN
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or

• a square submatrix of Me→a (with consecutive rows and columns) whose determinant 
is negative, witnessing that Me→a is not TNN.

(See Algorithm 2.4 and Claim 2.5.) We will see that when Me→a is not TNN, the 
witnessing negative minor can be produced in O(n2) steps.

Our final remark is that there are various alternate ways of describing the entries of 
the matrix Me→a; these were all observed in [10]. Denote by Ma,e(m, k) the (m, k) entry 
of the matrix Me→a.

1. The numbers Ma,e(m, k) satisfy the recurrence

Ma,e(m, k) = Ma,e(m− 1, k − 1) + (ak+1 − em)Ma,e(m− 1, k) (1)

for m, k > 0, with initial conditions Ma,e(0, 0) = 1, Ma,e(0, k) = 0 for k > 0
and Ma,e(m, 0) =

∏m
i=1(a1 − ei) for m > 0. Various forms of this recurrence have 

appeared in the literature. As observed in [12], with suitable choices of a and e the 
recurrence (1) can encode
• some generalizations of the classical rook numbers [7],
• the normal order coefficients of the word (V U)n in the Weyl algebra generated 

by symbols V, U satisfying UV − V U = hV s [7],
• Hsu and Shiue’s generalized Stirling numbers [13],
• the Jacobi-Stirling numbers (coefficients of the Jacobi differential operator) [7,8],
as well as encoding Binomial coefficients, Stirling numbers of both kinds, Lah num-
bers and rook numbers. Also, with em = 0 for all m and ak = (k − 1)2 for all k, (1)
encodes the central factorial numbers of Riordan and Carlitz (see e.g. [2]).

2. We have the explicit expression

Ma,e(m, k) =
∑m−k∏

i=1
(asi−i+1 − esi)

where the sum is over all S = {s1, . . . , sm−k} ⊆ {1, . . . , m} with s1 < . . . < sm−k.
3. We also have the explicit expression

Ma,e(m, k) =
m−k∑
�=0

(−1)�hm−k−�(a1, . . . , ak+1)s�(e1, . . . , em)

where h�(x1, . . . , xt) is the degree � complete symmetric polynomial in x1, . . . , xt and 
s�(x1, . . . , xt) is the degree � elementary symmetric polynomial in x1, . . . , xt.

In Section 2.1 we review the necessary background material from the theory of planar 
networks, and describe the pivot operation from [10]. In Section 2.2 we give the inter-
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s0

s1

s2

s3

...

sn−1

sn

t0

t1

t2

t3

...

tn−1

tn

x11

x21

x31

xn1

x22

x32

xn2

x33

xn3 xn4 xnn

. . .

Fig. 1. A weighted planar network. The labels on the vertical edges indicate the value of w for those edges; 
w takes the value 1 for all horizontal edges.

mediate planar network algorithm. The proof that this algorithm is correct is given in 
Section 3.1, while the derivation of Theorem 1.8 from all that has preceded appears in 
Section 3.2.

2. Planar networks and the intermediate algorithm

2.1. Setup

We need some well-known results from the theory of totally non-negative matrices. 
(Note that much of what follows is taken from [10, Section 3]).

A planar network P is a directed acyclic planar graph with a subset {si : i =
0, 1, 2, . . .} of vertices designated as sources and a subset {ti : i = 0, 1, 2, . . .} of 
vertices designated as sinks. We assume throughout that the sources and sinks are ar-
ranged around the outer face of the graph, and are ordered cyclically (clockwise) as 
. . . , s2, s1, s0, t0, t1, t2, . . .. A weighted planar network (P, w) is a planar network P to-
gether with a function w : �E(P ) → R, which we think of as an assignment of weights to 
the edges of P .

Fig. 1 shows a particular weighted planar network. The vertices set of this network 
comprises the sources, the sinks, and the intersection points between the vertical and 
horizontal lines. All horizontal lines are oriented to the right and all vertical lines are 
oriented upward. All horizontal edges have weight 1, while the weights of the vertical 
edges are given by the xij ’s.

The weighted planar network shown in Fig. 1 is the only one that will be used in our 
proofs (with various choices of w). In figures we will use the compact array representation 
shown in Fig. 2.
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x11
x21 x22
x31 x32 x33
x41 x42 x43 x44
x51 x52 x53 x54 x55
...

...
...

...
. . .

xn1 xn2 xn3 xn4 · · · xn(n−1) xnn.

Fig. 2. A compact array representation of the weighted planar network of Fig. 1. We will use the shorthand 
A for this array.

We will say that the edge of the planar network that is given weight xmk in Fig. 2 is 
the [m, k] edge of the array (using square brackets to distinguish this from an entry in 
a matrix). For each k = 1, . . . , n, the collection of [m, k] edges as m ranges from k to n
is the k-th column of the planar network (so, for example, the set of edges with weights 
x33, . . . , xn3 is the third column of the array in Fig. 2).

The path matrix M(P, w) of a generic weighted planar network (P, w) is the (n +1) ×
(n +1) matrix whose (m, k) entry (with rows and columns indexed by {0, 1, 2, . . . , n}) is 
the sum of the weights of all the directed paths from sm to tk, where the weight of any 
such path is the product, over all edges traversed, of the weight of the edge. For example, 
the (3, 1) entry of the path matrix of the weighted planar network shown in Fig. 1 is 
x31x21 + x31x22 + x32x22. Notice that the path matrix of the weighted planar network 
shown in Fig. 1 is lower-triangular with 1’s down the main diagonal. The following [14]
(see also, for example, [1, Chapter 29], [15]) is a standard result in the theory of totally 
non-negative matrices.

Lemma 2.1. (Lindström’s Lemma) If w ≥ 0 (i.e., all weights are non-negative) then the 
matrix M(P, w) is TNN.

Moreover, the minor corresponding to selecting the rows indexed by I and columns 
indexed by J (with indexing of rows and columns starting from 0) equals the sum of the 
weights of all the collections of |I| vertex disjoint paths from the sources {si : i ∈ I}
to the sinks {tj : j ∈ J}, where the weight of a collection of paths is the product of the 
weights of the individual paths in the collection.

As mentioned earlier, all the weighted planar networks that appear in our proofs have 
the form shown in Fig. 1. Such networks are completely specified by the array of weights 
shown in Fig. 2. Denoting that array by A, we use the shorthand M(A) for M(P, w)
(where (P, w) is the weighted planar network shown in Fig. 1). Abusing notation slightly, 
we will refer to M(A) as the path matrix of the array A.

All of the arrays that appear in our proofs will be generated from real sequences 
a = (a1, . . . , an) and e = (e1, . . . , en). Fig. 3 shows the generic array A(a, e) generated 
from a and e, while Fig. 4 shows a specific instance.

We need the following lemma ([10, Lemma 3.5]):
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a1 − e1
a1 − e2 a2 − e1
a1 − e3 a2 − e2 a3 − e1
a1 − e4 a2 − e3 a3 − e2 a4 − e1
a1 − e5 a2 − e4 a3 − e3 a4 − e2 a5 − e1

...
...

...
...

. . .
a1 − en a2 − en−1 a3 − en−2 a4 − en−3 · · · an−1 − e2 an − e1

Fig. 3. The array A(a, e).

3 − 2
3 − 1 8 − 2
3 − 3 8 − 1 7 − 2
3 − 7 8 − 3 7 − 1 5 − 2
3 − 3 8 − 7 7 − 3 5 − 1 2 − 2
3 − 4 8 − 3 7 − 7 5 − 3 2 − 1 7 − 2

or

1
2 6
0 7 5

−4 5 6 3
0 1 4 4 0

−1 5 0 2 1 5

Fig. 4. The array A(a, e) in the specific case a = (3, 8, 7, 5, 2, 7), e = (2, 1, 3, 7, 3, 4) (Example 1.6).

[1, 1]
[2, 1] [2, 2]
[3, 1] [3, 2] [3, 3]
[4, 1] [4, 2] [4, 3] [4, 4]
[5, 1] [5, 2] [5, 3] [5, 4] [5, 5]

...
...

. . .
. . .

[n, 1] [n, 2] [n, 3] [n, 4] · · · [n,n − 1] [n, n]

Fig. 5. The triangle headed at the [3, 2] position (bolded entries).

Lemma 2.2. For arbitrary a and e, we have M(A(a, e)) = Me→a.

If it happens that all weights in A(a, e) are non-negative, then the total non-negativity 
of Me→a follows immediately from Lemma 2.1 and Lemma 2.2. If A(a, e) has some 
negative weights, then we will give a procedure that modifies the array by iteratively 
replacing negative weights with 0 weights, while not changing the path matrix of the 
array. We will show that this procedure succeeds in replacing all negative weights with 0
weights exactly when Me→a is totally non-negative. To describe the procedure we need 
([10, Lemma 3.9]), whose statement requires a little more notation. For an array A of 
the kind shown in Fig. 2, we refer to the triangle consisting of the [m + �1, k + �2] edges 
for 0 ≤ �1 ≤ n −m and 0 ≤ �2 ≤ �1 as the triangle headed at the [m, k] edge (see Fig. 5).

Suppose that the triangle headed at the [m, k] edge of A is an instance of A(f , g) for 
some sequences f = (f1, . . . , fn−m+1), g = (g1, . . . , gn−m+1). Denote by Ap(m, k) the 
array obtained from A by the following operations:

• Leave unchanged all weights of A that are on edges not in the triangle headed at the 
[m, k] edge.
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3 − 2
3 − 1 8 − 2
3 − 3 8 − 1 7 − 2
3 − 3 8 − 7 7 − 1 5 − 2
3 − 3 8 − 3 7 − 7 5 − 1 2 − 2
3 − 3 8 − 4 7 − 3 5 − 7 2 − 1 7 − 2

or

1
2 6
0 7 5
0 1 6 3
0 5 0 4 0
0 4 4 −2 1 5

Fig. 6. The array from Fig. 4 (Example 1.6), after pivoting on the [3, 1] edge (bolded). The edges of the 
triangle headed at the [3, 1] edge (the only edges whose weights might change by pivoting) are underlined.

• Also leave unchanged the weight (f1 − g1) on the [m, k] edge. Replace the weights 
on the [m + 1, k] and [m + 1, k + 1] edges (f1 − g2 and f2 − g1, respectively), with 
f1 − g1 and f2 − g2, respectively.

• More generally, replace the weights on the [m +�, k], [m +�, k+1], [m +�, k+2], . . . , [m +
�, k + �] edges (f1 − g�+1, f2 − g�, . . . , f�+1 − g1, respectively), with f1 − g1, f2 −
−g�+1, . . . , f�+1 − g2, respectively, for 1 ≤ � ≤ n −m.

We refer to Ap(m, k) as the array obtained from A by pivoting on the [m, k] edge. Note 
that in each row of the triangle headed at the [m, k] edge, Ap(f , g) is obtained from A by 
moving the −g1’s from the last position in the row to the first, and then shifting all other 
−gj ’s in the row one place to the right. Note also that if f1 = g1, then after pivoting the 
weights on the [m′, k] edges, for all m′ ≥ m, are 0. (See Fig. 6 for an illustration.)

Lemma 2.3. ([10, Lemma 3.9]) For an array A of the kind shown in Fig. 2, suppose that 
the triangle headed at the [m, k] edge of A is an instance of A(f , g) for some sequence 
f = (f1, . . . , fn−m+1), g = (g1, . . . , gn−m+1).

If f1 = g1 then M(Ap(m, k)) = M(A) (that is, the path matrix is unchanged after 
pivoting on the [m, k] edge, as long as the entry on the [m, k] edge is 0).

It should be noted that when Lemma 2.3 was stated in [10], some assumptions were 
made about the weights in A on edges other than those edges in the triangle headed at 
the [m, k] edge. However, those assumptions were not actually used in the proof, so the 
proof goes through unchanged in the setting of Lemma 2.3.

2.2. The intermediate algorithm

We are now in a position to describe the intermediate planar network algorithm 
alluded to in the introduction.

Algorithm 2.4. The input is a pair of real sequences a = (a1, . . . , an) and e = (e1, . . . , en). 
The algorithm proceeds by modifying the weighted planar network A(a, e) (see Fig. 3).

• Initially, set A = A(a, e) and k = 1.
• As long as k ≤ n, scan the weights in the kth column of A, from the [k, k] edge down.
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3 − 2
3 − 1 8 − 2
3 − 3 8 − 1 7 − 2
3 − 3 8 − 7 7 − 1 5 − 2
3 − 3 8 − 3 7 − 7 5 − 1 2 − 2
3 − 3 8 − 4 7 − 7 5 − 3 2 − 1 7 − 2

or

1
2 6
0 7 5
0 1 6 3
0 5 0 4 0
0 4 0 2 1 5

Fig. 7. The array from Fig. 6 (Example 1.6), after pivoting on the 0 at the [5, 3] position (bolded).

11 − 10
11 − 9 8 − 10
11 − 2 8 − 9 3 − 10
11 − 1 8 − 2 3 − 9 1 − 10

or

1
2 −2
9 −1 −7

10 7 −6 −9

Fig. 8. The final network in Algorithm 2.4 when a = (11, 8, 3, 1) and e = (10, 9, 2, 1) (Example 1.7).

– If no zero or negative weights are encountered in the column, leave A unchanged 
and increase k by 1.

– If the first non-positive weight that is encountered is negative then STOP, output 
the current A and report that Me→a is not TNN.

– If the first non-positive weight that is encountered is zero, say on the [m, k] edge 
of the array A:
∗ if the triangle headed at the [m, k] edge of A is an instance of A(f , g) for some 

pair of sequences f = (f1, . . . , fn−m+1) and g = (g1, . . . , gn−m+1), then update 
A by pivoting on the [m, k] position — that is, replace A by Ap(m, k) — and 
increase k by 1. (See Fig. 3 for an illustration of an instance of A(f , g).)

∗ if not, then STOP and report that the algorithm is inconclusive. (We will see in 
the analysis that this clause of the algorithm will never be invoked).

• If k = n + 1, then STOP, output the current A and report that Me→a is TNN.

For the input a = (3, 8, 7, 5, 2, 7), e = (2, 1, 3, 7, 3, 4) (Example 1.6), the evolution of 
the planar network in Algorithm 2.4 is illustrated in Figs. 4, 6 and 7. In this case the 
algorithm reports that Me→a is TNN, and outputs the final network that is illustrated 
in Fig. 7. For the input a = (11, 8, 3, 1) and e = (10, 9, 2, 1) (Example 1.7), Algorithm 2.4
terminates at k = 2 (without having done a pivot), and in this case the algorithm reports 
that Me→a is not TNN. The final network that the algorithm outputs is illustrated in 
Fig. 8.

Claim 2.5. For every input a, e:

1. Algorithm 2.4 terminates after at most O(n3) operations.
2. It never terminates with an inconclusive report.
3. If it terminates with the report that Me→a is TNN, then the outputted weighted planar 

network A has all non-negative entries and has path matrix Me→a (and so serves as 
a witness that Me→a is TNN).
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4. If it terminates with the report that Me→a is not TNN, then there is an O(n2)
algorithm that identifies, in the outputted weighted planar network A, a collection S
of consecutive sources and a collection T of consecutive sinks with |S| = |T |, such 
that all collections of vertex disjoint paths from S to N have non-positive weight, 
and at least one has negative weight (which serves, via Lemma 2.1, to witness that 
Me→a is not TNN).

3. Proofs of Claim 2.5 and Theorem 1.8

3.1. Proof of Claim 2.5

3.1.1. Item 1
Constructing the initial weighted planar network A requires O(n2) operations. The 

algorithm requires scanning O(n2) entries. At most O(n) of these scans require perform-
ing a pivot, and each pivot requires O(n2) recalculations of weights. So in total, the 
algorithm requires O(n3) operations.

3.1.2. Item 2
This is an immediate corollary of the following straightforward observation:

Observation 3.1. Suppose that at some point in the algorithm the triangle headed at 
the [k, k] edge is of the form A(f , g) for some sequences f = (fk, . . . , fn), g = (g1, . . . ,
gn−k+1). If we then pivot on the [m, k] edge for some m ≥ k (so necessarily fk =
gm−k+1), then after the pivot

• all the entries in positions [m′, k] for m′ ≥ m are 0 (more precisely, they are all 
fk − gm−k+1), and

• the triangle headed at the [k + 1, k + 1] position is of the form A(f ′, g′) where f ′ =
(fk+1, . . . , fn) and

g′ = (g1, . . . , gm−k, ̂gm−k+1, gm−k+2, . . . , gn−k+1).

(The ̂gm−k+1 here indicates the removal of that entry from the sequence.)

See Figs. 6 and 7 for illustrations of Observation 3.1.

3.1.3. Item 3
Here Observation 3.1 is also a key ingredient. The proof of the statement in item 3 is 

by induction (on the column k being scanned).
By Lemma 2.2, the initial network has path matrix Me→a, and the triangle headed 

at the [1, 1] edge is of the form A(f , g) (specifically with f = a and g = e).
Suppose that we are at the point in the algorithm where we are scanning the kth 

column. Let us assume (by induction) that in the current weighted planar network A, 
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the triangle headed at the [k, k] edge is of the form A(f , g), and that all the entries in 
the first k − 1 columns are non-negative.

If column k has only positive entries, then we move on to column k + 1 without 
changing A; so as we scan column k + 1, in the current weighted planar network A, the 
triangle headed at the [k+1, k+1] edge is of the form A(f ′, g′) (with f ′ obtained from f
by removing the first element of f , and g′ obtained from g by removing the last element 
of g). Also, all the entries in the first k columns are non-negative.

If column k has its first zero at position [m, k], for some m ≥ k, then, by the obser-
vation above, after pivoting the kth column has all its entries non-negative, and (in the 
updated network) the triangle headed at the [k + 1, k + 1] edge is of the form A(f ′, g′). 
Also (crucially), by Lemma 2.3, the new network still has path matrix Me→a.

So by induction (on k), when we get to the point where k = n +1 (which we do reach, 
by assumption), the final weighted planar network A has all non-negative entries and 
has path matrix Me→a.

3.1.4. Item 4
Suppose that the first negative weight that is encountered in running the algorithm 

is at the [m, k0] edge.
Mark the [m, k0] edge. Consider the path pm, from source sm to sink tk, where k =

k(k0) = k0 − 1, constructed as follows: start by going horizontally from sm to the lower 
vertex of the marked edge, then go vertically until the path currently being constructed 
intersects with the unique path from sk0−1 to tk0−1, and then go horizontally to tk0−1. 
This path only uses edges with non-zero weight (the [m′, k0] edges, for m′ < m, have 
positive weight), and in fact uses only edges with positive weight, except for the [m, k0]
edge, which has negative weight.

Next, let k1 be maximal subject to the conditions that firstly k1 < k0, and secondly 
that the [m − 1, k1] edge has positive weight (assuming such a k1 exists — if not, the 
process terminates, as described in more detail in a moment), and mark the [m − 1, k1]
edge. Note that there is a path, pm−1, from source sm−1 to sink tk−1 — horizontal to the 
marked edge, then vertical to the unique path from sk−1 to tk−1 (the vertical stretch of 
the network goes at least as high as k−1, since it is strictly to the left of a vertical stretch 
that goes at least as far as the unique path from sk to tk), then horizontal. This path is 
vertex disjoint from pk. Also, this path only uses edges with positive weight — that the 
marked edge has positive weight forces all edges above it to have positive weight.

Repeat — mark (if it exists) the [m − 2, k2] edge, where k2 < k1 is maximal subject 
to the that edge having positive weight. Note that there is a path, pm−2 say, from source 
sm−2 to sink tk−2, that is vertex-disjoint from pm, pm−1, and again only uses edges with 
positive weight.

Repeat, until no markable edge is found. Suppose that the last marked edge is the 
[m − �, k�] edge, where � ≥ 0 (so � + 1 edges have been marked).

There is a collection of vertex disjoint paths in the network A from {sm−�, . . . , sm} to 
{tk−�, . . . , tk} — namely {pm−�, . . . , pm} — and it has negative weight, since all edges 



D. Galvin, Y. Zhang / Linear Algebra and its Applications 676 (2023) 88–103 101
+
+ +
+ + +
+ + + +
+ 0 + + +
+ 0 + + 0 +
+ 0 + 0 0 − �

Fig. 9. An example of the possible sign pattern on a final planar network from Algorithm 2.4, when the 
algorithm terminates with the report that Me→a is not TNN.

on it have positive weight, except the first marked edge at position [m, k0], which is 
negative. Note also that the construction of this collection can be done by looking at the 
weight on each edge of the network only once, and so in time O(n2).

There may be more such collections of vertex disjoint paths from the sources 
{sm−�, . . . , sm} to the sinks {tk−�, . . . , tk}, that avoid edges with weight zero, but we 
assert that all of these will use the [m, k0] edge and no other edge with negative weight. 
If this were true, then all such collections of paths would have negative weight, and so 
the sum of the weights of all the collections of vertex disjoint paths from {sm−�, . . . , sm}
to {tk−�, . . . , tk} would be negative. From this, it would follow (by Lindström’s lemma, 
Lemma 2.1) that the minor of the path matrix of A corresponding to rows m −� through 
m, columns k − � through k, would be negative. Since that path matrix is Me→a (this 
follows from the discussion of item 3), item 4 would follow.

Example 3.2. For the final network that comes from Algorithm 2.4 with the input a =
(11, 8, 3, 1) and e = (10, 9, 2, 1) (Example 1.7, see Fig. 8), we mark the [2, 2] and [1, 1]
edges, and the identified set of sources is {2, 1} while the sinks are {0, 1}; this recovers 
the negative minor pointed out in the introduction.

Example 3.3. For a more substantial example, consider the weighted planar network 
whose sign-pattern is shown in Fig. 9. In this case the marked edges are those at positions 
[7, 6], [6, 4], [5, 3], [4, 2] and [3, 1], the identified set of sources is {3, 4, 5, 6, 7} and the 
identified set of sinks is {1, 2, 3, 4, 5}. There is more than one collection of vertex disjoint 
paths from these sources to these sinks that avoids edges with weight 0, but all of them 
use exactly one edge with negative weight (the one at position [7, 6]), so all have negative 
weight.

So it remains to prove the assertion that all collections of vertex disjoint path systems 
from {sm, . . . , sm−�} to {tk, . . . , tk−�}, that avoid edges with weight zero, use the [m, k0]
edge and no other edge with negative weight.

For the proof, first observe that any collection of vertex disjoint paths from 
{sm, . . . , sm−�} to {tk, . . . , tk−�} that avoids edges with weight zero, and that uses pm, 
must have exactly one edge with negative weight (there are no edges with negative weight 
above or to the left of the [m, k] edge).
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Suppose we have a path p′m from sm to tk that avoids edges with weight zero and 
that makes its first vertical turn before the [m, k0] edge, i.e., before column k0, say at 
column k′0 < k0. Necessarily, k′0 ≤ k1. So any path from sm−1 to tk−1 that avoids edges 
with weight zero and that is disjoint from p′m must make its first vertical turn earlier 
than pm−1 does. Let p′m−1 be such a path, turning vertical first at column k′1 < k1. 
We have k′1 ≤ k2, so any path from sm−2 to tk−2 that avoids edges with weight zero 
and that is disjoint from p′m−1 must make its first vertical turn earlier than pm−2 does. 
Iterating, we eventually get that if p′m, . . . , p′m−�+1 is any vertex disjoint path system 
from {sm, . . . , sm−�+1} to {tk, . . . , tk−�+1} that avoids edges with weight zero, then it 
must be the case that p′m−�+1 makes its first vertical turn earlier than pm−�+1 does. So 
any path from sk−� to tk−� that is disjoint from p′m−�+1 and avoids edges with weight 
zero must make its first vertical turn before it reaches the [m − �, k�] edge. But no such 
vertical turn exists — if it did, the process of marking edges would not have stopped 
with the [m − �, k�] edge. This contradiction finishes the proof of the assertion that all 
the vertex disjoint path systems from {sm, . . . , sm−�} to {tk, . . . , tk−�}, that avoid edges 
with weight zero, use the [m, k0] edge and no other negative edges, and finishes the 
verification of item 4.

3.2. Deriving Theorem 1.8 from Claim 2.5

First suppose that e is a restricted growth sequence relative to a. Then it is easy to 
see that Algorithm 2.4 terminates with the report that Me→a is TNN, and moreover that 
we can recover the final weighted planar network A of Algorithm 2.4, by the following 
process: for i = 1, . . . , n, in the ith iteration of Algorithm 1.4,

• if no e′ ∈ X is found with e′ = ai (so all e′ < ai), then for each m = i, . . . , n, at the 
[m, i] edge of the weighted planar network put the weight ai− (X)m−i+1. Here (X)j
indicates the jth entry of X (in its ith incarnation); and

• if there is an e′ ∈ X with e′ = ai, say e′ = (X)m′−i+1 for some m′, then for each 
m = i, . . . , m′, at the [m, i] edge of the weighted planar network put the weight 
ai − (X)m−i+1, and for each m = m′ + 1, . . . , n, at the [m, i] edge put the weight 0.

Note moreover that using this process, the weighted planar network that witnesses that 
Me→a is TNN can be constructed from a and e in only O(n2) operations.

On the other hand, suppose that e is not a restricted growth sequence relative to a. 
If we execute the procedure described above (that associates a weighted planar network 
with a running of Algorithm 1.4), stopping it at the point where an e′ > ai is first 
found, then the resulting partial weighted planar network agrees with the final network 
of Algorithm 2.4 at all the edges that are involved in the collections of vertex disjoint 
paths that witness a negative minor of Me→a, and so the collection of sources and sinks 
(rows and columns of Me→a) that witnesses a negative minor of Me→a can be recovered 
from the output of Algorithm 1.4.
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