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Abstract
We establish a cutting lemma for definable families of sets in distal structures, as
well as the optimality of the distal cell decomposition for definable families of sets
on the plane in o-minimal expansions of fields. Using it, we generalize the results
in Fox et al. (J Eur Math Soc 19(6):1785–1810, 2017 ) on the semialgebraic planar
Zarankiewicz problem to arbitrary o-minimal structures, in particular obtaining an
o-minimal generalization of the Szemerédi–Trotter theorem.

Mathematics Subject Classification 03C45 · 03C64 · 05C35 · 05D40

1 Introduction

The so called cutting lemma is a very useful combinatorial partition toolwith numerous
applications in computational and incidence geometry and related areas (see e.g. [12,
Sects. 4.5, 6.5] or [5] for a survey). In its simplest form it can be stated as follows (see
e.g. [12, Lemma 4.5.3]).

Fact 1.1 For every set L of n lines in the real plane and every 1 < r < n there
exists a 1

r -cutting for L of size O(r2). That is, there is a subdivision of the plane into
generalized triangles (i.e. intersections of three half-planes) �1, . . . ,�t so that the
interior of each �i is intersected by at most n

r lines in L, and we have t ≤ Cr2 for a
certain constant C independent of n and r.
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This result provides a method to analyze intersection patterns in families of lines,
and it has many generalizations to higher dimensional sets and/or to families of sets of
more complicated shape than lines, for example for families of algebraic or semialge-
braic curves of bounded complexity [6]. The proofs of these generalizations typically
combine some kind of geometric “cell decomposition” result with the so-called ran-
dom sampling technique of Clarkson and Shor [10].

The aimof this article is to establish a general version of the cutting lemma for defin-
able (in the sense of first-order logic) families of sets in a certain model-theoretically
tame class of structures (namely, for distal structures—see Sect. 2 for the definition),
as well as to apply it to generalize some of the results in the area from the semialgebraic
context to arbitrary o-minimal structures. This work can be viewed as a continuation
and refinement of the work started in [9], where the connection of model-theoretic
distality with a weak form of the cutting lemma was discovered (we don’t assume
familiarity with that paper, but recommend its introduction for an expanded discus-
sion of the model theoretic preliminaries). We believe that distal structures provide
the most general natural setting for investigating questions in “generalized incidence
combinatorics”.

Let us describe the main results of the paper. Our first theorem establishes a cutting
lemma for a definable family of sets in a distal structure, with the bound corresponding
to the bound on the size of its distal cell decomposition. This can be viewed as a
generalized form of Matoušek’s axiomatic treatment of Clarkson’s random sampling
method discussed in [12, Sect. 6.5]. The proof relies in particular on Lemma 3.7 on
correlations in set-systems to deal with the lack of the corresponding notion of “being
in a general position”.

Theorem (Theorem 3.2, Distal cutting lemma) Let M be a first-order structure. Let
ϕ(x; y) be a formula admitting a distal cell decomposition T (given by a finite set of
formulas �(x; ȳ)—see Definition 2.7) with |T (S)| = O(|S|d) (i.e. for some constant
C ∈ R, for any non-empty finite S ⊆ M |y| we have |T (S)| ≤ C |S|d).

Then for any finite H ⊆ M |y| of size n and any real r satisfying 1 < r < n, there
are subsets X1, . . . , Xt of M |x | covering M |x | with

t ≤ Crd

for some constant C = C(ϕ) (and independent of H, r and n), and with each Xi

crossed by at most n/r of the formulas {ϕ(x; a) : a ∈ H}.
Moreover, each Xi is the intersection of at most two sets �-definable over H (see

Definition 2.2).

While every formula in a distal structure admits a distal cell decomposition (see
Fact 2.9), establishing optimal bounds in dimension higher than 1 is non-trivial. In our
second theorem, we demonstrate that formulas in o-minimal structures admit distal
cell decompositions of optimal size “on the plane”.

Theorem (Theorem 4.1) Let M be an o-minimal expansion of a real closed field.
For any formula ϕ(x; y) with |x | = 2 there is a distal cell decomposition T with
|T (S)| = O(|S|2).
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In our proof, we show that a version of the vertical cell decomposition can be
generalized to arbitrary o-minimal theories. This gives an optimal bound for subsets
of M2, but determining the exact bounds for distal cell decompositions in higher
dimensions remains open, even in the semialgebraic case.

Finally, in Sect. 5we apply these two theorems to generalize the results in [11] on the
semialgebraic Zarankiewicz problem to arbitrary o-minimal structures, in the planar
case (our result is more general and applies to arbitrary definable families admitting a
quadratic distal cell decomposition, see Sect. 5 for the precise statements).

Theorem (Theorem 5.14) LetM be an o-minimal expansion of a real closed field and
let E(x, y) ⊆ M2 ×Md be a definable relation, given by an instance of some formula
θ(x, y; z) ∈ L using some parameters from M |z|.
(1) For every k ∈ N there is a constant α = α(θ, k) ∈ R such that for any finite

P ⊆ M2, Q ⊆ Md, |P| = m, |Q| = n, if E ∩ (P × Q) does not contain a copy
of Kk,k (the complete bipartite graph with two parts of size k), then we have

|E(P, Q)| ≤ α
(
m

d
2d−1 n

2d−2
2d−1 + m + n

)
.

(2) There is some k′ ∈ N and formulas ϕ(x, v), ψ(y, w), all depending only on
θ , such that if E contains a copy of Kk′,k′ , then there are some parameters
b ∈ Mv, c ∈ Mw such that both ϕ(M, b) andψ(M, c) are infinite andϕ(M, b)×
ψ(M, c) ⊆ E.

Combining the two parts, it follows that either E contains a product of two infinite
definable sets, or the upper bound on the number of edges in part (1) holds for all finite
sets P, Q with some fixed constant α = α(θ).

The special case with d = 2 can be naturally viewed as a generalization of the
classical Szemerédi–Trotter theorem for o-minimal structures.

Corollary 1.2 LetM be an o-minimal expansion of a real closed field. Then for every
θ -definable relation E(x, y) ⊆ M2×M2 there is a constant α ∈ R and some formulas
ϕ(x, v), ψ(y, w), depending only on θ , such that exactly one of the following occurs:

(1) For any finite P ⊆ M2, Q ⊆ M2, |P| = m, |Q| = n we have

|E(P, Q)| ≤ α
(
m

2
3 n

2
3 + m + n

)
,

(2) there are some parameters b ∈ Mv, c ∈ Mw such that bothϕ(M, b) andψ(M, c)
are infinite and ϕ(M, b) × ψ(M, c) ⊆ E.

Remark 1.3 While this paper was in preparation, we have learned that Basu and Raz
[3] have obtained a special case of Corollary 1.2 using different methods.

2 Preliminaries and the distal cell decomposition

Throughout this section we fix a first-order structure M in a language L. At this
point we don’t make any additional assumptions on M, e.g. we may work in “set
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theory”, i.e. in a structure where every subset is definable. We introduce some basic
notation and terminology. Given a tuple of variables x , we let |x | denote its length.
For each n ∈ N, Mn denotes the corresponding cartesian power of M , the underlying
set of M. For a fixed formula ϕ(x; y) ∈ L with two groups of variables x and y,
given b ∈ M |y| we write ϕ(M; b) to denote the set {a ∈ M |x | : M |� ϕ(a; b)}.
Hence the formula ϕ(x; y) can be naturally associated with the definable family of
sets {ϕ(M; b) : b ∈ M |y|}. E.g., ifM is the field of reals, all sets in such a family for a
fixed ϕ(x; y) are semialgebraic of description complexity bounded by some d = d(ϕ)

and conversely, the family of all semialgebraic sets of description complexity bounded
by some fixed d can be obtained in this way for an appropriate choice of the formula
ϕ(x; y). We refer to [9] for a more detailed introduction and examples of the relevant
model-theoretic terminology.

Definition 2.1 For sets A, X ⊆ Md we say that A crosses X if both X ∩ A and X ∩¬A
are nonempty.

We extend the above definition to a set of formulas.

Definition 2.2 Let �(x; y) be a set of L-formulas of the form ϕ(x; y) and S ⊆ M |y|.

(1) We say that a subset A ⊆ M |x | is �(x; S)-definable if A = ϕ(M; s) for some
ϕ(x; y) ∈ � and s ∈ S.

(2) For a set � ⊆ M |x | we say that �(x; S) crosses � if some �(x; S)-definable set
crosses �. In other words �(x; S) does not cross � if for any ϕ(x; y) ∈ �(x; y)
and s ∈ S the formula ϕ(x; s) has a constant truth value on �.

We define a very general combinatorial notion of an abstract cell decomposition
for formulas (equivalently, for definable families of sets).

Definition 2.3 Let �(x; y) be a finite set of formulas.

(1) Given a finite set S ⊆ M |y|, a finite family F of subsets of M |x | is called an
abstract cell decomposition for �(x; S) if M |x | = ∪F and every � ∈ F is not
crossed by �(x; S).

(2) An abstract cell decomposition for �(x; y) is an assignment T that to each finite
set S ⊆ M |y| assigns an abstract cell decomposition T (S) for �(x; S).

Remark 2.4 In the above definition, the term “cell decomposition” is understood in a
very weak sense. Firstly, the “cells” in T (S) are not required to have any “geometric”
properties, and secondly, we don’t require the family T (S) to partition M |x |, but only
ask for it to be a covering.

Every�(x; y) admits an obvious abstract cell decomposition, with T (S) consisting
of the atoms in theBoolean algebra generated by the�(x; S)-definable sets. In general,
defining these cells would require longer and longer formulas when S grows, and the
aim of the following definitions is to avoid this possibility.

Definition 2.5 Let �(x; y) be a finite set of formulas and T an abstract cell decom-
position for �(x; y).
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We say that T is weakly definable if there is a finite set of formulas �(x; ȳ) =
�(x; y1, . . . , yk)with |y1| = · · · = |yk | = |y| such that for any finite S ⊆ M |y|, every
� ∈ T (S) is�(x; Sk)-definable (i.e.,� = ψ(M; s1, . . . , sk) for some s1, . . . , sk ∈ S
and ψ ∈ �). In this case we also say that �(x, ȳ) weakly defines T .

Remark 2.6 If T is an abstract cell decomposition for �(x; y) that is weakly defined
by �(x; ȳ) then �(x; ȳ) does not determine T uniquely. However there is a maximal
abstract cell decomposition T max weakly defined by�(x; ȳ), where T max(S) consists
of all �(x; Sk)-definable sets � such that �(x; S) does not cross �.

For combinatorial applications discussed in this paper it is desirable to have a cell
decomposition with as few sets as possible, and also to have control over the sets
appearing in T (S) in a definable way.

Definition 2.7 Let �(x; y) be a finite set of formulas. We say that an abstract cell
decomposition T for � is definable if it is weakly defined by some �(x; y1, . . . , yk)
and if for every finite S ⊆ M |y| and each �(x; Sk)-definable � ⊆ M |x | there is a set
I(�) ⊆ M |y|, uniformly definable in �, such that

T (S) = {� ∈ �(S) : I(�) ∩ S = ∅}. (2.1)

By the uniform definability of I(�) we mean that for every ψ(x; ȳ) ∈ �(x; ȳ) there
is a formula θψ(y; ȳ) such that for any s1, . . . , sk ∈ M |y| if � = ψ(M; s1, . . . , sk)
then I(�) = θψ(M; s1, . . . , sk).

For example, T max from Remark 2.6 is definable with I(�) = {s ∈ M |y| : �(x; s)
crosses �}.
Remark 2.8 It follows from Definition 2.7 that for every �(x; M)-definable set � ⊆
M |x |, the set of all s ∈ M |y| such that �(x; s) crosses � is contained in I(�) (strict
containment is possible, however).

Indeed, assume that s ∈ M |y| and ϕ(x; y) ∈ � are such that ϕ(x; s) crosses �. By
Definition 2.3(1), necessarily � /∈ T ({s}). But then I(�) ∩ {s} 
= ∅ by (2.1), hence
s ∈ I(�).

As it was shown in [9], such combinatorial definable cell decompositions have
a close connection to the model-theoretic notion of distality. Distal structures were
introduced in [14] for purely model theoretic purposes (we don’t give the original
definition here). The following fact was pointed out in [9] and can be used as the
definition of a distal structure in this paper.

Fact 2.9 The following are equivalent for a first-order structure M.

(1) M is distal,
(2) for every formula ϕ(x; y) there is a weakly definable cell decomposition for

{ϕ(x; y)},
(3) for every formula ϕ(x; y) there is a definable cell decomposition for {ϕ(x; y)}.
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Indeed, equivalence of the original definition of distality and existence of weakly
definable cell decompositions is given by [7, Theorem 21]; and if T is a weakly
definable cell decomposition for ϕ(x; y), then T max from Remark 2.6 is definable.

Examples of distal structures include:

(1) o-minimal structures;
(2) Presburger arithmetic (Z,+, 0,<);
(3) the field of p-adics Qp;

(we refer to the introduction of [9] for a more detailed discussion).
There are several contexts in model theory relevant for the topics of this paper

where certain notions of cell decomposition play a prominent role (e.g. o-minimal cell
decomposition, p-adic cell decomposition, etc.). These cell decompositions tend to
carrymore geometric information,while the onediscussedhere captures combinatorial
complexity. To distinguish from those cases, and in view of Fact 2.9, we will from
now on refer to a definable cell decomposition T for a finite set of formulas �(x; y)
as in Definition 2.7 as a distal cell decomposition for �(x; y). Hence, a structureM
is distal if and only if every formula admits a distal cell decomposition.

Distality of the examples listed above had been established by different (sometimes
infinitary) methods and the question of obtaining the exact bounds on the size of the
corresponding distal cell decompositions hasn’t been considered. While it is easy to
verify in the examples listed above that all formulas ϕ(x, y) with |x | = 1 admit a cell
decomposition T with the best possible bound |T (S)| = O(|S|), already the case of
formulas with |x | = 2 becomes more challenging (and grows in complexity with |x |).
In Sect. 4 we establish that in an o-minimal expansion of a field, all formulas with
|x | = 2 admit a distal cell decomposition T with the optimal bound |T (S)| = O(|S|2)
(the case |x | ≥ 3 remains open, even in the semialgebraic case).

3 Distal cutting lemma

In this section we show how a bound on the size of a distal cell decomposition for
a given definable family can be used to obtain a definable cutting lemma with the
corresponding bound on its size.

Our proof generalizes (and closely follows) the axiomatic treatment of theClarkson-
Shor random sampling technique in [12, Sect. 6.5].

Definition 3.1 ( 1r -cutting) Let F be a finite family of subsets of a set X with |F | = n.
Given a real r ≥ 1, we say that a family C of subsets of X is an 1

r -cutting for F if the
sets in C form a covering of X and each set in C is crossed by at most n

r sets in F .

Throughout this section we fix a first-order structure M in a language L.

Theorem 3.2 (Distal cutting lemma) Let ϕ(x; y) ∈ L be a formula admitting a distal
cell decomposition T (weakly defined by a finite set of formulas�(x; y1, . . . , ys)—see
Definition 2.7) with |T (S)| = O(|S|d).
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Then for any finite H ⊆ M |y| of size n and any real r satisfying 1 < r < n, the
family {ϕ(M; a) : a ∈ H} of subsets of M |x | admits a 1

r -cutting X1, . . . , Xt with

t ≤ Crd

for some constant C = C(ϕ) (and independent of H, r and n).
Moreover, each of the Xi ’s is an intersection of at most two �(x; Hs)-definable

sets.

Remark 3.3 We note that Theorem 3.2 is trivially true for r = 1 (with t = 1 and
X1 = X ), and for r ≥ n since the distal cell decomposition itself will give a desirable
partition in that case.

In the rest of this section we present a proof of Theorem 3.2.
We fix T , � and H as in the assumption of the theorem.
By Definition 2.7, for each finite S ⊆ M |y|, we have a finite collection T (S) of

subsets of M |x | that covers M |x | and satisfies the following conditions.

(C1) Let

Reg := {� : � ∈ T (S) for some S ⊆ H}.

Then every set in Reg is definable by an instance of a formula from � with
parameters in H .

(C2) For every S ⊆ H we have

|T (S)| ≤ C ′ (|S|d + 1
)

for some constant C ′ depending only on ϕ. (The hypothesis of the theorem
ensures that for non-empty S we have |T (S)| ≤ C |S|d for some constant
C = C(ϕ). We add “+1” here to take into account the case S = ∅.)

(C3) Let � ∈ Reg. We associate to it a collection D(�) of subsets of H , called the
defining sets of �, via

D(�) := {S ⊆ H : |S| ≤ s, � ∈ T (S)}.

(Here s is a fixed constant corresponding to the number of parameters in
�(x; y1, . . . , ys) given by the distal cell decomposition and depending only
on ϕ).
Given I as in Definition 2.7, we define IH (�) := I(�) ∩ H . Notice that
IH (�) contains all of the a ∈ H such that ϕ(x; a) crosses � (by Remark 2.8).
We have:

� ∈ T (S) ⇐⇒ IH (�) ∩ S = ∅ and there is S0 ∈ D(�) with S0 ⊆ S.
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Remark 3.4 It follows from the proof that the distal cutting lemma (Theorem 3.2)
holds for any abstract cell decomposition satisfying the conditions (C1)–(C3) with an
appropriately chosen relation I(�).

Before proceeding to the proof of the distal cutting lemma (Theorem 3.2) we isolate
two key tools. The first is a tail bound on the probability that a cell� ∈ T (S) is crossed
by many formulas, where S is a randomly chosen subset of H .

For S ⊆ H and t ≥ 0 let T (S)≥t denote the set of� ∈ T (S)with |IH (�)| ≥ tn/r .
Recall that for 0 ≤ p ≤ 1we say that S ⊆ H is selected by independentBernoulli trials
with success probability p if S is selected according to the distribution μ (supported
on the power set of H ) given by

μ(S′) = p|S′|(1 − p)|H |−|S′|

for each S′ ⊆ H ; observe that this is essentially the process of flipping a biased
coin (biased to show heads with probability p) |H | times independently, and for
1 ≤ i ≤ |H | putting the i th element of H in S if and only if the i th flip comes up
heads.

Lemma 3.5 (Tail Bound Lemma) Let ϕ(x; y) be a formula as in Theorem 3.2. Let
H ⊆ M |y| be a finite set of size n. Fix ε > 0 and let r be a parameter satisfying
1 ≤ r ≤ (1−ε)n. Let S ⊆ H be selected by independent Bernoulli trials with success
probability r/n, and let t ≥ 0 be given. Then there is a constant C = C(ε) such that

Eμ

(∣∣T (S)≥t
∣∣) ≤ C2−t rd .

We use this to derive the second main tool, a cutting lemma that is weaker than
Theorem 3.2. Here and everywhere else, all logarithms are base 2.

Lemma 3.6 (Suboptimal Cutting Lemma) Let ϕ(x; y) be a formula as in Theorem 3.2.
Let H ⊆ M |y| be a finite set of size n. Let r be a parameter satisfying 1 < r < n.
There is S ⊆ H with

|T (S)| ≤ Krd logd(r + 1)

for some constant K independent of H, r and n, and with each X ∈ T (S) crossed by
at most n/r of the formulas {ϕ(x; a) : a ∈ H}.
Proof (assuming Lemma 3.5) Let A be such that 3 × 22dC Ad = 2A, where C is the
constant appearing in Lemma 3.5. Increasing C if necessary, we may assume that
A ≥ 1. We treat separately the cases 2Ar log(r + 1) ≤ n and 2Ar log(r + 1) ≥ n. If
2Ar log(r + 1) ≥ n then we may take S = H , since T (H) has size C ′(nd + 1) ≤
C ′((2A)drd logd(r + 1) + 1) ≤ Krd logd(r + 1) for suitably large K (note that by
(C3) no instance of ϕ(x; y) over H can cross any of the sets in T (H)).

Suppose now that 2Ar log(r +1) ≤ n. Set r ′ = Ar log(r +1), and note that r ′ ≥ 1
as A ≥ 1, r > 1 and log is base 2. Applying Lemma 3.5 with r ′ taking the role
of r (valid since r ′ < n/2) and with t = 0 we obtain that if S ⊆ H is selected by
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independent Bernoulli trials with success probability r ′/n (with associated distribution
μ′) then

Eμ′ (|T (S)|) ≤ CAdrd logd(r + 1).

Applying Lemma 3.5 again with t = A log(r + 1) we get

Eμ′
(∣∣T (S)≥A log(r+1)

∣∣) ≤ CAdrd logd(r + 1)

(r + 1)A
≤ CAd

(r + 1)A−2d ≤ 1/3,

the second inequality using r log(r + 1) ≤ (r + 1)2 and the third using our choice of
A and the fact that r ≥ 1. By linearity of expectation

Eμ′
( |T (S)|
3CAdrd logd(r + 1)

+ ∣∣T (S)≥A log(r+1)
∣∣
)

≤ 2/3,

so there exists an S ⊆ H such that

|T (S)| ≤ 3CAdrd logd(r + 1)

and T (S)≥A log(r+1) = ∅. This last condition implies that each � ∈ T (S) is crossed
by at most (A log(r + 1)n)/r ′ = n/r formulas.

��
We use Lemmas 3.6 and 3.5 to derive Theorem 3.2, before turning to the proof of

Lemma 3.5.

Proof of Theorem 3.2 Just as in the proof of Lemma 3.6 we begin by observing that
the family T (H) itself satisfies the conclusion of Theorem 3.2 for all r , with size at
most C ′(nd + 1). This allows us to assume, say, r ≤ n/2 and use Lemma 3.5.

Let S ⊆ H be selected by independent Bernoulli trials with success probability
r/n.

For � ∈ T (S) define t� by |IH (�)| = t�n/r . Note that if t� ≤ 1 then the number
of a in H such that ϕ(x, a) crosses � is no more than n/r .

For � ∈ T (S) with t� > 1, consider the set IH (�). It contains all a ∈ H for
which ϕ(x, a) crosses �. By Lemma 3.6 there is S′ ⊆ IH (�) with T (S′) having size
at most O(td� logd(t� + 1)) with the property that for every �′ ∈ T (S′), the number
of a ∈ IH (�) such that ϕ(x, a) crosses �′ is at most

|IH (�)|
t�

= n

r
.

In particular that means that for every �′ ∈ T (S′) the number of a ∈ H such that
ϕ(x, a) crosses �′ ∩ � is at most n/r .

It follows that the family of subsets of M |x | consisting of those� ∈ T (S) for which
t� ≤ 1, together with all sets of the form �′ ∩ � where � ∈ T (S) has t� > 1 and
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�′ ∈ T (S′) (with S′ constructed from S via Lemma 3.6, as described above), forms
a cover of M |x | with size at most

∑
�∈T (S)

(
1{t�≤1} + Ctd� logd(t� + 1)1{t�>1}

)
. (3.1)

We now upper bound the expectation (with respect to μ) of this quantity. By linearity
the expectation is at most

Eμ (|T (S)|) + C
∑
i≥0

Eμ

⎛
⎝ ∑

�∈T (S) : 2i≤t�<2i+1

t2d�

⎞
⎠ (3.2)

(using log(t� + 1) ≤ t� for t� ≥ 1).
We bound the first term in (3.2) by an application of Lemma 3.5 with t = 0. This

gives

Eμ (|T (S)|) ≤ O(rd).

For the second term in (3.2) we have

∑
i≥0

Eμ

⎛
⎝ ∑

�∈T (S) : 2i≤t�<2i+1

t2d�

⎞
⎠ ≤

∑
i≥0

22d(i+1)Eμ

(∣∣T (S)≥2i
∣∣)

≤ C ′ ∑
i≥0

22d(i+1)2−2i r d = O(rd),

with the last inequality and the constant C ′ given by an application of Lemma 3.5.
We conclude that the expectation of the quantity in (3.1) is O(rd), so there is at

least one choice of S ⊆ H for which (3.1) is at most O(rd), proving Theorem 3.2
(the definability clause follows by (C1) as every set in the constructed covering is an
intersection of at most two sets from Reg). ��

Before proving Lemma 3.5 we isolate a useful set-systems lemma.

Lemma 3.7 Let 
 be a set of size m, and let {D1, . . . , Dq} be a collection of subsets
of 
 with |Di | ≤ u for all i , 1 ≤ i ≤ q, for some u. Let

F = {X ⊆ 
 : Di ⊆ X for some i, 1 ≤ i ≤ q}

be the “up-set” generated by the Di ’s. Let p̃ and p satisfy 0 < p̃ ≤ p ≤ 1. We have

∑
X∈F p̃|X |(1 − p̃)m−|X |

∑
X∈F p|X |(1 − p)m−|X | ≥

(
p̃

p

)u

. (3.3)
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Proof With each X ∈ F associate (arbitrarily) a set DX satisfying DX ⊆ X and
DX ∈ {D1, . . . , Dq} (such a set exists by the definition of F).

Let A ⊆ 
 be selected by independent Bernoulli trials with success probability
p, and, independently, let B ⊆ 
 be selected by independent Bernoulli trials with
success probability p̃/p. Observe that

Pr(A ∈ F) =
∑
X∈F

p|X |(1 − p)m−|X | (3.4)

and

Pr(A ∩ B ∈ F) =
∑
X∈F

p̃|X |(1 − p̃)m−|X |, (3.5)

with (3.5) holding by independence and because for each ω ∈ 
, Pr(ω ∈ A ∩ B) =
Pr(ω ∈ A)Pr(ω ∈ B).

Now consider the two events

E1 = {A ∈ F and DA ⊆ B}

and

E2 = {A ∩ B ∈ F}.

If A ∈ F and DA ⊆ B then DA ⊆ A∩ B, so that A∩ B ∈ F . It follows that E1 ⊆ E2
and

Pr(E1) ≤ Pr(E2). (3.6)

Using independence we have

Pr(E1) =
∑
X∈F

Pr(A = X and DX ⊆ B) =
∑
X∈F

Pr(A = X)

(
p̃

p

)|D(X)|

≥ Pr(A ∈ F)

(
p̃

p

)u

.

Combining with (3.4), (3.5) and (3.6) we get (3.3). ��
We are now ready to prove Lemma 3.5. We follow Matoušek’s approach in [12,

Sect. 6.5], but add an additional argument.

Proof of Lemma 3.5 We start by establishing

Eμ (|T (S)|) = O(rd), (3.7)
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which gives Lemma 3.5 for t ≤ 1. To see (3.7) note that (C2) yields Eμ (|T (S)|) ≤
CEμ

(|S|d) + 1. Now |S| = X1 + · · · + Xn where the X ′
i s are independent Bernoulli

random variables each with parameter p = r/n. We claim that for all d ≥ 1 we have

Eμ(|S|d) ≤ (r + d)d . (3.8)

(from which (3.7) immediately follows; note that we can drop the +1 since r ≥ 1).
To see (3.8), note first that by linearity we have

Eμ(|S|d) =
∑

(i1,i2,...,id )∈{1,...,n}d
E(Xi1Xi2 · · · Xid ).

Let ak be the number of tuples (i1, i2, . . . , id) ∈ {1, . . . , n}d such that |{i1, i2, . . . , id}|
= d − k. By independence of the Xi , and the fact that X�

i has the same distribution as
Xi for any integer � ≥ 1 we have

Eμ(|S|d) =
d∑

k=0

ak p
d−k . (3.9)

We claim that

ak ≤
(
d

k

)
dknd−k . (3.10)

Inserting into (3.9) and using the binomial theorem together with np = r , this gives
(3.8).

To see (3.10) note that we overcount ak by first specifying d − k indices from
{1, . . . , d} on which the i j ’s are all different from each other (

( d
d−k

) = (d
k

)
choices),

then choosing values for these i j ’s (n(n−1) · · · (n−(d−k)+1) ≤ nd−k choices), and
finally choosing values for the remaining indices ((d − k)k ≤ dk choices, since these
indices are all constrained to lie among the d − k distinct indices chosen initially). It
follows that ak ≤ (d

k

)
nd−kdk , as claimed.

(We note that in the case d = 2 things are considerably easier: we have

|S|2 =
n∑

i=1

X2
i + 2

∑
1≤i< j≤n

Xi X j

so

Eμ(|S|2) =
n∑

i=1

E(X2
i ) + 2

∑
1≤i< j≤n

E(Xi X j )

= np + n(n − 1)p2

≤ np + n2 p2 = r2 + r .)
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We assume from now on that t ≥ 1. For � ∈ Reg denote by p(�) the probability
that � appears in T (S), i.e.

p(�) = μ({S ⊆ H : � ∈ T (S)}) =
∑

�∈T (S)

μ(S).

Let Reg≥t = {� ∈ Reg : |IH (�)| ≥ tn/r}. By linearity of expectation we have

Eμ

(∣∣T (S)≥t
∣∣) =

∑
�∈Reg≥t

p(�). (3.11)

Now set p̃ = p/t and let μ̃ be the distribution associated with selection from H by
independent Bernoulli trials with success probability p̃. By (3.7) we have

Eμ̃ (|T (S)|) = O(rd/td). (3.12)

Also, as in (3.11) we have

Eμ̃ (|T (S)|) =
∑

�∈Reg
p̃(�) ≥

∑
�∈Reg≥t

p̃(�)

=
∑

�∈Reg≥t

p(�)
p̃(�)

p(�)
≥ min

{
p̃(�)

p(�)
: � ∈ Reg≥t

} ∑
�∈Reg≥t

p(�)

= min

{
p̃(�)

p(�)
: � ∈ Reg≥t

}
Eμ

(∣∣T (S)≥t
∣∣) . (3.13)

We now estimate from below the quantity p̃(�)/p(�) for � ∈ Reg≥t . Fix such a
� and let F(�) be the up-set on ground set H \ IH (�) generated by D(�). Using
(C3) we see that

p(�) = (1 − p)|IH (�)| ∑
X∈F(�)

p|X |(1 − p)|H\IH (�)|−|X |

with an analogous expression for p̃(�). Recalling p̃/p = 1/t and that defining sets
have size at most s, an application of Lemma 3.7 immediately yields

p̃(�)

p(�)
≥ (1 − p̃)|IH (�)|

(1 − p)|IH (�)|

(
1

t

)s

≥
(
1 − p̃

1 − p

)tn/r (
1

t

)s

≥
(
e−c p̃

e−p

)tn/r (
1

t

)s

= et−ct−s, (3.14)
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with the second inequality using (1 − p̃)/(1 − p) ≥ 1 and |IH (�)| ≥ tn/r , and
the third inequality using the standard bound 1 − p ≤ e−p (valid for all real p).
In the third inequality we also use that for 0 ≤ p̃ ≤ 1 − ε (which certainly holds,
since p̃ ≤ p ≤ 1 − ε) we have 1 − p̃ ≥ e−c p̃ for some sufficiently large c = c(ε)
(c = log(1/ε)/(1 − ε) will do).

Inserting (3.14) into (3.13) and combining with (3.12) we finally get

Eμ

(∣∣T (S)≥t
∣∣) ≤ t sec−t O(rd/td) ≤ C2−t rd

for sufficiently large C . ��

4 Optimal distal cell decomposition on the plane in o-minimal
expansions of fields

Our goal in this section is to prove the following theorem.

Theorem 4.1 Let M be an o-minimal expansion of a real closed field. Then any for-
mula ϕ(x; y) with |x | = 2 admits a distal cell decomposition T with |T (S)| =
O(|S|2).

Towards proving the theorem, we fix a formula ϕ(x; y) with |x | = 2 (and often we
will write x as (x1, x2)).

We first construct a finite set of formulas �(x; y) such that for any s ∈ M |y| the set
ϕ(M; s) is a Boolean combination of �(x; s)-definable sets, and formulas in �(x; y)
have a very simple form. Then we construct a definable cell decomposition T for
�(x; y) (hence also for ϕ) with |T (S)| = O(|S|2).

Usingo-minimality anddefinable choicewecanfinddefinable functionsh1, . . . , hk :
M×M |y| → M such that

h1(a, s) ≤ h2(a, s) ≤ · · · ≤ hk(a, s) for all a ∈ M, s ∈ M |y|,

and for all a ∈ M, s ∈ M |y| and i = 0, . . . , k we have

hi (a, s) < x1, x
′
1 < hi+1(a, s) → [ϕ(x1; a, s) ↔ ϕ(x ′

1; a, s)],

where for convenience we let h0(a, s) = −∞ and hk+1(a, s) = +∞.
At this point we have that for a fixed i = 0, . . . , k for all a ∈ M , s ∈ M |y| the truth

value of ϕ(x1; a, s) is constant on the interval hi (a, s) < x1 < hi+1(a, s), but this
constant truth value may depend on a. We need to partition M into pieces where this
truth value does not depend on a.

For a, a′ ∈ M and s ∈ M |y| we define the relation a ∼s a′ as

a ∼s a
′ iff for all i = 0, . . . , k

and any hi (a, s) < x1 < hi+1(a, s), hi (a
′, s) < x ′

1 < hi+1(a
′, s)

we have ϕ(x1; a, s) ↔ ϕ(x ′
1; a′, s).
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Clearly ∼s is an equivalence relation on M with at most 2k+1-classes uniformly
definable in terms of s. Using o-minimality and definable choice, we can find definable
functions ui : M |y| → M , i = 1, . . . , l with u1(y) ≤ u2(y) ≤ · · · ≤ ul(y) such that
for all s ∈ M |y| and i = 0, . . . , l we have

ui (s) < x2, x
′
2 < ui+1(s) → x2 ∼s x

′
2,

where again for convenience we use u0(y) = −∞ and ul+1(y) = +∞.
We would prefer that for s ∈ M |y|, each of the functions x2 �→ hi (x2, s) was

continuous. For k ∈ N, we will write [k] to denote the set {1, 2, . . . , k}. Since every
definable function is piecewise continuous, we can further partition M and in addition
require that for any i = 0, . . . , l, j ∈ [k] and every s ∈ M |y| the function x2 �→
h j (x2, s) is continuous on the interval ui (s) < x2 < ui+1(s).

We take �(x; y) to be the following set of formulas (recall that x = (x1, x2)):

{x2 = ui (y) : i ∈ [l]} ∪ {x2 < ui (y) : i ∈ [l]}
∪ {x2 > ui (y) : i ∈ [l]} ∪ {x1 = hi (x2, y) : i ∈ [k]}
∪ {x1 < hi (x2, y) : i ∈ [k]} ∪ {x1 > hi (x2, y) : i ∈ [k]}.

It is not hard to see that for any s ∈ M |y| the set ϕ(M; s) is a Boolean combination
of �(x; s)-definable sets.

We now proceed with a construction of a definable cell decomposition for�(x; y).
Geometrically we view M2 as (x1, x2)-plane, with x1 being on the vertical axis

and x2 on horizontal. Then �(x; S)-definable sets partition the plain by vertical lines
x2 = ui (s) and “horizontal” “curves” x1 = h j (x2, s).

Unfortunately we cannot use complete �-types over S as T (S). Since S is finite
every complete �-type is equivalent to a formula; however in general we cannot get
uniform definability.

Consider a simple example of a partition of a plane by straight lines, i.e. the case
when we don’t have functions ui and have only one h(x2, a, b) defining the straight
lines x1 = ax2 + b. In the example below all points in the gray area have the same
�-type, but we need at least 5 lines to describe the region; and in general, this number
may be as big as one wants.

x2

x1

We could solve this problem by using also vertical lines through all points of
intersections, as shown below, but then the size of the partition would be O(|S|3).
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x2

x1

Using the idea of “vertical decomposition” from [10] we add only vertical line
segments where they are needed, i.e. from an intersection point to the first line above
(or plus infinity) and the first line below (or minus infinity), as in the following picture.

x2

x1

Our general case is slightly more complicated since the functions x2 �→ hi (x2, s)
are not linear and even not continuous, just piecewise continuous, so their graphs may
intersect without one crossing another.

For i ∈ [l] and s ∈ M |y| we will denote by ûi (s) the corresponding vertical line

ûi (s) := {(x1, x2) ∈ M2 : x2 = ui (s)},

and also for i ∈ [k] and s ∈ M |y| we will denote by ĥi (s) the “curve”

ĥi (s) := {(x1, x2) ∈ M2 : x1 = hi (x2, s)}.

For i, j ∈ [k], s1, s2 ∈ M |y| and (a, b) ∈ M2 we say that ĥi (s1) and ĥ j (s2) properly
intersect at (a, b) if (a, b) ∈ ĥi (s1) ∩ ĥ j (s2) and ĥi (s1), ĥ j (s2) have different germs
at (a, b). Formally it means that a = hi (b, s1) = h j (b, s2) and for any ε > 0 there
is b′ ∈ (b − ε, b + ε) with hi (b′, s1) 
= h j (b′, s2). We will denote by ĥi (s1) � ĥ j (s2)
the set of all points (a, b) ∈ M2 where ĥi (s1) and ĥ j (s2) intersect properly. It is easy
to see using o-minimality that the set ĥi (s1) � ĥ j (s2) is finite and there is Nl ∈ N

such that |ĥi (s1) � ĥ j (s2)| ≤ Nl for all i, j ∈ [k] and s1, s2 ∈ M |y|. Also all points in
ĥi (s1) � ĥ j (s2) are definable over s1, s2, i.e. there are definable functions f mi, j (y1, y2)
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with m ∈ [Nl ] such that for all s1, s2 the set ĥi (s1) � ĥ j (s2) is either empty or it is
exactly { f mi j (s1, s2) : m ∈ [Nl ]}.

We will construct a definable cell decomposition T (S) for �(x; y) as a union of 5
families of cells:

• T0(S) – 0-dimensional cells, i.e. points;
• T u

1 (S) – 1-dimensional “vertical” cells;
• T e

1 (S) – extra 1-dimensional vertical cells;
• T h

1 (S) – 1-dimensional “horizontal” cells;
• T2(S) – 2-dimensional cells.

For each family T 
 (S) we will have |T 

 (S)| = O(|S|2), and also we will have
appropriate �

(x; ȳ) and I
 (�) so that

T 
 (S) = {� : � is �

(x; S)-definable and I
 (�) ∩ S = ∅}.

In each case instead of defining the set of formulas �
(x; ȳ), we describe corre-

sponding families of �
(x; S)-definable sets, that we denote by �

(S).
The family T0(S). We take T0(S) to be the set of all points of intersections of

vertical lines ûi (s) and curves ĥ j (s′) together with all points where curves ĥi (s) and
ĥ j (s′) intersect properly. I.e.,

T0(S) = ∪{(ûi (s) ∩ ĥ j (s
′) : i ∈ [l]; j ∈ [k]; s, s′ ∈ S}

∪ {ĥi (s) � ĥ j (s
′) : i, j ∈ [k]; s, s′ ∈ S}.

We take �0(S) := T0(S) and I0(�) := ∅.
It is easy to see that �0(S) is uniformly definable.
We also have |T0(S)| ≤ kl|S|2 + Nlk2|S|2 = O(|S|2).
The set T u

1 (S). For fixed i ∈ [l] and s ∈ S let I si be the set of all definably
connected components of ûi (s) \ T0(S).

Since

ûi (s) ∩ T0(S) = {ûi (s) ∩ ĥ j (s
′) : j ∈ [k], s′ ∈ S},

we have |I si | ≤ (k + 1)|S|, and every � ∈ I si has form

� = {(x1, x2) ∈ M2 : x2 = ui (s); h j (s1) < x1 < h j ′(s2)},

for some j, j ′ ∈ {0, . . . , k + 1}, and s1, s2 ∈ S.
We take T u

1 (S) to be the union of all I si for i ∈ [l] and s ∈ S. Clearly |T u
1 (S)| ≤

l(k + 1)|S|2 = O(|S|2).
We take �u

1 (S) to be the set of all vertical lines segments of the form {(x1, x2) ∈
M2 : x2 = ui (s); h j (s1) < x1 < h j ′(s2)}, for i ∈ [l], j, j ′ ∈ {0, . . . , k + 1},
s, s1, s2 ∈ S. For � ∈ �u

1 (S) we take Iu
1 (�) := {s ∈ M |y| : �(x; s) crosses �}.

It is not hard to see that �u
1 and Iu

1 are uniformly definable and T u
1 (S) = {� ∈

�u
1 (S) : Iu

1 (�) ∩ S = ∅}.
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The set T e
1 (S). For each point where two horizontal curves intersect properly we

add two vertical line segments: one from the point to the curve above (or to plus infinity
if there is no curve above) and one to the curve below (or to minus infinity if there is
no curve below).

Let i, j ∈ [k], s, s1 ∈ S and p = (p1, p2) ∈ ĥi (s) � ĥ j (s1).
Let

p+ := inf{hm(p2, s
′) : m = 1, . . . , k + 1; s′ ∈ S; hm(p2, s

′) > p1},

and

p− := sup{hm(p2, s
′) : m = 0, . . . , k; s′ ∈ S; hm(p2, s

′) < p1}.

We define I+
p := {(x1, x2) ∈ M2 : x2 = p2; p1 < x1 < p+}, I−

p := {(x1, x2) ∈
M2 : x2 = p2; p− < x1 < p1}; and take

T e
1 (S) := {I+

p , I−
p : p ∈ ĥi (s) � ĥ j (s1); i, j ∈ [k]; s, s1 ∈ S}.

Obviously |T e
1 (S)| ≤ 2Nlk2|S|2 = O(|S|2).

We take �e
1(S) to be the family of all sets of the form

{(x1, x2) ∈ M2 : x2 = p2; p1 < x1 < hm(p2, s
′)}

for all i, j ∈ [k],m ∈ {1, . . . , k+1}, s, s1, s′ ∈ S, and p = (p1, p2) ∈ ĥi (s)� ĥ j (s1);
and of the form

{(x1, x2) ∈ M2 : x2 = p2; hm(p2, s
′) < x1 < p1}

for all i, j ∈ [k], m ∈ {0, . . . , k}, s, s1, s′ ∈ S, and p = (p1, p2) ∈ ĥi (s) � ĥ j (s1). It
is not hard to see that �(S) is uniformly definable.

For � ∈ �e
1(S) we take Ie

1(�) := {s ∈ M |y| : �(x; s) crosses �}. It is not hard to
see Ie

1(�) is uniformly definable and T e
1 (S) = {� ∈ �e

1(S) : Ie
1(�) ∩ S = ∅}.

The set T h
1 (S). Given i ∈ [k] and s ∈ S, let J si be the set of all definably connected

components of ĥi (s) \ T0(S). It is easy to see that

ĥi (s) ∩ T0(S) = {ĥi (s) ∩ û j (s
′) : j ∈ [l]; s′ ∈ S}

∪ {ĥi (s) � ĥ j (s
′) : j ∈ [k]; s′ ∈ S}.

In particular |J si | ≤ (l + Nlk + 1)|S|.
We take T h

1 (S) to be the union of all J si for i ∈ [k], s ∈ S. Clearly |T h
1 (S)| ≤

k(l + Nlk + 1)|S|2 = O(|S|2).
Given i ∈ [k], s ∈ S and s1, s2 ∈ S let Ai,s[s1, s2] be the family of all sets of the

form {(x1, x2) ∈ ĥi (s); c1 < x2 < c2}, with
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c1, c2 ∈ {u j (s1) : j ∈ [l]}
∪ {p2 : (p1, p2) ∈ ĥi (s) � ĥ j (s2) for some p1} ∪ {±∞}.

We take �h
1 (S) to be the union of allAi,s[s1, s2] with i ∈ [k] and s, s1, s2 ∈ S. It is

not hard to see that�h
1 (S) is uniformly definable and T h

1 (S) = {� ∈ �h
1 (S) : Ih

1 (�)∩
S = ∅}, where Ih

1 (�) = {s ∈ M |y| : �(x; s) crosses �}.
The set T2(S). For the family T2(S) we take all definably connected components

of M2 \ (T0(S) ∪ T u
1 (S) ∪ T e

1 (S) ∪ T h
1 (S)).

Given i, j ∈ {0, . . . , k+1} , s1, s2 ∈ S and c1 < c2 ∈ M∪{±∞}with hi (x2, s1) <

h j (x2, s2) for all x2 ∈ (c1, c2), let A
j,s2
i,s1

(c1, c2) be the set

A j,s2
i,s1

(c1, c2) = {(x1, x2) ∈ M2 : c1 < x2 < c2; hi (x2, s1) < x1 < h j (x2, s2)}.

It is not hard to see that if � ∈ T2(S) then � = A j,s2
i,s1

(c1, c2) for some i, j ∈
{0, . . . , k + 1}, s1, s2 ∈ S and c1, c2 belonging to the following set:

S j,s2
i,s1

= {ui ′(s′) : i ′ ∈ {0, . . . l + 1}; s′ ∈ S}
∪ {p2 : (p1, p2) ∈ ĥi (s1) � ĥi ′(s

′) for some i ′ ∈ [k], s′ ∈ S, p1 ∈ M}
∪ {p2 : (p1, p2) ∈ ĥ j (s2) � ĥi ′(s

′) for some i ′ ∈ [k], s′ ∈ S, p1 ∈ M}.

We take �2(S) to be the family of all A j,s2
i,s1

(c1, c2), for all c1, c2 ∈ S j,s2
i,s1

.
It is not hard to see that �2(S) is uniformly definable family, and we have T2(S) ⊆

�2(S).
It is also not hard to see that a set � ∈ �2(S) is in T2(S) if and only if it is not

crossed by �(x; S), and is also not crossed by any line segment in T e
1 (S).

Hence a set � = A j,s2
i,s1

(c1, c2) ∈ �2(S) is not in T2(S) if and only if there is
s ∈ S satisfying at least one of the following conditions.

(C1) �(x; s) crosses �.
(C2) There are i ′ ∈ [k] and (p1, p2) ∈ ĥi (s1) � ĥi ′(s) with c1 < p2 < c2.
(C3) There are i ′ ∈ [k] and (p1, p2) ∈ ĥ j (s2) � ĥi ′(s) with c1 < p2 < c2.

For � ∈ �2(S) we take I2(�) to be the set of all s ∈ M |y| satisfying any of the
conditions (C1) − (C3). It is not hard to see that I2(�) is uniformly definable and
T2(S) = {� ∈ �2(S) : I2(�) ∩ S = ∅}.

We are left to check that |T2(S)| = O(|S|2).
Since T2(S) consists of definably connected components of M2 \ (T0(S)∪T u

1 (S)∪
T e
1 (S) ∪ T h

1 (S)), any two �,�′ ∈ T2(S) are either disjoint or coincide, hence every

� ∈ T2(S) is completely determined by its “left lower corner”, i.e. if� = A j,s2
i,s1

(c1, c2)

and �′ = A
j ′,s′2
i,s1

(c1, c′
2) are in T2 then � = �′.
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We divide T2(S) into 4 disjoint families:

• The family F1(S) of all A j,s2
i,s1

(c1, c2) ∈ T2(S) with c1 = −∞.

• The family F2(S) of all A j,s2
i,s1

(c1, c2) ∈ T2(S) with c1 = ui ′(s′) for some i ′ ∈ [l]
and s′ ∈ S.

• The family F3(S) of all A j,s2
i,s1

(c1, c2) ∈ T2(S) that are not in F2(S) and (p1, c1) ∈
ĥi (s1) � ĥi ′(s′) for some i ′ ∈ [k], s′ ∈ S, and p1 ∈ M .

• The family F4(S) of all A j,s2
i,s1

(c1, c2) ∈ T2(S) that are not in F1(S)∪F2(S)∪F3(S).
In this case we have that {(x1, c1) : hi (c1, s1) < x1 < h j (c1, s2)} ∈ T e

1 (S).

Every A j,s2
i,s1

(c1, c2) ∈ F1(S) is completely determined by i and s1, hence |F1(S)| ≤
(k + 1)|S| (we get k + 1, since we allow i = 0).

Every A j,s2
i,s1

(c1, c2) ∈ F2(S) is completely determined by i , s1, some i ′ ∈ [l] and
s′ ∈ S. Hence |F2(S)| ≤ (k + 1)l|S|2.

Since ĥi (s1) � ĥi ′(s′) ≤ Nl we have |F3(S)| ≤ k2Nl |S|2.
Finally, each A j,s2

i,s1
(c1, c2) ∈ F4(S) is completely determined by its “left side”

{(x1, c1) : hi (c1, s1) < x1 < h j (c1, s2)} that is in T e
1 (S). Since |T e

1 (S)| = O(|S|2),
we also have |F4(S)| = O(|S|2).

Therefore |T2(S)| = O(|S|2).
Taking T (S) = T0(S) ∪ T u

1 (S) ∪ T e
1 (S) ∪ T h

1 (S) ∪ T2(S) we obtain a definable
cell decomposition for �(x; y) with |T (S)| = O(|S|2).

5 Planar Zarankiewicz’s problem in distal structures

5.1 Zarankiewicz’s problem

Zarankiewicz’s problem in graph theory asks to determine the largest possible number
of edges in a bipartite graph on a given number of vertices that has no complete bipartite
subgraphs of a given size.

In [11] the authors investigate Zarankiewicz’s problem for semialgebraic graphs
of bounded description complexity, a setting which in particular subsumes a lot of
different incidence-type questions.

In particular, they prove the following upper bound on the number of edges (they
have more general results in R

n for arbitrary n as well, but here we will be only
concerned with the “planar” case).

Fact 5.1 [11, Theorem 1.1] Let E ⊆ R
2×R

2 be a semi-algebraic relation such that E
has description complexity at most t (i.e., E can be defined as a Boolean combination
of at most t polynomial inequalities, with all of the polynomials involved of degree at
most t). Then for any k ∈ N there is some constant c = c(t, k) satisfying the following.

If P, Q ⊆ R
2 with |P| = m, |Q| = n are such that E ∩ (P × Q) doesn’t contain

a copy of Kk,k (the complete bipartite graph with both parts of size k), then

|E(P, Q)| ≤ c
(
(mn)

2
3 + m + n

)
,
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where E(P, Q) = E ∩ (P × Q).

Remark 5.2 This result is a natural generalization of the Szemerédi–Trotter theorem
overR [15]. Namely, if P a set of points on the plane, Q the dual of the lines (i.e. lines
are semi-algebraically coded by points inR2), and E the incidence relationship (which
is also clearly semialgebraic), then E(P, Q) is K2,2-free as any two distinct lines
intersect in at most one point.

We will give a common generalization of Fact 5.1 and the semialgebraic “points /
planar curves” incidence bound from [13, Theorem 4] to arbitrary definable families
admitting a quadratic distal cell decomposition (e.g. any definable family of subsets of
M2 in an o-minimal expansion of a field). To state the result, we first recall the notion
of the VC-density of a partitioned formula (and refer to [2] for a detailed discussion).

Definition 5.3 (1) Given a set X and a family F of subsets of X , the shatter function
πF : N → N of F is defined as

πF (n) := max{|F ∩ A| : A ⊆ X , |A| = n},

where F ∩ A = {S ∩ A : S ∈ F}.
(2) The VC-density of F , or vc(F), is defined as the infimum of all real numbers r

such that πF (n) = O(nr ) (and vc(F) = ∞ if there is no such r ).
(3) Given a formula ϕ(x; y), possibly with parameters from M , we let Fϕ(x;y) :=

{ϕ(M; b) : b ∈ M |y|} be the family of all ϕ-definable subsets of M |x |.
(4) We define the VC density of ϕ to be vc(ϕ) := vc(Fϕ).
(5) Given a formula ϕ(x; y), we consider its dual formula ϕ∗(y; x) := ϕ(x; y)

obtained by interchanging the roles of the variables. It is easy to see then that
the family Fϕ∗(y,x) = {ϕ∗(M; a) : a ∈ M |x |} of subsets of M |y| is the dual set
system for the family {ϕ(M; b) : b ∈ M |y|} of subsets of M |x |.

VC-density in various classes of NIP structures is investigated e.g. in [1,2], and the
optimal bounds are known in some cases including the o-minimal structures.

Fact 5.4 [2, Theorem 6.1] Let M be an o-minimal structure, and let ϕ(x; y) be any
formula. Then vc(ϕ∗) ≤ |x |.
Remark 5.5 Let ϕ(x; y) be a formula admitting a distal cell decomposition T with
|T (S)| = O(|S|d). Then vc(ϕ∗) ≤ d.

Indeed, recalling Definition 2.7, given any finite S ⊆ M |y| and � ∈ T (S), S ∩
ϕ∗(M, a) = S ∩ ϕ∗(M, a′) for any a, a′ ∈ � (and the sets in T (S) give a covering of
M |x |), hence at most |S|d different subsets of S are cut out by the instances of ϕ∗(y; x).

We will need the following weaker bound that applies to graphs of bounded VC-
density.

Fact 5.6 [11, Theorem 2.1] For every α ∈ R and d, k ∈ N there is some constant
α1 = α1(α, d, k) such that the following holds.
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Let E ⊆ P × Q be a bipartite graph with |P| = m, |Q| = n such that the
family of sets F = {E(q) : q ∈ Q} satisfies πF (z) ≤ αzd for all z ∈ N (where
E(q) = {p ∈ P : (p, q) ∈ E}). Then if E is Kk,k-free, we have

|E(P, Q)| ≤ α1(mn1−1/d + n).

We are ready to prove the main theorem of this section.

Theorem 5.7 Let M be a structure and d, t ∈ N≥2. Assume that E(x, y) ⊆ M |x | ×
M |y| is a definable relation given by an instance of a formula θ(x, y; z) ∈ L, such
that the formula θ ′(x; y, z) := θ(x, y; z) admits a distal cell decomposition T with
|T (S)| = O(|S|t ) and such that vc(θ ′′) ≤ d for θ ′′(x, z; y) := θ(x, y; z). Then for
any k ∈ N there is a constant α = α(θ, k) satisfying the following.

For any finite P ⊆ M |x |, Q ⊆ M |y|, |P| = m, |Q| = n, if E(P, Q) is Kk,k-free,
then we have:

|E(P, Q)| ≤ α
(
m

(t−1)d
td−1 n

td−t
td−1 + m + n

)
. (5.1)

Proof Our argument is a generalization of the proofs of [11, Theorem 3.2] and [13,
Theorem 4].

Let E(x, y) = θ(x, y; c∗) = θ ′(x; y, c∗) = θ ′′(x, c∗; y) for a given tuple of param-
eters c∗ ∈ M |z|. Note that for any n ∈ N we clearly have πFE(x,y) (n) = πFθ ′′(x,c∗;y) ≤
πFθ ′′(x,z;y) (n). By assumption vc(θ ′′(x, z; y)) ≤ d, hence there is some α0 = α0(θ)

such that πFE(x,y) (n) ≤ α0nd .

If n ≥ md , then by Fact 5.6 we have

|E(P, Q)| ≤ α1(mn1−
1
d + n) ≤ α1(n

1
d n1−

1
d + n) = 2α1n

for some α1 = α1(θ, d, k), and we are done. Hence we assume n < md .

Let r := m
d

td−1

n
1

td−1
(note that r > 1 as md > n), and consider the family � =

{E(M, q) : q ∈ Q} of subsets of M |x |.
By assumption and Theorem 3.2 (and Remark 3.3 in the case r ≥ n) applied to the

formula θ ′(x; y, z) and the collection of parameters H := {(q, c∗) ∈ M |y| × M |z| :
q ∈ Q}, there is a family C of subsets of M |x | giving a 1

r -cutting for the family�. That
is, M |x | is covered by the union of the sets in C and any of the sets C ∈ C is crossed
by at most |�|/r elements from �. Moreover, |C| ≤ α2r t for some α2 = α2(θ).

Then there is a set C ∈ C containing at least m
α2r t

= n
t

td−1

α2m
1

td−1
points from P . Let

P ′ ⊆ P ∩ C be a subset of size exactly

⌈
n

t
td−1

α2m
1

td−1

⌉
.

If |P ′| < k, we have n
t

td−1

α2m
1

td−1
≤ |P ′| < k, so n < k

td−1
t α

td−1
t

2 m
1
t .
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Note that πFE∗(y,x)
(n) = πF(θ ′)∗(y,c∗;x) (n) ≤ πF(θ ′)∗(y,z;x) (n) ≤ α3nt for some α3 =

α3(θ), where the last inequality holds byRemark 5.5 applied to the formula θ ′(x; y, z).
Then by Fact 5.6 applied to the relation E∗ we have

|E(P, Q)| ≤ α4(nm
1− 1

t + m) ≤ α4(k
td−1
t α

td−1
t

2 m
1
t m1− 1

t + m) ≤ α5m

for some α5 = α5(θ, k), so we are done.
Hence we may assume that |P ′| ≥ k. Let Q′ be the set of all points q ∈ Q such

that E(M, q) crosses C . We know that

|Q′| ≤ |Q|
r

≤ nn
1

td−1

m
d

td−1

= n
td

td−1

m
d

td−1

≤ αd
2 |P ′|d .

Again by Fact 5.6 we get

|E(P ′, Q′)| ≤ α1(|P ′||Q′|1− 1
d + |Q′|)

≤ α1(|P ′|αd−1
2 |P ′|d−1 + αd

2 |P ′|d) ≤ α6|P ′|d

for some α6 = α6(θ, k). Hence there is a point p ∈ P ′ such that |E(p) ∩ Q′| ≤
α6|P ′|d−1.

Since E(P, Q) is Kk,k-free, there are at most k − 1 points in Q \ Q′ from E(p)
(otherwise, since none of those points crosses C and C contains P ′, which is of size

≥ k, we would have a copy of Kk,k). And we have |P ′| ≤ n
t

td−1

α2m
1

td−1
+ 1 ≤ 2

α2

n
t

td−1

m
1

td−1
as

|P|′ ≥ k ≥ 1. Hence

|E(p)| ≤ α6|P ′|d−1 + (k − 1) ≤ α7
n

t(d−1)
td−1

m
d−1
td−1

+ (k − 1)

for α7 := α62d−1

αd−1
2

. We remove p and repeat the argument until we have no vertices

remaining in P , and see that

|E(P, Q)| ≤ (2α1 + α5)(n + m) +
m∑

i=n
1
d

(
α7

n
t(d−1)
td−1

i
d−1
td−1

+ (k − 1)

)

≤ (2α1 + α5)(n + m) + α7n
t(d−1)
td−1

m∑

i=n
1
d

1

i
d−1
td−1

+ (k − 1)m.
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Note that

m∑

i=n
1
d

1

i
d−1
td−1

≤
∫ m

n
1
d −1

dx

x
d−1
td−1

= m1− d−1
td−1

1 − d−1
td−1

−
(
n

1
d − 1

)1− d−1
td−1

1 − d−1
td−1

≤ td − 1

(t − 1)d
m1− d−1

td−1

using d, t ≥ 2, for all n large enough with respect to d (as the second term is positive
then). Hence we can choose α = α(θ, k) large enough so that

|E(P, Q)| ≤ α

3
(n + m) + α

3
n

t(d−1)
td−1 m1− d−1

td−1 + α

3
m

≤ α(m
(t−1)d
td−1 n

td−t
td−1 + m + n)

for all m, n. ��
Remark 5.8 In a different regime, one can consider the situation when E admits a
distal cell decomposition of exponent t , but instead of bounding the dual VC-density
by d, we assume that Ks,d is omitted. Then same bound as in (5.1) holds, up to terms
of smaller order, with the constant α depending only on s, d, θ—see [8] for the details.

5.2 Omitting Kk,k versus omitting infinite complete bipartite graphs

We recall a result of Bukh and Matoušek.

Fact 5.9 [4, Theorem 1.9] For every d, D and k there exists N such that for every
semialgebraic relation R(x1, . . . , xk) with |x1| = . . . = |xk | = d of description
complexity D, the following two conditions are equivalent.

(1) There exist A1, . . . , Ak ⊆ R
d such that |A1| = . . . = |Ak | = N and A1 × . . . ×

Ak ⊆ R.
(2) There exist infinite sets A1, . . . , Ak ⊆ R

d such that A1 × . . . × Ak ⊆ R.

We give a generalization of this result for any distal structure in which finite sets in
every definable family have a uniform bound on their size. Recall:

Definition 5.10 An L-structure M eliminates ∃∞ if for every ϕ(x, y) ∈ L there is
some nϕ ∈ N such that for any b ∈ M |y|, ϕ(M, b) is infinite if and only if |ϕ(M, b)| ≥
nϕ .

We will use the definable strong Erdős-Hajnal property for hypergraphs in distal
structures from [9] (and we will use some terminology from that paper in our argu-
ment).

Fact 5.11 [9, Corollary 4.6] Let M be a distal L-structure. Then for every formula
ϕ(x1, . . . , xk; z) ∈ L there are some α > 0 and formulasψi (xi , yi ) ∈ L for 1 ≤ i ≤ k
such that the following holds.
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For any generically stable Keisler measures μi on M |xi | and any c ∈ M |z|, there
are some bi ∈ M |yi | such that μi (ψi (M |xi |, bi )) ≥ α and either

∏
1≤i≤k

ψi (M
|xi |, bi ) ⊆ ϕ(M |x1|, . . . , M |xk |; c), or

∏
1≤i≤k

ψi (M
|xi |, bi ) ⊆ ¬ϕ(M |x1|, . . . , M |xk |; c).

Theorem 5.12 Let M be a distal L-structure eliminating ∃∞. Then for any formula
ϕ(x1, . . . , xk; z) ∈ L there is some N ∈ N and ψi (xi , yi ) ∈ L, for 1 ≤ i ≤ k, such
that the following are equivalent for any c ∈ M |z|, letting R ⊆ M |x1| × . . . × M |xk |
be given by R := ϕ(M |x1|, . . . , M |xk |, c).

(1) There exist Ai ⊆ M |xi | for 1 ≤ i ≤ k such that |A1| = . . . = |Ak | = N and
A1 × . . . × Ak ⊆ R.

(2) There are some bi ∈ M |yi | such that ψi (M |xi |, bi ) is infinite for all 1 ≤ i ≤ k
and ψ1(M |x1|, b1) × . . . × ψk(M |xk |, bk) ⊆ R.

Proof Let α > 0 and ψi (xi , yi ) ∈ L, for 1 ≤ i ≤ k, be as given by Fact 5.11 for
ϕ(x1, . . . , xk; z). Let ni ∈ N be as given by Definition 5.10 for ψi (xi , yi ), and let
n := max{ni : 1 ≤ i ≤ k}. We take N := � n

α
�, then N = N (ϕ).

Let c ∈ M |z| be arbitrary, and let R := ϕ(M |x1|, . . . , M |xk |, c). Assume that (1)
holds. That is, there are some Ai ⊆ M |xi | such that |A1| = . . . = |Ak | = N and
A1× . . .× Ak ⊆ R. Letμi be a Keisler measure on M |xi | defined byμi (X) := |Ai∩X |

|Ai |
for all definable X ⊆ M |xi |, then μi is generically stable for all 1 ≤ i ≤ k.
Applying Fact 5.11, we find some bi ∈ M |yi | such that μi (ψi (M |xi |, bi )) ≥ α

and
∏

1≤i≤k ψi (M |xi |, bi ) ⊆ R (note that
∏

1≤i≤k ψi (M |xi |, bi ) ⊆ ¬R is impos-
sible as

∏
1≤i≤k Ai ⊆ R). Now for any 1 ≤ i ≤ k, μi (ψi (M |xi |, bi )) ≥ α implies

|ψi (Ai , bi )| ≥ αN ≥ ni , henceψi (M |xi |, bi ) is infinite by the choice of ni , as wanted.
��

Remark 5.13 Examples of structures satisfying the assumption of Theorem 5.12 are
given by arbitrary o-minimal structures and p-minimal structures (e.g. the field Qp).
Hence Fact 5.9 follows by applying it to the field of reals.

5.3 The o-minimal case

Theorem 5.12 implies that in Theorem 5.7, assumingM eliminates ∃∞, we can relax
the assumption to just assuming that E doesn’t contain a copy of an infinite complete
bipartite graph. We conclude by observing that all of these results apply to o-minimal
expansions of fields.

Theorem 5.14 LetMbeano-minimal expansion of a field and let E(x, y) ⊆ M2×Md

be a θ -definable relation.
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(1) For every k ∈ N there is a constant α = α(θ, k) such that for any finite P ⊆
M2, Q ⊆ Md, |P| = m, |Q| = n, if E(P, Q) does not contain a copy of Kk,k

(the complete bipartite graph with two parts of size k), then we have

|E(P, Q)| ≤ α
(
m

d
2d−1 n

2d−2
2d−1 + m + n

)
.

(2) There is some k′ ∈ N and formulas ϕ(x, v), ψ(y, w), all depending only on
θ , such that if E contains a copy of Kk′,k′ , then there are some parameters
b ∈ Mv, c ∈ Mw such that both ϕ(M, b) andψ(M, c) are infinite andϕ(M, b)×
ψ(M, c) ⊆ E.

Proof (1) Follows by applying Theorem 5.7. Its assumptions are satisfied for an arbi-
trary formula θ(x, y; z)with |x | = 2 and |y| = d byTheorem4.1 applied to θ ′(x; y, z)
and by Fact 5.4 applied to the dual formula (θ ′′)∗(x, z; y).

(2) Follows by Theorem 5.12 as o-minimal theories eliminate the ∃∞ quantifier. ��
Remark 5.15 Theorem 5.7 could be used to obtain a Zarankiewicz-type bound for
definable relations E ⊆ Mt × Md in o-minimal structures, with t ∈ N arbitrary.
However, we don’t pursue it here since optimal bounds for distal cell decompositions
are not known for t > 2.

Corollary 5.16 In the setting of Theorem 5.14, there is a constant α and formulas
ϕ(x, v), ψ(y, w) depending only on θ such that either

|E(P, Q)| ≤ α
(
m

d
2d−1 n

2d−2
2d−1 + m + n

)

for all finite P ⊆ M2, Q ⊆ Md with |P| = m, |Q| = n, or there are someb ∈ Mv, c ∈
Mw such that both ϕ(M, b) and ψ(M, c) are infinite and ϕ(M, b) × ψ(M, c) ⊆ E.

Proof Immediate combining (1) and (2) in Theorem 5.14 (let k′, ϕ, ψ be as given by
(2) for θ(x, y; z), and let α be as given by (1) for this k′). ��
Remark 5.17 The special case with d = 2 and E satisfying an additional assumption
of 1-dimensionality of its fibers was obtained independently by Basu and Raz [3] using
different methods.
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