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Abstract. The classical hard core model from statistical physics, with activity λ > 0 and capacity
C ¼ 1, on a graph G, concerns a probability measure on the set IðGÞ of independent sets of G, with the mea-
sure of each independent set I ∈ IðGÞ being proportional to λjI j. Ramanan et al. [K. Ramanan, A. Sengupta, I.
Ziedins, and P. Mitra, Adv. Appl. Probab., 34 (2002), pp. 1–27] proposed a generalization of the hard core
model as an idealized model of multicasting in communication networks. In this generalization, the multistate
hard core model, the capacity C is allowed to be a positive integer, and a configuration in the model is an
assignment of states from f0; : : : ; Cg to V ðGÞ (the set of nodes of G) subject to the constraint that the states
of adjacent nodes may not sum to more thanC . The activity associated to state i is λi, so that the probability of
a configuration σ∶V ðGÞ → f0; : : : ; Cg is proportional to λ

P
v∈V ðGÞσðvÞ. In this work, we consider this general-

ization whenG is an infinite rooted b-ary tree and prove rigorously some of the conjectures made by Ramanan
et al. In particular, we show that the C ¼ 2model exhibits a (first-order) phase transition at a larger value of λ
than the C ¼ 1 model exhibits its (second-order) phase transition. In addition, for large b we identify a short
interval of values for λ above which the model exhibits phase coexistence and below which there is phase un-
iqueness. For odd C , this transition occurs in the region of λ ¼ ðe∕ bÞ1∕ dC ∕ 2e, while for even C , it occurs around
λ ¼ ðlog b∕ bðC þ 2ÞÞ2∕ ðCþ2Þ. In the latter case, the transition is first-order.
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1. Introduction.

1.1. The multistate hard core model. Let G ¼ ðV;EÞ be a finite or countably
infinite graph without loops, and let S be a finite set. We refer to the elements of S as
states. Many stochastic processes on SV that arise in applications are subject to “hard
constraints” that prohibit certain values of S from being adjacent to one another in the
graph G. Such processes attain only configurations that lie in a certain feasible subset of
SV . A generic example is the hard core model, which has state space S ¼ f0; 1g and
imposes the constraint that no two adjacent vertices in the graph can both have the
state 1. In other words, the set of feasible configurations for the hard core model on
a graph G is fσ ∈ f0; 1gV∶σx þ σy ≤ 1 for every xy ∈ Eg or, equivalently, the collec-
tion of independent sets of the graph G. Processes with such hard constraints arise
in fields as diverse as combinatorics, statistical mechanics, and telecommunications.
In particular, the hard core model arises in the study of random independent sets of
a graph [5], [7], in the study of gas molecules on a lattice [2], and in the analysis of multi-
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casting in telecommunication networks [9], [11], [15].
In this work, we consider a generalization of the hard core model, which we refer to

as the multistate hard core model, in which the state space is

SC ¼ f0; 1; 2; : : : ; Cg

for some integer C ≥ 1 and the set of allowable configurations is given by

ΩG ¼ fσ ∈ SV
C ∶σx þ σy ≤ C for every xy ∈ Eg.

WhenG is the d-dimensional lattice Zd, this model was introduced and studied byMazel
and Suhov in [14], motivated by applications in statistical physics. In our work, we focus
on the case where G is an infinite rooted b-ary tree (i.e., an infinite graph without cycles
in which each vertex has exactly bþ 1 edges incident to it, except for one distinguished
vertex called the root which has b edges incident to it), which we denote by Tb.

On the tree, this model was studied by Ramanan et al. in [15] as an idealized
example of multicasting on a regular tree network, each of whose edges has the same
capacity C . In communications, multicasting arises when, instead of having a simple
end-to-end connection, a transmission is made from a single site to a group of individuals
[1]. An important performance measure of interest is the probability of packet loss for a
given routing protocol [17]. As in [15], here we consider an idealized model in which the
routing is simple in the sense that nodes multicast only to their nearest neighbors, and
we study the impact of the connectivity of the network (i.e., the value of b) and the
arrival rate on the blocking (or packet loss) probabilities. The state σv of any node
or vertex v ∈ V represents the number of active multicast calls present at that node.
Multicast calls are assumed to arrive at each node as a Poisson process with rate λ and
require one unit of capacity on each of the bþ 1 edges emanating from that node. If this
capacity is available, then the call is accepted and the number of active multicast calls at
that node increases by one, while if the required capacity is not available, then the state
of the node remains unchanged and the call is said to be blocked or lost. Calls that are
accepted require a random amount of service and then depart the system. Service re-
quirements of calls are assumed to be independent and identically distributed (without
loss of generality with mean 1) and independent of the arrival process. This model is a
special case of a loss network. (See [9] for a general survey of loss networks and [12], [15]
for connections with this particular model.)

For a finite graphG and arrival rate λ, it is well known that the associated stochastic
process has a unique stationary distribution μG;λ on ΩG that is given explicitly by

μG;λ ≐
1

ZG;λ

Y
v∈V

λσv
for σ ∈ ΩG;ð1:1Þ

where ZG;λ is the corresponding normalizing constant (partition function)
ZG;λ ≐

P
σ∈ΩG

Q
v∈V λσv

, where the form of λi depends on how the multicast calls are
served. If the calls are assumed to be served in a first-come first-served manner at each
node (see [9]), then we have

λi ≐
λi

i!
; i ¼ 0; : : : ; C .
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If they are served using the processor sharing scheduling discipline at each node (see
[10]), then we have

λi ≐ λi; i ¼ 0; : : : ; C .ð1:2Þ

Here we adopt the usual convention that 0! ¼ 1 so that λ0 ¼ 1 in both models, and we
will sometimes refer to the arrival rate λ as the activity. In this paper (as in [14]) our λi’s
will always be as defined in (1.2). Thus, our exclusive focus will be the study of the multi-
state hard core model on a b-ary tree Tb with activities given by (1.2).

1.2. Gibbs measures and phase transitions. Although there is an explicit ex-
pression (1.1) for the stationary distribution on a finite graph, the computational com-
plexity of calculating the normalization constant for large graphs limits the applicability
of this formula. Thus, in order to gain insight into the behavior of these measures on
large graphs, it is often useful to consider the associated Gibbs measure on an infinite
graph. Roughly speaking, a Gibbs measure on an infinite graph G associated with an
activity λ is characterized by the property that the distribution of the configuration on
any finite subset U of V , conditioned on the complement, is equal to the regular con-
ditional probability of the measure μG½Ū �;λ on the restriction G½Ū � of the graph G to the
closure Ū ¼ U ∪ ∂U of U , given the configuration on the boundary ∂U of U . (See De-
finition 2.1 for a more precise formulation.) It is not hard to show that such a Gibbs
measure always exists (in a far more general context, see, for example, [8]).

However, unlike stationary distributions on finite graphs, the associated Gibbs mea-
sures on infinite graphs may not be unique. If there are multiple Gibbs measures asso-
ciated with a given arrival rate or activity λ, we say that there is phase coexistence at
that λ. Let Tn denote the finite subtree of Tb with root r and depth n, which contains all
vertices in Tb that are at a distance of at most n from the root r. As is well known (see,
for example, Chapter 4 of [8]), for a fixed activity λ > 0, one way to obtain a Gibbs
measure on the tree Tb rooted at r is as the suitable limit of a sequence of measures,
where the nth measure in the sequence is the stationary measure μTn∪∂Tn;λ on
Tn ∪ ∂Tn (as defined in (1.1)), conditioned on the boundary ∂Tn being empty (i.e., con-
ditioned on all vertices in the boundary having state 0). We shall refer to this Gibbs
measure as the empty boundary condition (b.c.) Gibbs measure (corresponding to
the activity λ). In a similar fashion, we define the full b.c. Gibbs measure to be the limit
of a sequence of conditioned measures on Tn but now conditioned on the boundary ∂Tn

being full (i.e., conditioned on all vertices in the boundary having state C). Let δλ denote
the total variation distance of the marginal distributions at the root r under the empty
b.c. and full b.c. Gibbs measures corresponding to the activity λ. When λ lies in the
region of uniqueness, clearly the empty b.c. Gibbs measure coincides with the full
b.c. Gibbs measure, and so δλ ¼ 0. On the other hand, when λ is in a region of phase
coexistence, then δλ > 0 and it can be shown (due to a certain monotonicity property of
our model established in Lemma 2.2 and Proposition 2.3) that the empty b.c. and full
b.c. Gibbs measures must necessarily differ. If there exists λcr ¼ λcrðCÞ for which there is
uniqueness for each λ < λcr and phase coexistence for every λ > λcr, then we say that a
phase transition occurs at λcr. Moreover, if δλ, as a function of λ, is continuous at λcr,
then we say that a second-order phase transition occurs, while if δλ is discontinuous at
λcr, then we say that a first-order phase transition occurs.

When C ¼ 1, the phase transition point λcrð1Þ on the tree is explicitly computable
and is easily seen to be a second-order phase transition (see [9], [18], [19] and also sec-
tion 2.2). The behavior is more complicated for higher C . The multistate hard core
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model on the d-dimensional lattice Zd was studied in [14], where it was shown that when
C is odd, there is phase coexistence for all sufficiently large λ, while when C is even, there
is a unique Gibbs measure for each sufficiently large λ. If phase coexistence were known
to be monotone in the activity (this remains an open problem on Zd even when d ¼ 2),
then the result of Mazel and Suhov would imply that there is no phase transition on Zd

for even C . On the other hand, numerical experiments for the multistate hard core mod-
el on the regular tree (see section 3.5 and Figure 5 of [15]) suggest that there is a phase
transition on the tree for every C but that the order of the phase transition depends on
the parity of C (being first-order for even C and second-order for odd C). This is par-
ticularly interesting as it shows that the parity of the capacity has an effect on the reg-
ular tree as well, although the effect is not as pronounced as on the d-dimensional lattice.

The study of phase transitions of models with hard constraints on trees has been the
subject of much recent research (see [4], [5], [13]). In [4], the focus is on classifying types
of hard constraints (as encoded in a so-called constraint graph) on the basis of whether
or not there exists a unique simple invariant Gibbs measure for all activity vectors
ðλi; i ∈ SÞ. For C > 1, the model that we present here allows for two 1’s to be adjacent
but never allows a 1 to be adjacent to C which, in the language of [4], implies that the
associated constraint graph is fertile. From Theorem 8.1 of [4] it follows that there exist
some activity vectors for which there exist multiple simple invariant Gibbs measures.
However, the emphasis of our work is quite different as our aim is to identify regions
where multiple Gibbs measures (not necessarily simple and invariant) exist for the par-
ticular choice of activity vector given in (1.2). Another related work, again motivated by
telecommunication networks, is [13], which studies Gibbs measures associated with a
three-state generalization of the hard core model. However, the hard constraints con-
sidered in 13 are somewhat different from the C ¼ 2 case in our model.

1.3. Main results and outline. The main contribution of this paper is to make
rigorous some of the conjectures made in [15], leading to a better understanding of the
multistate hard core model. Our results may be broadly summarized as follows:

1. ForC ¼ 2 and every b ∈ N, b ≥ 2, we show that the Gibbs measure is unique for
larger values of λ than in the usual C ¼ 1 hard core model (see Corollary 3.2),
and we also show that the phase transition is first-order (see Theorem 3.3). Re-
call that, in contrast, for C ¼ 1, the phase transition is second-order.

2. For large values of b, we identify a rather narrow range of values for λ, above
which there is phase coexistence and below which there is uniqueness. Although
we do not establish the existence of a unique critical value λcrðCÞ at which phase
transition occurs, we establish a fairly precise estimate of λcrðCÞ if (as we
strongly believe) it exists: when C is odd,

λcrðCÞ ≈
�
e

b

�
1 ∕ dC ∕ 2e

(see Theorem 4.1), while for C even,

λcrðCÞ ≈
�

1

C þ 2

log b

b

�
2 ∕ ðCþ2Þ

(see Theorem 4.5).
3. For all even C and all sufficiently large b (depending on C), the model always

exhibits a first-order phase transition (see section 4.3).
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The outline of the paper is as follows: First, in section 2 we establish a connection
between phase coexistence and multiplicity of the fixed points of an associated recursion.
This is based on the construction of Gibbs measures as limits of conditional measures on
finite trees with boundary conditions, as mentioned above. In section 3 we provide a
detailed analysis of the recursion in the special case C ¼ 2. In section 4 we study
the recursion when b is large and identify the phase transition window. Finally, in sec-
tion 4.3 we study the asymptotics for large b when C is even and provide evidence of a
first-order phase transition. An interesting open problem is to rigorously establish that
the phase transition is second-order for all odd C .

2. Gibbs measures and recursions.

2.1. Gibbs measures on trees. Consider any graph G ¼ ðV;EÞ with vertex set
V and edge set E ⊆ V ð2Þ (the set of unordered pairs from V ). For any U ⊂ V , the
boundary of U is ∂U ≐ fx ∈ V \ U∶xz ∈ E for some z ∈ Ug, and the closure of U is
Ū ≐ U ∪ ∂U . Let G½U � denote the restriction of the graph to the vertex set U . For
σ ∈ SV

C , let σU ¼ ðσv; v ∈ UÞ represent the projection of the configuration σ onto the
vertex set U . With some abuse of notation, for conciseness, we will write just σv for
σfvg and refer to it as the state or, inspired by models in statistical mechanics, the spin
value at v. For U ⊆ V , let F ðUÞ be the σ-field in SU

C generated by sets of the form fσv ¼
ig for some v ∈ U and i ∈ SC . We now provide a rigorous definition of the Gibbs mea-
sure.

DEFINITION 2.1. A Gibbs measure for the multistate hard core model associated with
the activity λ is a probability measure μ on ðSV

C ;F ðV ÞÞ that satisfies for all U ⊂ V and
μ-a.a. τ ∈ SV

C ,

μðσU ¼ τU jσV \U ¼ τV \U Þ ¼ μG½Ū �;λðσU ¼ τU jσ∂U ¼ τ∂U Þ;

where μG½Ū �;λ is as defined in (1.1), with λi given as in (1.2).
We now specialize to the case when G is a regular, b-ary, rooted tree Tb with root r.

A child of a vertex x in Tb is a neighboring vertex that is further from r than x; the
vertices (other than x) that lie along the path from x to r are the ancestors of x.
We will be concerned with (complete) finite subtrees T of Tb rooted at r; such a tree
T is determined by a depth n and consists of all those vertices at distance at most n from
r. It has jT j ¼ ðbnþ1 − 1Þ ∕ ðb− 1Þ vertices, and its boundary ∂T consists of the children
(in Tb) of its leaves (so that j∂T j ¼ bnþ1). The tree consisting of all vertices at distance at
most n from the root r will be denoted by Tn.

Given a finite subtree T and τ ∈ ΩTb , we let Ωτ
T denote the (finite) set of spin con-

figurations σ ∈ ΩT∪∂T that agree with τ on ∂T ; thus τ specifies a boundary condition on
T . For a function f∶ΩT∪∂T → R we denote by μτ

T;λðfÞ ¼
P

σ∈Ωτ
T
μτ

T;λðσÞf ðσÞ the expec-
tation of f with respect to the distribution μτ

T;λðσÞ ∝
Q

v∈Tλ
σv . On the configuration

space ΩTb , we define the partial order σ ≺ η if and only if σv ≤ ηv for all v with even
distance dðv; rÞ from the root and σv ≥ ηv for all v with odd distance from the root.
Given two probability measures on ΩTb , we then say that μ ≺ ν if μðfÞ ≤ νðf Þ for
any (bounded) function f that is nondecreasing with respect to the above partial order.

LetT be a complete finite tree rooted at r, and letμ0
T;λ andμC

T;λ, respectively, be the
empty b.c. and full b.c. measures (corresponding to the two boundary conditions iden-
tically equal to 0 and C , respectively, on ∂T). The following monotonicity result is well
known (see, for example, Theorem 4.1 of [19]). However, for completeness, we provide an
independent proof of this result, which involves a Markov chain argument that con-
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structs a simultaneous coupling of ðμ0
T;λ;μ

τ
T;λ;μ

C
T;λÞ such that the required monotonicity

conditions are satisfied with probability one.
LEMMA 2.2. For any τ ∈ ΩTb ,

μ0
T;λ ≺ μτ

T;λ ≺ μC
T;λ if dð∂T; rÞ is even;

μC
T;λ ≺ μτ

T;λ ≺ μ0
T;λ if dð∂T; rÞ is odd:

Moreover, if dð∂T; rÞ is even (respectively, odd), there is a coupling πT ¼ ðσ0;στ;σC Þ of
ðμ0

T;λ;μ
τ
T;λ;μ

C
T;λÞ such that σ0 ≺ στ ≺ σC (respectively, σC ≺ στ ≺ σ0) with probability

one.
Proof. We consider only the case when dð∂T; rÞ is even since the other case can be

established in an exactly analogous fashion. On Ω0
T ×Ωτ

T × ΩC
T we construct an ergodic

Markov chain fσ0ðtÞ;στðtÞ;σC ðtÞgt∈Zþ such that at any time t ∈ Zþ the required order-
ing relation σ0ðtÞ ≺ στðtÞ ≺ σC ðtÞ is satisfied, and moreover each replica is itself an er-
godic chain that is reversible with respect to the measure μ·

T;λ with the corresponding
boundary condition. The stationary distribution πT of the global chain will then repre-
sent the sought coupling of the three measures.

The chain, a standard heat bath sampler, is defined as follows. Assume that the three
current configurations corresponding to 0, τ, and C boundary conditions are equal to
ðα;β; γÞ, respectively, and that they satisfy the ordering relation. Pick uniformly at ran-
dom v ∈ T , and let ða; b; cÞ be the maximum spin values in v compatible with the values
of ðα;β; γÞ on the neighbors of v, respectively. Due to the ordering assumption, either
c ≤ b ≤ a or the opposite inequalities hold. Then the current three values at v are re-
placed by new ones, ðα 0

v;β
 0
v; γ

 0
vÞ, sampled from a coupling of the three distributions on

f0; 1; : : : ; ag, f0; 1; : : : ; bg, f0; 1; : : : ; cg, which assign a weight proportional to λi to the
value i. It is clear that such a coupling can be constructed in such a way that ðα 0

v;β
 0
v; γ

 0
vÞ

satisfy the opposite ordering of ða; b; cÞ, and thus the global ordering is preserved. ▯
Consider now the sequence fT 2ngn∈N with dð∂T 2n; rÞ ¼ 2n. Then, thanks to mono-

tonicity, limn→∞ μC
T2n;λ

¼ μC
λ exists (weakly), and it defines the maximal Gibbs mea-

sure. Similarly limn→∞ μ0
T2n;λ

¼ μ0
λ defines the minimal Gibbs measure [8]. Notice

that, by construction, limn→∞μC
T2nþ1;λ

¼ μ0
λ , while limn→∞ μ0

T2nþ1;λ
¼ μC

λ . Finally, for
any other Gibbs measure μ, it holds that μ0

λ ≺ μλ ≺ μC
λ .

The main problem is therefore that of deciding when μC
λ ¼ μ0

λ . In what follows we
establish the following criterion, which is in fact an equivalent criterion since the other
implication is obviously true. (See [18], [19]; see also [3], [16] for a similar discussion in the
special case of C ¼ 1.) Let Pτ

n;λ be the marginal of μτ
Tn;λ

on σr given boundary condition
τ, and let PC

λ and P0
λ be the corresponding marginals for μC

λ and μ0
λ , respectively.

PROPOSITION 2.3. For every λ > 0, if PC
λ ¼ P0

λ , then μC
λ ¼ μ0

λ.
Proof. Assume PC

λ ¼ P0
λ . Then, by monotonicity,

lim
n→∞

kPC
n;λ − P0

n;λkTV
¼ 0;ð2:1Þ

where k · kTV denotes the total variation distance. LetA be a local event (i.e., depending
only on finitely many spins), and letm be sufficiently large so thatA does not depend on
the spin configuration outside Tm. Fix n > m, and let π2n ¼ ðσ0;στ;σC Þ be the mono-
tone coupling of ðμ0

T2n;λ
;μτ

T2n;λ
;μC

T2n;λ
Þ described in Lemma 2.2. Then
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kμC
T2n;λ

ðAÞ− μ0
T2n;λ

ðAÞk ≤ π2nðσC
v ≠ σ0

v for some v ∈ TmÞ

≤
X
v∈Tm

dðv;rÞ even

XC
k¼0

π2nðσC
v ≥ k > σ0

vÞ

þ
X
v∈Tm

dðv;rÞ odd

XC
k¼0

π2nðσ0
v ≥ k > σC

v Þ

¼
X
v∈Tm

dðv;rÞ even

XC
k¼0

½μC
T2n;λ

ðσv ≥ kÞ−μ0
T2n;λ

ðσv ≥ kÞ�

þ
X
v∈Tm

dðv;rÞ odd

XC
k¼0

½μ0
T2n;λ

ðσv ≥ kÞ−μC
T2n;λ

ðσv ≥ kÞ�.

For simplicity, let us examine an even term μC
T2n;λ

ðσv ≥ kÞ− μ0
T2n;λ

ðσv ≥ kÞ and show
that it tends to zero as n → ∞. Letw be the immediate ancestor of v. By conditioning on
the spin value at w we can write

μC
T2n;λ

ðσv ¼ iÞ− μ0
T2n;λ

ðσv ¼ iÞ

¼
XC−i

j¼0

μC
T2n;λ

ðσw ¼ jÞ½μC
T2n;λ

ðσv ¼ i ∣ σw ¼ jÞ− μ0
T2n;λ

ðσv ¼ i ∣ σw ¼ jÞ�

þ
XC−i

j¼0

½μC
T2n;λ

ðσw ¼ jÞ− μ0
T2n;λ

ðσw ¼ jÞ�μ0
T2n;λ

ðσv ¼ i ∣ σw ¼ jÞ.

By iterating upward until we reach the root and by using (2.1), we see that it is enough
to show that

lim
n→∞

max
v∈Tm

max
i≤C

max
j≤C−i

jμC
T2n;λ

ðσv ¼ ijσw ¼ jÞ− μ0
T2n;λ

ðσv ¼ ijσw ¼ jÞj ¼ 0.

Now, let

Z τ
kðiÞ ≔ λi

X
σ∈Ωτ

Tk \frg

Y
v∈Tk\frg

λσvð2:2Þ

denote the partition function (or normalizing constant) on the complete finite tree Tk

with boundary conditions τ and σr ¼ i. It is clear that

Pk;λτðiÞ
Pτ
k;λð0Þ

¼ Z τ
kðiÞ

Z τ
kð0Þ

.

Therefore,

μ0
T2n;λ

ðσv ¼ ijσw ¼ jÞ ¼ Z0
2n−nv

ðiÞP
k≤C−j

Z0
2n−nv

ðkÞ ¼
P0
2n−nv

ðiÞ
P0
2n−nv

ðσr ≤ C − jÞ ;
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where nv denotes the level of v (the distance from the root). A similar relation holds for
the full boundary condition.

The proof is concluded once we observe that nv ≤ m and that

P0
2n−nv;λ

ðσr ≤ C − jÞ ≥ P0
1;λð0Þ > 0. ▯

2.2. Recursions. Our next step, as in many other spin models on trees, is to set up
a recursive scheme to compute the relevant marginals P0

n;λ and PC
n;λ. In what follows, for

simplicity we count the levels bottom up, and the boundary conditions are at level 0.
Moreover, since the recursive scheme is independent of the boundary conditions and
since we will never be considering more than one value of λ at a time, we drop both
from our notation.

For i ¼ 0; : : : ; C , and n ∈ N, we set

QnðiÞ ≔
PnðiÞ
Pnð0Þ

; RnðiÞ ≔
P

C
k¼0 QnðkÞP
C−i
k¼0 QnðkÞ

¼ ½1− Pðσr > C − iÞ�−1.

Thus Rnð0Þ ¼ 1, and RnðiÞ ≤ Rnðiþ 1Þ. Moreover, let Zn be as defined in (2.2) but with
τ equal to the empty b.c. Then we obtain the recursive equations

Znþ1ðiÞ ¼ λi
�XC−i

k¼0

ZnðkÞ
�b
;

Qnþ1ðiÞ ¼ λi
�P

C−i
k¼0 QnðkÞP
C
k¼0 QnðkÞ

�
b

¼ λi

Rb
nðiÞ

;

Rnþ1ðiÞ ¼
P

C
k¼0

λk

Rb
nðkÞP

C−i
k¼0

λk

Rb
nðkÞ

.ð2:3Þ

The case when C ¼ 1 (the usual hard core model) can therefore be studied by ana-
lyzing a one-dimensional recursion governed by the following maps:

JðxÞ ≔ λ

ð1þ xÞb ; J 2ðxÞ ≔ JðJðxÞÞ ¼ λ

ð1þ λ
ð1þxÞbÞb

.ð2:4Þ

Indeed, J defines the recursion for the quantity Znð1Þ ∕ Znð0Þ, while J2 defines the re-
cursion of this quantity between two levels on the tree. We close this section with a
summary of the properties of J and J 2 which, when combined with Proposition 2.3,
show that λcrð1Þ ≔ bb ∕ ðb− 1Þbþ1 is the phase transition point for the standard hard
core model (see, for example, [9]) and that the phase transition for C ¼ 1 is second-or-
der. These properties will turn out to also be useful for our analysis of the higher-dimen-
sional recursions (i.e., when C ≥ 2). We start with the definition of an S-shaped
function.

DEFINITION 2.4. A twice continuously differentiable function f∶½0;∞Þ ↦ ½0;∞Þ is
said to be S-shaped if it has the following properties:

1. It is increasing on ½0;∞Þ with f ð0Þ > 0 and supx f ðxÞ < ∞.
2. There exists x̄ ∈ ð0;∞Þ such that the derivative f  0 is monotone increasing in the

interval ð0; x̄Þ and monotone decreasing in the interval ðx̄;∞Þ; in other words, x̄
satisfies f  0 0ðx̄Þ ¼ 0 and is the unique inflection point of f .
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For future purpose, we observe here that the definition immediately implies that for
any θ > 0 and S-shaped function f , θf is also an S-shaped function. It is also easy to
verify that any S-shaped function has at most three fixed points in ½0;∞Þ, i.e., points
x ∈ ð0;∞Þ such that f ðxÞ ¼ x. We now summarize the salient properties of J 2 (see, e.g.,
Figure 1), all of which may easily be verified with some calculus.

1. J2 is an S-shaped function with J 2ð0Þ ¼ λ ∕ ð1þ λÞb and supx J 2ðxÞ ¼ λ and a
unique point of inflection x� ∈ ð0;∞Þ.

2. J has a unique fixed point, x0, which is also a fixed point of J 2.
3. If λ ≤ λcrð1Þ, then J  0

2ðxÞ ≤ 1 for any x ≥ 0 and x0 is the unique fixed point of J 2.
4. If λ > λcrð1Þ, then J 2 has three fixed points x− < x0 < xþ, where Jðx−Þ ¼ xþ

and JðxþÞ ¼ x−. Moreover J  0
2ðx0Þ > 1, J  0

2ðxÞ < 1 for x ∈ ½0; x−� ∪ ½xþ;þ∞Þ,
and the three fixed points converge to x0ðλcrð1ÞÞ as λ ↓ λcrð1Þ.

3. Analysis of the recursions when C � 2. When C ¼ 2, we have Rnð1Þ ¼
½1− Pnðσr ¼ 2Þ�−1 and (2.3) can be written as

Rnð0Þ ¼ 1;

Rnþ1ð2Þ ¼ 1þ λ

Rb
nð1Þ

þ λ2

Rb
nð2Þ

;

Rnþ1ð1Þ ¼
1þ λ

Rb
nð1Þ þ

λ2

Rb
nð2Þ

1þ λ
Rb

nð1Þ
¼ Rnþ1ð2Þ

1þ λ
Rb

nð1Þ
.ð3:1Þ

On replacing n by n− 1 in the last equation above, we see that

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

The supercritical function J2

F(x)
x

FIG. 1. Graph of the function J2ðxÞ for b ¼ 2, λ ¼ 7 (λcr ¼ 4).
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Rnð2Þ ¼ Rnð1Þ
�
1þ λ

Rb
n−1ð1Þ

�
.

Substituting this back into (3.1), we obtain an exact two-step recursion forYn ≔ Rnð1Þ:

Ynþ1 ¼ 1þ λ2

½1þ λ
Yb

n
�½Ynð1þ λ

Yb
n−1

Þ�b

¼ 1þ λ2

½Yb
n þ λ�½1þ λ

Yb
n−1

�b .ð3:2Þ

It is useful to determine the initial conditions ðY 0; Y 1Þ for the recursion given the bound-
ary conditions at the zeroth level.

ðY 0; Y 1Þ ¼
� ðþ∞; 1Þ if the b:c: is full ði:e:; identically CÞ;
ð1; 1þ λ2

1þλÞ if the b:c: is empty ði:e:; identically 0Þ.

Numerical calculations of (3.2) using Mathematica strongly suggest that the critical
value λcr, below which the recursion settles to a limit independent of the initial values,
takes approximately the following values:

b λcr

2 7.2753875

3 3.58029

10 1.107665

100 0.2817409

and that the transition is always first-order (i.e., if lim sup
n

Yn ≠ lim infn Yn, then their
difference is strictly larger than some positive constant δ). Similar observations were
made in [15] (see section 3.4 therein). Here we provide a rigorous proof of these results.

Let us change variables from Yn to Xn ≔ Yn − 1 in (3.2). It then follows that

Xnþ1 ≤
λ2

½min
j≥n

Yb
j þ λ�½1þ λ

ð1þXn−1Þb�
b
≡ F

ðnÞ
þ ðXn−1Þ;ð3:3Þ

Xnþ1 ≥
λ2

½max
j≥n

Yb
j þ λ�½1þ λ

ð1þXn−1Þb�
b
≡ F ðnÞ

− ðXn−1Þ.ð3:4Þ

The maps F ðnÞ
� defined above can be rewritten in terms of the map J2 defined in (2.4) as

follows:

F ðnÞ
− ðxÞ ¼ λ

ðmaxj≥n Y
b
j þ λÞ J2ðxÞ;

F
ðnÞ
þ ðxÞ ¼ λ

ðminj≥n Y
b
j þ λÞ J2ðxÞ.

Next, for κ ≥ 0, we define
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F κðxÞ ≔
λ

κ þ λ
J2ðxÞð3:5Þ

so that F0 ¼ J2. For any κ ≥ 0, F κ is a strictly positive multiple of J2 and hence is also
an S-shaped function (with the same inflection point x�). If we denote the fixed points of
F κ by xðκÞ− ≤ x

ðκÞ
0 ≤ x

ðκÞ
þ (with the obvious meaning), we see the following:

1. If F κ has a unique fixed point xðκÞ0 , then necessarily x
ðκÞ
0 < minðx−; x0Þ.

2. Since F  0
κðxÞ ¼ λ

κþλ J
 0
2ðxÞ, necessarily F  0

κðxÞ ≤ 1 for x ≤ xðκÞ− .
3. The critical value λcðκÞ of λ such that F κ starts to have three fixed points is

increasing in κ. In particular,

λcðκÞ > λcð0Þ ¼ λcrð1Þ ¼
bb

ðb− 1Þbþ1
.

4. If F κ has three fixed points, then necessarily xðκÞ− < x− and x0 < x
ðκÞ
0 < x

ðκÞ
þ .

5. The smallest fixed point xðκÞ− is continuously differentiable in κ > 0. Indeed, by
the implicit function theorem and the fact that F  0

κ ðxðκÞ− Þ < 1, it follows that

d

dκ
xðκÞ− ¼ −

∂
∂κ F κðxðκÞ− Þ

∂
∂x F κðxðκÞ− Þ− 1

¼ −
1

λþκ F κðxðκÞ− Þ
λ

λþκ J
 0
2 ðxðκÞ− Þ− 1

¼ −
xðκÞ−

λð1− J  0
2ðxðκÞ− ÞÞ þ κ

.

In what follows, let

m ≔ lim inf
n

Xn and M ≔ lim sup
n

Xn.ð3:6Þ

We are now ready to prove our first result.
PROPOSITION 3.1. Assume that λ > 0 is such that F1 has a unique fixed point. Then

M ¼ m, and hence the recursion (3.2) has a unique fixed point.
Proof. Since Yn ≥ 1, it follows from (3.3) and (3.5) that Xnþ1 ≤ F1ðXn−1Þ. Since

F1 is S-shaped and is assumed to have a unique fixed point, this implies that M ≤ x
ð1Þ
0 .

Moreover, recalling thatm ¼ lim infn Xn, we see that for any ϵ > 0,Xn ≥ mþ ϵ for all n
large enough. Hence, (3.3) and (3.5) imply that for all large enough n, Xnþ1 ≤ F κðXn−1Þ
with κ ¼ ð1þmþ ϵÞb. Thus we obtain

M ∈ ð0; xð1þmþϵÞb
− Þ.ð3:7Þ

Indeed, if Fκ has a unique fixed point, then (3.7) follows immediately. On the other
hand, if F κ has three fixed points, then we immediately have M ∈ ð0; xκ−Þ ∪ ðxκ0; xκþÞ.
But M ≤ x

ð1Þ
0 , and so M < x0 (by property (1) of the F κ’s) and also in this case x0 <

x
ðκÞ
0 (by property (4) of the F κ’s), giving (3.7).

Since ϵ > 0 is arbitrary in (3.7), we have, in fact,M ≤ xð1þmÞb
− . Similarly, using (3.4)

and 3.5, we see that m ≥ xð1þMÞb
− . We want to conclude that necessarily m ¼ M . We

write
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M −m ≤
Z

M

m
ds

�
−

d

ds
xðð1þsÞbÞ
−

�
;

and the sought statement will follow if, for example,

sup
m≤s≤M

���� dds xðð1þsÞbÞ
−

���� < 1.

By properties (1) and (4) of F κ, it follows that xðκÞ− < x0, and hence property (4) of J 2

implies J  0
2 ðxðκÞ− Þ ≤ 1. When combined with the expression for dxðκÞ− ∕ dκ given in prop-

erty (5) of F κ, this implies that ���� ddκ xðκÞ−

���� ≤ xðκÞ−

κ

and hence that

sup
m≤s≤M

���� dds xðð1þsÞbÞ
−

���� ≤ sup
m≤s≤M

b
xðð1þsÞbÞ
−

1þ s
≤ bxð1Þ− ;

where the last inequality uses the fact that xðκÞ− < xð1Þ− for any κ > 0.
Thus we have to show that xð1Þ− < 1 ∕ b. For this purpose it is enough to show that

F1ð1 ∕ bÞ < 1 ∕ b. We compute

bF1ð1 ∕ bÞ ¼
λ

ð1þ λÞ
bλ

ð1þ λ
ð1þ1

bÞb
Þb .ð3:8Þ

Next, we observe that the map λ ↦ bλ∕ ð1þ ðλ ∕ ð1þ 1
bÞbÞÞb achieves its maximum at

λmax ¼ ð1þ 1 ∕ bÞb ∕ ðb− 1Þ, where it is equal to b
b−1 ½b

2−1
b2

�b. The latter expression is de-
creasing in b for b ≥ 2, and for b ¼ 2 it is equal to 18

16. Therefore, if λ ∕ ðλþ 1Þ < 16
18, i.e.,

λ < 8, then the right-hand side of (3.8) is strictly less than one.
We now examine the case λ ≥ 8. We write

bλ�
1þ λ

ð1þ1
bÞb
�
b
≤

λb

ð1þ λ
eÞb

≤
beb

λb−1
≤

beb

8b−1
< 1 for b ≥ 3.

Finally the case b ¼ 2 and λ ≥ 8 is handled directly:

2λ�
1þ λ

ð1þ1
2Þ2
�
2
¼ 2λ

ð1þ 4λ
9 Þ2

≤
16

ð1þ 32
9 Þ2

≈ 0.77. ▯

Notice that in the proof of the inequality xð1Þ− < 1 ∕ b, we did not use the hypothesis that
F1 has only one fixed point. Moreover, we proved something slightly stronger, namely,

there exists ϵðbÞ > 0 such that 1 ∕ b− xð1Þ− ≥ ϵðbÞ for any λ.ð3:9Þ

The following monotonicity property is an immediate consequence of Proposi-
tion 3.1. Recall that λcrð1Þ ¼ bb ∕ ðb− 1Þbþ1 is the phase transition point for the usual
(C ¼ 1) hard core model.
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COROLLARY 3.2. For every λ ≤ λcrð1Þ, the C ¼ 2multistate hard core model has a unique
Gibbs measure.

Proof. If J 2 has only one fixed point, then the same is true of F1. By Proposition 3.1
there is then only one fixed point for the recursion (3.2). The result then follows from
Lemma 2.2 and Proposition 2.3. ▯

The next result shows that the phase transition for C ¼ 2 is first-order. Recall the
definitions of M and m given in (3.6), and let ϵðbÞ be as in (3.9).

THEOREM 3.3. If m ≠ M , then M −m > ϵðbÞ > 0.
Proof. Supposem ≠ M . FromProposition 3.1, it then follows thatF1 (and a fortiori

J 2) has three fixed points xð1Þ− < x
ð1Þ
0 < x

ð1Þ
þ with x

ð1Þ
0 > x0. We now show that x0 > 1 ∕ b.

Indeed, since Jðx0Þ ¼ x0 and J is strictly decreasing, it is enough to check that Jð1 ∕ bÞ >
1 ∕ b or, equivalently, that λ∕ ð1þ 1

bÞb > 1 ∕ b. But λ > bb

ðb−1Þbþ1, and clearly

bb

ðb− 1Þbþ1ð1þ 1
bÞb

¼ b2b

ðb2 − 1Þbðb− 1Þ >
1

b
.

Since 1 ∕ b− xð1Þ− ≥ ϵðbÞ by (3.9), this implies xð1Þ0 − xð1Þ− > ϵðbÞ.
Next, since Xn ¼ ½1− Pnðσr ¼ 2Þ�−1 − 1, we infer that Xn is maximized by the

empty b.c. and minimized by the full b.c. if n is odd (and vice versa if n is even). Thus,
using the recursive inequality Xnþ1 ≤ F1ðXn−1Þ, we obtain for any odd n the inequality
Xn ≤ Un, where fUn; n oddg is the sequence that satisfies the recursion
Unþ2 ¼ F1ðUnÞ, with U 1 ¼ 0. In particular, m ≤ xð1Þ− ≤ 1

b − ϵðbÞ. If now
M ≤ mþ ϵðbÞ < x

ð1Þ
0 , then necessarily Xn < x

ð1Þ
0 for any n large enough, and repeated

iterations of Xnþ1 ≤ F1ðXn−1Þ imply M ≤ xð1Þ− . At this stage we are back in the frame-
work of the proof of Proposition 3.1 and m ¼ M , resulting in a contradiction.

4. The large b asymptotic regime. In this section we set up and then analyze the
recursion for any value of C when b is large. In what follows, e ¼ expð1Þ.

For any j ≤ C , set j� ¼ C − j. Also, for λ < 1, set Aλ ¼
P∞

i¼0 λ
i ¼ ð1− λÞ−1. Iter-

ating (2.3) we obtain

Rnþ2ðjÞ ¼ 1þ
P

C
i¼j�þ1 λ

iðPi�
k¼0

λk

Rb
nðkÞÞ

b

Pj�
i¼0 λ

iðPi�
k¼0

λk

Rb
nðkÞÞ

b
.

In turn, this implies that

Rnþ2ðjÞ ≤ 1þ
Aλλ

j�þ1ðPj−1
k¼0

λk

Rb
nðkÞÞ

b

ðPj−1
k¼0

λk

Rb
nðkÞ þ

P
C
k¼j

λk

Rb
nðkÞÞ

b

¼ 1þ Aλλ
j�þ1�

1þ
P

C
k¼j

λk

Rb
nðkÞPj−1

k¼0
λk

Rb
nðkÞ

�b

≤ 1þ Aλλ
j�þ1

ð1þ A−1
λ

λj

Rb
nðjÞÞ

b
.

Therefore, by letting XnðjÞ ¼ RnðjÞ− 1, we have
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Xnþ2ðjÞ ≤ A2
λλ

j�−jþ1J
ðλjÞ
2 ðXnÞ≡ F

ðjÞ
þ ðXnðjÞÞ;ð4:1Þ

where λj ≔ A−1
λ λj and J ðλÞ ¼ J and J

ðλÞ
2 ¼ J 2 are the maps defined in (2.4) but with the

λ dependence now denoted explicitly.
In a similar fashion, we obtain a lower bound

Rnþ2ðjÞ ≥ 1þ
λj

�þ1ðPj−1
k¼0

λk

Rb
nðkÞÞ

b

Aλð
Pj−1

k¼0
λk

Rb
nðkÞ þ

P
C
k¼j

λk

Rb
nðkÞÞ

¼ 1þ A−1
λ λj

�þ1 
1þ

P
C

k¼j
λk

RbnðkÞP
j−1

k¼0
λk

RbnðkÞ

!
b

≥ 1þ A−1
λ λj

�þ1

ð1þ Aλ
λj

Rb
nðjÞÞ

b
.

Therefore, we have

Xnþ2ðjÞ ≥ A−2
λ λj

�−jþ1J
ðλ 0jÞ
2 ðXnÞ≡ F ðjÞ

− ðXnðjÞÞ;ð4:2Þ

where λ 0j ≔ Aλλ
j.

4.1. The case of C odd. We start by stating the main result of the section. Recall
that for λ < 1, Aλ ¼ ð1− λÞ−1.

THEOREM 4.1. Let jc ¼ dC2e, and define λ− ≔ A−1
λ λjc and λþ ≔ Aλλ

jc . Then the fol-
lowing two properties hold:

1. If ðγbÞ1 ∕ jc ≤ λ < 1 with γ > e, then for any b large enough, depending on γ, the
smallest fixed point of

x ↦ Aλ2J ðλ−Þ
2 ðxÞð4:3Þ

is strictly smaller than the largest fixed point of

x ↦ A−2
λ J

ðλþÞ
2 ðxÞ.ð4:4Þ

In particular, there is phase coexistence.
2. On the other hand, if λ ≤ ðγ  0b Þ1 ∕ jc with γ  0 < e, then for every b large enough,

depending on γ  0, there is a unique Gibbs measure.
We start by establishing the first assertion of the theorem. Our proof will make use

of the following elementary observation.
LEMMA 4.2. For γ > 0, the function H γ∶½0;∞Þ ↦ ½0;∞Þ defined by

H γðzÞ ¼ γe−γe−z
; z ∈ ½0;∞Þ;

is S-shaped. In addition, the following two properties hold:
1. If γ ≤ e, then H γ has one fixed point z0 < 1.
2. If γ > e, then H γ has three distinct fixed points z− < z0 < zþ that satisfy

0 ≤ z− ≤ logðγÞ− logðlogðγÞÞ < z0 ≤ log γ < zþ.ð4:5Þ
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Proof. The function H γ is clearly twice continuously differentiable and satisfies
H γð0Þ ¼ γ > 0 and supx H γðxÞ ¼ γe−γ < ∞. That it is S-shaped therefore follows from
the fact that

H γ  0ðzÞ ¼ γe−zH γðzÞ > 0 and H  0 0
γ ðzÞ ¼ γe−zH γðzÞ½γe−z − 1�.

Now suppose γ < e. Then supz H
 0
γ ðzÞ < 1, and therefore there exists a unique fixed point

z0. The fact that z0 < 1 follows from the observation that

H γð1Þ ¼ γe−γe−1
< 1.

On the other hand, if γ ¼ e, the value z0 ¼ log γ is the unique fixed point and satisfies
H  0

γðz0Þ ¼ 1. Lastly, for γ > e, we have the inequalities

Hγ  0ðlog γÞ > 1;

H γðlog γÞ > log γ;

H γðlog γ − logðlog γÞÞ < log γ − logðlog γÞ;

where the last inequality holds because H γðlog γ − logðlog γÞÞ ¼ 1 and
γ ↦ log γ − logðlog γÞ restricted to the interval ½e;∞Þ is increasing with
logðeÞ− logðlogðeÞÞ ¼ 1. Together with the S-shaped property of H , these inequalities
immediately imply that H has three fixed points that satisfy (4.5). ▯

We are now ready to establish the first statement of Theorem 4.1.
Proof of Theorem 4.1(1). Fix λ ∈ ½ðγbÞ1∕ jc ; 1Þ with γ > e, and for notational concise-

ness, denote Aλ simply by A. We first show that the asserted inequality between the
fixed points of the two maps implies phase coexistence. This is a simple consequence
of the fact that for any boundary condition τ, the sequence fX�

ng defined by

X�
n ≡ XnðjcÞ ¼ μτ

Tn
ðσr ≥ jcÞ ∕ μτ

Tn
ðσr ≤ jcÞ; n ∈ N;

obeys the recurrence

A−2J
ðλþÞ
2 ðXnÞ ≤ X�

nþ2 ≤ A2J
ðλ−Þ
2 ðX�

nÞ;

where we have made use of (4.1) and (4.2), together with the duality property
j�c þ 1 ¼ jc. If now bC2c boundary conditions are imposed at the zeroth level, then X�

0 ¼
0 and X�

n will always be smaller than the smallest fixed point of x ↦ A2J
ðλ−Þ
2 ðxÞ. On the

other hand, under dC2e boundary conditions, X�
0 ¼ 1 and X�

n will always be larger than
the largest fixed point of x ↦ A−2J

ðλþÞ
2 ðxÞ because the range of this mapping is contained

in ½0; 1� for large b.
We now prove our statement concerning the fixed points of (4.3) and (4.4). First

consider the case λ ¼ ðγbÞ1 ∕ jc , and observe that for any z > 0,

lim
b→∞

bA−2J
ðλþÞ
2 ðz ∕ bÞ ¼ lim

b→∞
bA2J

ðλ−Þ
2 ðz ∕ bÞ ¼ H γðzÞð4:6Þ

uniformly on bounded intervals. Next, we define

~x− ≔
log γ − logðlog γÞ

b
and ~xþ ≔

log γ

b
.
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From Lemma 4.2, it follows that H γðb ~x−Þ < b ~x− < b ~xþ < H γðb~xþÞ. Together with
(4.6), this shows that for any b large enough,

A2J
ðλ−Þ
2 ð~x−Þ < ~x− < ~xþ < A−2J

ðλþÞ
2 ð~xþÞ;

and the first assertion of the lemma follows (for this case) because A−2J
ðλþÞ
2 and A2J

ðλ−Þ
2

are S-shaped exactly like H γ.
We now consider the case ðγbÞ1∕ jc ≤ λ < 1, and again we compute

A2J
ðλ−Þ
2 ð ~x−Þ ≤ A2 λ−

ð1þ λ−e
−b~x−Þb ¼ A2 λ−

ð1þ λ−
log γ
γ
Þb .ð4:7Þ

If λ does not tend to zero as b → ∞, then it is obvious that the right-hand side of (4.7) is
smaller than ~x− for large enough b. If instead limb→∞ λ ¼ 0, we proceed as follows. The
function fγðλÞ ¼ λ ∕ ð1þ λ log γ

γ
Þb satisfies

f γ  0ðλÞ ¼ 1

ð1þ λ log γ
γ
Þ2b
�
1−

bλ log γ

γ þ λ log γ

�

and hence is decreasing in the interval ð γ
ðb−1Þ log γ

;∞Þ. Since γ > e and our assumption
λ → 0 implies A ¼ Aλ ≈ 1 for large enough b, we have the inequality

λ− > A−1γ ∕ b > γ ∕ ððb− 1Þ log γÞ.

Thus, we can conclude that the right-hand side of (4.7) is smaller than the same expres-
sion with λ− replaced byA−1γ ∕ b. After this replacement, the resulting right-hand side of
(4.7) is indeed smaller than ~x− for all large enough b because of (4.5) and (4.6). In con-
clusion, we have shown that for any ðγbÞ1∕ jc ≤ λ < 1, the function A2J

ðλ−Þ
2 has a fixed

point smaller than ~x−.
Next, we examine A−2J

ðλþÞ
2 . If limb→∞ bλþ ¼ ∞, then it easily follows that for large

enough b, we have A−2J
ðλþÞ
2 ðA−2λþ ∕ 2Þ > A−2λþ ∕ 2 ≫ ~x−. If instead λþ ≤ C ∕ b for some

finite constant C , we choose xλ ¼ logðbλþÞ ∕ b > x− and write

A−2J
ðλþÞ
2 ðxλÞ ≥ A−2λþe−bλþ ∕ ð1þxλÞb .

By construction, limb→∞ e−bλþ ∕ ð1þxλÞb ¼ e−1. Therefore, for sufficiently large b,

A−2λþe−bλþ ∕ ð1þxλÞb ≥ ð1−Oðb−1ÞÞλþe−1 ≥ xλ

because λþ > γ ∕ b with γ > e. In conclusion A−2J
ðλþÞ
2 ðxÞ has a fixed point strictly bigger

than x−, and the existence of a phase transition follows. ▯
We now turn to the proof of the second assertion of Theorem 4.1, namely, the ab-

sence of a phase transition for λ ≤ ðγ  0b Þ1 ∕ jc with γ  0 < e. For this, we first establish two
preliminary results in Lemmas 4.3 and 4.4. For any vertex y ∈ Tn and i ∈ SC , we define
a probability measure μ

ðiÞ
y on the set of spins at y as follows:

μ
ðiÞ
y ðσy ¼ jÞ ≐ Pðσy ¼ jjσy ≤ i�Þ; j ∈ SC ;ð4:8Þ

with P, as always, depending on λ and a boundary condition on Tn (which, for clarity,
we have suppressed in the notation). Note that if x is a site inTn that is neighboring to y,
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then μ
ðiÞ
y represents the marginal on y of the Gibbs measure (with some boundary con-

dition on the leaves of Tn), conditioned to have i particles at x. Recall that k · kTV

denotes the total variation distance.
LEMMA 4.3. For any k < i, we have

kμðiÞ
y − μ

ðkÞ
y kTV ¼ μ

ð0Þ
y ðσy ∈ ½i� þ 1; k��Þ
μ

ð0Þ
y ðσy ≤ k�Þ

.

Proof. By definition, μðiÞ
y ðσy ¼ jÞ ¼ μ

ð0Þ
y ðσy ¼ jjσy ≤ i�Þ. Therefore, also recalling

that k < i implies k� > i�, we have

kμðiÞ
y − μ

ðkÞ
y kTV ¼ 1

2

Xi�
j¼0

kμðiÞ
y ðσy ¼ jÞ− μ

ðkÞ
y ðσy ¼ jÞk þ 1

2

Xk�
j¼i�þ1

μ
ðkÞ
y ðσy ¼ jÞ

¼ 1

2

μ
ð0Þ
y ðσy ≤ k�Þ− μ

ð0Þ
y ðσy ≤ i�Þ

μ
ð0Þ
y ðσy ≤ k�Þ

þ 1

2

μ
ð0Þ
y ði� þ 1 ≤ σy ≤ k�Þ

μ
ð0Þ
y ðσy ≤ k�Þ

¼ μ
ð0Þ
y ðσy ∈ ½i� þ 1; k��Þ
μ

ð0Þ
y ðσy ≤ k�Þ

. ▯

Notice that if x is an ancestor of y, thenμ
ð0Þ
y is nothing but the Gibbs measure on the tree

Tb
y rooted at y with the boundary conditions induced by those on Tn. If instead y is an

ancestor of x, thenμ
ð0Þ
y becomes a Gibbs measure on the (nonregular) tree Tn \ Tb

x. How-
ever, if x; y are sufficiently below the root of Tn, then Tn \ Tb

x will coincide with a regular
tree rooted at y for a large number of levels. That is all that we need to prove uniqueness
below ðebÞ1∕ jc .

In what follows, given any nonnegative function b ↦ f ðbÞ of the degree of the tree
Tb, we will write fðbÞ≈ 0 if limb→∞ bf ðbÞ ¼ 0.

LEMMA 4.4. Fix γ  0 < e, and assume λ ≤ ðγ  0b Þ1∕ jc . Then there exists a < 1 and n0 ∈ N
such that for any n ≥ n0 and any boundary condition τ on the leaves of Tn,

lim sup
b→∞

bμτðσr ≥ i� þ 1Þ ≤
�
0 if i ≤ bC2c;
a if i ¼ jc ¼ dC2e.

Proof. It suffices to bound XnðiÞ from above for i ≤ bC2c or i ¼ dC2e. In the first case,
when i ≤ bC2c, the stated bound follows easily since (4.1) and the assumed bound on λ
imply that, for some finite constant K ,

bXnðiÞ ≤ λi
�þ1b ≤ Kbð1−ði�þ1Þ∕ jcÞ ≈ 0.

In the second case, when i ¼ jc, set a∞ ≔ lim supb→∞ bx̂þðbÞ, where x̂þðbÞ is the largest
fixed point of the S-shaped function x ↦ AλJ

ðλ−Þ
2 ðxÞ. Due to the assumption λ ≤ ðγ  0b Þ1 ∕ jc ,

it follows that a∞ ≤ γ  0. Because of (4.1) it is enough to prove that a∞ < 1. Assume the
contrary. Then the fixed point equation, together with λ ≤ ðγ  0b Þ1 ∕ jc , readily implies that

a∞ ≤ γe−γe−a∞ ;

which in turn implies that a∞ must be smaller than the unique fixed point z0 of the map
H . Since γe−γ ∕ e < 1 if γ < e, necessarily z0 < 1, and we get a contradiction. Note that in
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the above proof by contradiction, the hypothesis a∞ ≥ 1 enters as follows. If x > 1− δ,
0 < δ ≪ 1, then J

ðλÞ
2 ðxÞ is increasing in λ, and so we may safely assume λ ¼ ðγ  0b Þ1 ∕ jc and is

not just smaller or equal. ▯
We are now ready to prove uniqueness for λ ≤ ðγ  0b Þ1 ∕ jc .
Proof of Theorem 4.1(2). For simplicity we begin with λ ¼ ðγ  0b Þ1∕ jc . In this case, it

follows immediately from the basic inequality (4.1) that for any initial condition, any
n ≥ 2, and any b large enough, there exist constants c1, c2 such that

X
dC ∕ 2e
n ≤ c1e

−c2b
α

;ð4:9Þ

where α ¼ 1 ∕ ðjc þ 1Þ. In another words, recalling the probability measure μ
ðiÞ
y intro-

duced in (4.8) and using the obvious fact that for any i ≤ C ,

μ
ðiÞ
y ð½jc þ 1; C �Þ ≤ X

dC ∕ 2e
n ;

we get that the probability of having more than jc particles at y given i particles at x is
exponentially small in b.

Now recall that Tl is the finite tree of depth l rooted at r, and let τ; τ 0 be two
boundary conditions on the leaves of Tl that differ at only one vertex v0. Let also Γ ¼
fv0; v1; : : : ; vlg be the unique path joining v0 to the root r ¼ vl. We recursively couple
the corresponding measures μτ ≐ μTl;λ

τ and μτ 0 ≐ μτ 0
Tl;λ

by repeatedly applying the fol-
lowing step. Assume that for any pair ðσv1 ;σv2Þ with σv1 ≠ σ 0

v1 we can couple μτð· jσv1Þ
and μτ 0 ð· jσ 0

v1Þ and call ν
σv1

;σ  0
v1

l−1 the coupled measure. It is understood that ν
σv1

;σ  0
v1

l−1 is con-

centrated along the diagonal if σv1 ¼ σ  0
v1 . Let π

τv0 ;τ
 0
v0

1 be the coupling of the marginals of
the two Gibbs measures on v1 that realizes the variation distance (i.e.,

π
τv0 ;τ

 0
v0

1 ðσv1 ≠ σ 0
v1Þ ¼ kμτ

v1
− μτ 0

v1
kTV ). Then we set

ν
σv1

;σ  0
v1

l ðσ;σ  0Þ ¼ π
τv0 ;τ

 0
v0

1 ðσv1 ;σ
 0
v1Þν

σv1
;σ  0

v1

l−1 ðσTb
l\v1

;σ 0
Tb
l\v1

Þ.

If we iterate the above formula, we finally get a coupling ντ;τ
 0
such that the probability of

seeing a discrepancy at the root can be expressed as

X
σv1

≠σ  0
v1

ηv2≠η
 0
v2

· · ·

π
τv0 ;τ

 0
v0

1 ðσv1 ;σ
 0
v1Þπ

σv1
;σ 0

v1
2 ðηv2 ;η

 0
v2Þπ

ηv2 ;η
 0
v2

3 : : :ð4:10Þ

with self-explanatory notation. If we can show that the above expression tends to zero as
l → ∞ faster than b−l uniformly in τ; τ 0, then uniqueness will follow by a standard path
coupling (or triangle inequality) argument (see, for example, [6]).

On the state space S ≔ ½0; : : : ; C �2 consider a nonhomogeneous Markov chain
fξtglt¼0 with transition matrix at time t given by Ptðξ; ξ 0Þ ¼ π

ξ
tðξ  0Þ and initial condition

ξ0 ¼ ðτv0 ; τ 0v0Þ. Let also B ¼ fði; jÞ ∈ S∶i ≥ jc þ 1g ∪ fði; jÞ ∈ S2∶j ≥ jc þ 1g be the
bad set, and let D ¼ fði; iÞ ∈ S∶i ∈ ½0; : : : ; C �g be the diagonal. Equation (4.10) is then
nothing but the probability that the chain does not hit D within time l.

For b large enough (depending only on γ  0 < e), the two key properties of the chain,
which immediately follow from Lemmas 4.3 and 4.4 and the inequality (4.9), are the
following:
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sup
t

sup
ξ∈Bc

Ptðξ; DcÞ ≤ a

b
; a < 1;ð4:11Þ

sup
t

sup
ξ

Ptðξ; BÞ ≤ c1e
−c2b

α

; α > 0.ð4:12Þ

Notice that it is not difficult to show that

sup
t

sup
ξ∈B

Ptðξ; DcÞ ≈ λ ≫ 1 ∕ b.

In other words, the probability of not entering the diagonal D in one step is suitably
small (i.e., smaller than a∕ b, a < 1) only if we start from the good set Bc. Using
(4.11) and (4.12), we can immediately conclude that

Pðξt ∈= D for all 0 ≤ t ≤ lÞ ≤
Xl
k¼0

�
l
k

�
ðc1e−c2b

αÞk
�
a

b

�
l−2k−1

≤
b

a

�
b

a
c1e

−c2b
α þ a

b

�
l
.ð4:13Þ

The “−1” in the exponent of a∕ b above takes into account the fact that we may start at
x0 in the bad set B, while the extra “−k” in the exponent accounts for the fact that for
any transition fromB toBc, we do not necessarily have a good coupling bound. It is clear
that the right-hand side of (4.13) tends to zero faster than b−l as l → ∞ because a < 1.

4.2. The case of C even. Throughout this discussion, we assume C even, and we
set jc ¼ C

2 þ 1. Notice that jc ¼ ðC2 Þ� þ 1.
THEOREM 4.5. Assume λ ¼ ðγ log b

b Þ1 ∕ jc with γ > 1 ∕ ðC þ 2Þ. Then for any large en-
ough b there is phase coexistence. If instead γ < 1

Cþ2, for any large enough b there is a
unique Gibbs measure.

Proof. Fix γ > 1
Cþ2, and assume λ ¼ ðγ log b

b Þ1 ∕ jc . We will show that the largest fixed
point of F ðC ∕ 2Þ

− is strictly larger than the smallest fixed point of F ðC ∕ 2Þ
þ . By the usual

argument, that is enough to prove phase coexistence.
Pick α halfway between 1 ∕ ðC þ 2Þ and γ, and compute the value F ðC ∕ 2Þ

− ðα log b
b Þ for

large enough b. From the definition we get

F ðC ∕ 2Þ
−

�
α log b

b

�
≈

γ log b

b
e−bð1 ∕ ðCþ2ÞÞ−α ≈

γ log b

b
≫

α log b

b
.

Therefore there exists a fixed point of F ðC ∕ 2Þ
− greater than α log b

b . On the other hand,

F
ðC ∕ 2Þ
þ

�
2γ

log b

b
e−b1 ∕ ðCþ2Þ

�
≈ γ

log b

b
e−bλC ∕ 2 ≪ 2γ

log b

b
e−b1 ∕ ðCþ2Þð4:14Þ

so that F ðC ∕ 2Þ
þ has a fixed point smaller than 2γ log b

b e−b1 ∕ ðCþ2Þ
, and now the first statement

of the theorem follows.
Assume now γ < 1

Cþ2. In that case, using (4.1), we infer that for any boundary con-
dition and any large enough b,
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μτ
Tn

�
σr ≥ C

2 þ 1

�
≤ X

ðC ∕ 2Þ
n ≤ e−ba ; a ¼ 1

C þ 2
− γ.

The proof of uniqueness follows now exactly the same lines of the odd case, with the
difference that now the bad set is B ¼ fC ∕ 2þ 1; : : : ; Cg and (4.11), (4.12) are changed
into

sup
t

sup
ξ∈Bc

Ptðξ; DcÞ ≤ c1e
−c2b

α

; α > 0;ð4:15Þ

sup
t

sup
ξ

Ptðξ; BÞ ≤ c1e
−c2b

α

; α > 0. ▯ð4:16Þ

4.3. First-order phase transitions for C even and large b. We now turn to
showing that for all even C and large enough b (depending on C), the phase transition
established in Theorem 4.5 is first-order. At the end of section 4.2 we showed that as λ
varies, for example, in the interval"�

log b

b

�
2∕ ðCþ2Þ

;

�
3 log b

b

�
2 ∕ ðCþ2Þ

#
;

the values of

mðλÞ ≔ lim sup
n→∞

½μC
Tn
ðσr > C ∕ 2Þ− μ0

Tn
ðσr > C ∕ 2Þ�

vary between 0 and Ωð2 log b
b Þ. (Recall that the superscripts C and 0 indicate full b.c. and

empty b.c., respectively.) Notice that, by monotonicity, the lim supn above is attained
over the sequence of even n’s and that μC

T2n
ðσr > C ∕ 2Þ is decreasing in n.

Here, we argue that in the above interval, mðλÞ cannot be continuous. The starting
point is the observation that, because of (4.14), for all

λ ∈
��

log b

b

�
2∕ ðCþ2Þ

;

�
3 log b

b

�
2 ∕ ðCþ2Þ�

;

the smallest fixed point of F ðC ∕ 2Þ
þ is exponentially small in bα for some α > 0. Thus, in

particular, there exist constants c1; c2 such that

μ0
Tn
ðσr > C ∕ 2Þ ≤ c1e

−c2b
α

for all n ≥ 1.

Fix now δ < 1, and assume that for some n0,

μC
Tb

2n0

ðσr > C ∕ 2Þ ≤ δ

b
.

By monotonicity, that implies

sup
n≥2n0

sup
τ

μC
Tn
ðσr > C ∕ 2Þ ≤ δ

b
.

Thus we can proceed with the previously described coupling argument with (4.15) and
(4.16) replaced by
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sup
t≥2n0

sup
ξ∈Bc

Ptðξ; DcÞ ≤ δ

b
;ð4:17Þ

sup
t≥2n0

sup
ξ

Ptðξ; BÞ ≤ c1e
−c2b

α

;ð4:18Þ

and we may conclude that mðλÞ ¼ 0.
In other words, we have shown that mðλÞ > 0 implies that for all n,

μC
T2n

ðσr > C ∕ 2Þ > δ

b
;

so that

mðλÞ ≥ δ

b
− c1e

−c2b
α

.

It follows now that the phase transition is first-order.
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