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ABSTRACT
Adaptive power topology control (APTC) is a local algo-
rithm for constructing a one-parameter family of θ-graphs,
where each node increases power until it has a neighbor in
every θ sector around it. We show it is possible to use
such a local geometric θ-constraint to ensure full network
connectivity, and consider tradeoffs between assumptions
about the wireless footprint and constraints on the bound-
ary nodes. In particular, we show that if the boundary
nodes can communicate with neighboring boundary nodes
and all interior nodes satisfy a θI < π constraint, we can
guarantee connectivity for any arbitrary wireless footprint.
If we relax the boundary assumption and instead impose a
θB < 3π/2 constraint on the boundary nodes, together with
the θI < π constraint on interior nodes, we can guarantee
full network connectivity using only a “weak-monotonicity”
footprint assumption. The weak-monotonicity model, intro-
duced herein, is much less restrictive than the disk model
of coverage and captures aspects of the spatial correlations
inherent in signal propagation and noise. We show that un-
der the idealized disk model of coverage, APTC constructs
graphs that are sparse. Finally, we show that if the wireless
footprint has sufficiently small “eccentricity”, then there is
some θ for which greedy geometric routing always succeeds.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical algorithms and problems]: Routing and layout; C.2.1
[Network architecture and design]:Network topology

General Terms: Algorithms, Design, Theory

Keywords: Ad hoc networks, topology control, adaptive
power, connectivity, graph theory, self-organization.
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1. INTRODUCTION
We consider global properties of communications networks

that can be guaranteed solely from local rules, particularly in
the context of ad hoc networks which are typically both dy-
namic and temporary. A fundamental challenge is determin-
ing how to ensure global network connectivity using minimal
overhead even when locations of nodes, and their linkages,
can change over time. For ad hoc networks made of mobile
nodes, the connectivity must evolve as the nodes move. Even
for networks made of stationary nodes (such as some sen-
sor networks), local connectivity can change over time due
to the dynamic and noisy nature of wireless channels. We
study a distributed and local construction (called Adaptive
Power Topology Control, APTC) for building up commu-
nication edges between initially isolated nodes located on a
two-dimensional plane, similar to the cone-based topology
control algorithm introduced by Wattenhofer et al. [1], and
analyzed by Li et al. [2]. Our approach uses purely local
information: namely, the angles between the neighboring
edges originating on each node v. These angles must all be
less than a specified value θ, for all v. We call the graph de-
scribing the node positions and resulting edges at any time
a θ-graph, denoted Gθ.

Li et al. [2] provide an elegant geometric proof showing
that if we start with a graph which is already fully con-
nected, then the constructed graph Gθ for θ < 5π/6 pre-
serves the connectivity, but is more sparse and therefore
more power efficient. For instance, we could start with the
graph GR formed by including all achievable linkages when
each node broadcasts at maximal power. While this result
is very useful if GR is fully connected this does not give any
method for testing the connectivity of GR. Furthermore,
it relies intrinsically on the uniform disk coverage model
which, while a useful idealization for analysis, is not a real-
istic model for wireless footprints (see Sec. 2 and Fig. 1(a)).

1.1 Our results
We show it is possible to use local geometric constraints to

determine whether full network connectivity is achievable for
any arbitrary wireless footprint, provided certain conditions
are met. We define several tradeoffs between requirements
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of the boundary nodes and assumptions about the wireless
footprint. Most previous algorithms impose constraints only
on interior nodes and make strong assumptions about the
wireless footprint. We show that with modest boundary re-
quirements, the constraints on interior nodes and footprints
can be greatly relaxed. This is an important consideration
because when the network covers a large area, the bound-
ary nodes will typically comprise only O(

√
n) of the n nodes.

We might, for instance, carefully deploy a boundary region
of sensors, then scatter sensors haphazardly in the interior.
Further, in cases where deployment is inexpensive (consider
a sensor network deployed by a robotic arm), internal nodes
can be moved from dense regions to regions where the θ-
constraint is not yet satisfied. If sensors are not moveable,
existing sensor network protocols such as sleep cycling could
be easily employed by unnecessary nodes.

More precisely, we show that a modification of the APTC
algorithm provably achieves global connectivity in a variety
of scenarios. The more restrictive the boundary constraints,
the weaker the assumptions required for the wireless foot-
print. (1) If the boundary nodes are known to be able to
communicate with each other, then we can guarantee the
entire network is connected provided all interior nodes sat-
isfy a local θI < π requirement, for any arbitrary wireless
footprint. (2) If we relax the communication requirement on
the boundary nodes, but instead impose a local θB < 3π/2-
constraint on the boundary, and require all internal nodes
to satisfy a θI < π constraint, then we can guarantee the
entire network is connected for footprints that obey at least
a “weak-monotonicity” constraint. Weak-monotonicity (in-
troduced in Sec. 3) is much less restrictive than the stan-
dard monotone footprint assumption, i.e., the disk model,
and takes into account angular correlations between connec-
tions. Weak-monotonicity is also sufficient to ensure con-
nectivity when all nodes satisfy the θ < π constraint on the
sphere and the infinite plane, where there are no boundary
nodes. (3) If the individual footprints are not uniform disks
but the average over all footprints is approximately so, we
show connectedness is extremely likely if θI < π. Boundary
nodes would need only to be connected to the interior, with
no θ-constraint. These proofs all hold regardless of how a
network is constructed, requiring only that local geometric
constraints on θ are satisfied together with the appropriate
boundary conditions.

This provides a general test for network connectivity that
could easily be executed on a deployed system where nodes
have access to local geometric information. Of course any
individual node on its own would not be able to know if
the network is fully connected; however, the local informa-
tion can be aggregated. If it is known that there are N
nodes deployed, and all N send and receive messages that
they satisfy their θ-constraint, we can locally verify global
connectivity.

Finally, we prove additional properties of the APTC net-
work. If the wireless footprints conform to the idealized disk
model and the nodes are randomly distributed in the plane,
the resulting graph Gθ is sparse. Finally, if the footprints
are not circular, but have sufficiently small “eccentricity” in
a sense we define below, we show that a θ exists for which
Gθ supports greedy geometric routing.

1.2 Related work
We study the APTC algorithm introduced by D’Souza

et al. [3] which is similar to a construction by Wattenhofer
et al. [1]. Although we deal with connectivity issues and
not explicitly network performance, we note that in [3] the
algorithm was shown to have extremely favorable perfor-
mance characteristics, especially with regard to reducing
power consumption and the timescale associated with dis-
covery of the full network topology. Such optimizations
could be particularly useful when coupled with routing algo-
rithms relying on on-demand topology discovery, as studied
by Perkins and Royer [4].

Most of the related previous work (e.g., [1] and [2]) re-
lies on a priori knowledge of global network properties, such
as the connectivity of the maximum power graph GR. Po-
duri et al. [5] recently proved connectivity using only local
geometric properties. However, their construction relies fun-
damentally on the uniform disk coverage model to achieve
a supergraph of the Random Neighbor Graph. Wattenhofer
and Zollinger [6] provide one of the first papers addressing lo-
cal conditions for connectivity without assuming a unit disk
model of coverage. In fact, their algorithm applies to three-
dimensional systems, as well as nodes on a two-dimensional
plane. The flexibility comes from requiring only an ordering
on the quality of links, with no reference to geometry. Yet
geometric constructions have some advantages. They can
be simple to test and deploy, and enable geometric rout-
ing. Furthermore, many studies have already analyzed the
performance characteristics of geometric ad hoc networks,
showing them to be favorable.

2. BACKGROUND AND TERMINOLOGY

2.1 Basic network operation assumptions
Ad hoc or sensor networks are composed of nodes equipped

with wireless transmitters, allowing them to broadcast to,
and receive messages from, other nodes over a shared wire-
less channel. Messages are exchanged directly between nodes
within each other’s broadcast range. Exchanges with more
distant devices requires relaying messages along a path of in-
termediary nodes. Thus data exchange relies fundamentally
on devices cooperating in relaying one another’s data.

The broadcast nature of a wireless network means that a
transmission interferes with all other simultaneous transmis-
sions, with the greatest impact on transmissions sent by de-
vices within close spatial range. We prefer devices to broad-
cast at low power to reduce interference, and moreover to
conserve battery life (which can be the more important cri-
teria for sensor networks). The broadcast power, however,
cannot be too low. It must be high enough to ensure neigh-
boring devices can communicate and, at a larger scale, form
a fully connected network (i.e., a network where all devices
have some, potentially multihop, path to all other devices).
Understanding at what level to set each node’s broadcast
range has been the subject of numerous investigations.

2.2 Geometric graphs
The networks we consider can be modeled by geometric

graphs. A geometric graph G = (V, E) has vertices V (i.e.,
the wireless devices which are the nodes of the communi-
cation network) and a metric defining a distance between
vertices. The edges of the graph E connect specific pairs of
vertices. If a communication link exists between two nodes
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Figure 1: (a) Example of an actual wireless footprint, reprinted from [8]. A central node broadcasts packets.
The contours of probability for receiving the transmission are outlined. (b) Connectivity for node i assumed
by the disk coverage model. (c) Connectivity for node i assumed by weak-monotonicity.

in the network, an edge between those two nodes exists in
G. We consider the special case where the vertices inhabit a
two-dimensional Euclidean plane, where a given vertex i has
coordinates (xi, yi) ∈ R2, and we refer to the distance be-
tween nodes i and j as d(i, j). Geometric graphs are conve-
nient to describe the structure of many ad hoc networks, in-
cluding some sensor networks, where nodes are constrained
to lie in two dimensions. In constrast, many other classes of
networks exist in a space with no geometry, for instance the
World Wide Web. For a recent comprehensive treatment of
random geometric graphs see, e.g., [7].

2.3 Wireless footprints
In principle, signals that are broadcast from a wireless

device decay in an isotropic manner polynomially with dis-
tance from the source as some decreasing function of dis-
tance. Thus most models of connectivity conceptualize the
broadcast region (or “footprint”) as the disk model of cover-
age with a circular disk of radius r centered on each device
i. For all points interior to the disk, all transmissions are
considered successful, and the points connected to i. For all
points with d > r, the signal is considered too small to dis-
tinguish from background noise so no transmission is ever
received, and these points are considered not connected to
i. The second part of Fig. 1 depicts this monotonicity as-
sumption, where a successful connection between vertices i
and j at the current level of transmission implies that i is
also connected to all other closer vertices. Empirical stud-
ies of wireless sensor networks, however, show footprints are
much less regular and can have large random deviations from
a uniform disk. See, e.g., [8], and in particular Fig. 5 therein
(reprinted here in Fig. 1). When a central node broadcasts,
there is a complicated landscape of contours of probability
of packet reception surrounding it with hills, voids and is-
lands. As in [8], one can define a “good link” as one where
the probability of packet reception is greater that Γ, where
they take Γ = 0.65. The assumption is that with error cor-
rection techniques, etc., one can boost such a raw packet
signal to adequate reception levels. Regardless, large devia-
tions from a unit disk remain. Thus, while the disk model
is convenient for theoretical work, it is far from realistic.

2.4 Distributed topology control algorithm for
building Gθ

Consider a set V of vertices distributed in R2. Details of
the distribution are not pertinent for now. We begin from

the isolated nodes and consider an algorithm for establishing
the edges, E, and building up a graph �Gθ very similar to
the one described in [3]. A fundamental requirement for the
algorithm is access to directional information obtainable, for
instance, from directional antennae, GPS, triangulation, or
various other methods (see for instance [10]).

Each initially isolated node begins by transmitting at low
power, and then ramping up until its neighborhood satis-
fies a local geometric constraint, as described below and
illustrated in Fig. 2. As the node ramps up its power, it
broadcasts connection requests and processes acknowledge-
ments of these requests, thus establishing communication
links with other nearby nodes. The node will first estab-
lish a link with the most accessible node within its com-
munication footprint, then with the next most accessible,
etc. (Notice that we need not make any assumptions about
isotropy or monotonic decay of the footprint; there could
be nodes located at a closer spatial distance which do not
get linked to since they are not in the accessible footprint).
With each new connection made, the geometric information
is assessed. In general, at each step, we consider the vec-
tors drawn originating from a node and ending at its say m
neighbors. These vectors divide the area around the central
node into m disjoint sectors. If the angle of each sector is

Figure 2: (a) The vectors from a node to its m con-
nected neighbors divide a unit circle around that
node into m disjoint sectors. If the angle of each
sector is less than or equal to θ, the geometric con-
straint is satisfied. (b) An example wireless foot-
print for node i. It does not connect to nodes j or k,
even though they are closer in distance than other
connected neighbors, yet i still satisfies its geometric
constraint because all sectors are less than π.
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less than θ, the constraint is satisfied and the node sets its
operating power at the current value. If any angle is greater
than or equal to θ, the construction continues. If a node
reaches its maximum operating power before satisfying the
constraint, it halts execution and lower its power back down
to the level where the last new connection to a neighbor was
first made (or to zero if it has no neighbors in its broad-
cast range). We refer to this algorithm as adaptive power
topology control (APTC); the case θ = π was introduced by
D’Souza et al. [3].

As mentioned earlier, each node can locally determine
where it succeeded in satisfying the θ-constraint and com-
municate that fact to the rest of the network. If some nodes
cannot satisfy the θ-constraint, Gθ is some subgraph of the
maximum power graph GR mentioned above. However, if
each node has sufficient power to satisfy the θ-constraint,
the proofs herein guarantee connectivity of Gθ.

Each node i sets its operating range ri independently of all
other nodes, hence the resulting links may be unidirectional
(i.e., the edges of �Gθ are directed). For both theoretical and
implementation reasons we want all links to be bidirectional
(resulting in an undirected graph Gθ). This can be achieved
in many ways. We choose to do so at graph construction
time. When node i broadcasts an acknowledgement to an
in-link request from node k it must create a link to k, even
if the length of that link exceeds ri. Node i would transmit
with range ri at all times, except when it needs to send a
transmission directly to node k.1 We refer to the underlying
undirected graph as Gθ .

The algorithm used to generate Gθ can be integrated with
standard wireless protocols such as the IEEE 802.11 wireless
network MAC [11], and more specialized sensor network pro-
tocols such as sleep cycling schemes (see for instance [12]).
In addition, since the construction is local and distributed,
in a dynamic network it can be repeated whenever a node
notices its neighbors have changed.

3. PROOFS OF CONNECTIVITY
We now show that we can ensure network connectivity

using only local geometric constraints. The results hold for
finite size systems, not just the asymptotic limit; however,
special consideration must be paid to nodes on the bound-
ary. We assume boundary nodes on the convex hull of the
network are identified in advance. We call these nodes B,
and we say two nodes are adjacent in B if they are neigh-
bors in the description of the convex hull, regardless of the
distance between them. All other nodes are called interior
nodes. We consider a family of boundary constraints on B.
In general, the more restrictive the boundary constraints,
the less restrictions need to be imposed on the wireless foot-
print to guarantee connectivity.

3.1 Connected boundaries and arbitrary
footprints

If the boundary nodes are identified as such and we know
ahead of time that they are all connected, then for θ < π the
θ-constraint on all the internal nodes is sufficient to ensure
global connectivity. This straightforward observation is for-
malized in the following theorem; we use this again in the

1For instance each node could keep an internal table of con-
nected neighbors (already required by various routing pro-
tocols such as [9]), and corresponding broadcast ranges.

following sections where we make less restrictive assump-
tions about the boundary nodes. Note that this theorem
makes no assumptions about the wireless footprint.

Theorem 1. If G(V, E) satisfies the θ-constraint at ev-
ery internal node with θ < π and all of the boundary nodes
are known to be connected, then G(V, E) is fully connected.

Proof. We need only show every internal node v has a
path in G(V, E) to some node on the boundary. Consider
any line � through the vertex v. Since v satisfies the θI -
constraint, it must have some neighbor in each half-plane
defined by �. Consider one of these neighbors v1, and for
simplicity say v1 lies to the “right” of �. If v1 is a boundary
vertex we are done. Otherwise, let �v1 be the line parallel
to � through v1, and so on. Continuing in this fashion, we
must eventually reach a vertex on the boundary.

3.2 Weak-monotonicity
We now relax the requirement that boundary nodes be

connected to one another. In what follows we consider a
variant on the APTC algorithm to produce (θI , θB) graphs
where internal nodes satisfy the θI -constraint and boundary
nodes satisfy the θB-constraint. We call the output of the
algorithm a GθI ,θB graph. Notice that the θB-constraint
allows the boundary nodes to stop increasing power once
the constraint is satisfied. The geometrical interpretation of
θB < 3π/2 is that the links incident to any boundary node
cannot be confined to a single quadrant around the node.
Similarly, the θI < π constraint can be interperented as say-
ing that links incident to an interior node cannot be confined
to a single half-plane defined by a line through the node. To
analyze this algorithm, we introduce weak-monotonicity, a
less restrictive footprint model than the uniform disk model
that captures spatial correlations inherent in signal propaga-
tion and noise. Under weak-monotonicity we will first show
connectivity for GθI ,θB graphs, then generalize the result to
sensors on a sphere, and then to the infinite plane.

Definition 1. Weak-monotonicity (see Fig. 3) implies

that if �ij is an edge and k is a node where ∠jik = α and

d(i, k) ≤ cos(α) · d(i, j), then �ik is also an edge.

Weak-monotonicity is equivalent to saying that if �ij is an
edge, then i has a link to all other vertices in the circle of di-
ameter d(i, j) centered at the midpoint of the edge �ij. Note
in contrast, the uniform disk model assumes i has a link to
all other vertices in the circle of radius d(i, j) centered at
i. The first two parts of Fig. 3 depict the links that are in-
ferred from an edge (i, j) under the monotone (disk model of
coverage) and weak-monotone footprint assumtions. Notice
that weak-monotonicity no longer assumes that signal prop-
agation is monotone and isotropic, just that there are strong
spatial correlations along directions of good and bad signal
reception. Though this does not capture an arbitrary wire-
less footprint, it allows us to broaden the class of acceptable
footprints far beyond the uniform disk model.

Connectivity for any GθI ,θB graph: Let GθI ,θB be the

graph formed by APTC with the weak-monotone footprint
model. We now show that if θI < π and θB < 3π/2, then
GθI ,θB , is connected. We start by presenting a crucial lemma
that says that two distinct components cannot have crossing
edges, one from each component. This lemma uses the weak-
monotonicity condition but does not require any knowledge
of how the graph is connected.
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Figure 3: Monotonicity and weak-monotonicity implications of the edge �ij

Lemma 2. Let �G = (V, �E) be any directed graph satisfy-
ing the weak-monotonicity condition. Let G = (V, E) be the

undirected version of �G formed by making all edges bidirec-
tional. Then any two crossing edges in G must belong to the
same component.

Proof. Suppose G has two components C1 and C2 such

that �ij ∈ C1 and �kl ∈ C2 cross. The quadrilateral (i, k, j, l)
is depicted in Fig. 4. At least one angle of the quadrilateral
must be greater than or equal to π/2, and we assume without
loss of generality that it is ∠ikj. Then dik ≤ cos(α) ·dij , and

so k is contained in the circle whose diameter is �ij. Since �ij is

an edge in �G, �ik is also an edge in �G by weak-monotonicity.

This edge �ik connects C1 and C2 in G, so they lie in the
same component.

We now show that Lemma 2 is enough to ensure connec-
tivity of GθI ,θB under the weak-monotone footprint model.

Theorem 3. Let θI < π and θB < 3π/2. If GθI ,θB

satisfies the θI-constraint at every internal node and the θB-
constraint at every boundary node, then GθI ,θB is connected.

Proof. First, we observe that the proof of Theorem 1
shows that there is a path from each internal node to some
vertex on the boundary. It remains only to show that all
boundary vertices lie in the same connected component.

Suppose this is not true, and let x and y be the closest
consecutive boundary vertices that lie in different compo-
nents. Let �′ be the line through x and y, let �x be the line
perpendicular to �′ through x and �y be the line perpendic-
ular to �′ through y. (See Fig. 5.) Since the external angle
around any point on the convex hull is at least π, θB < 3π/2
implies that both x and y must have neighbors in the inte-
rior of the infinite rectangle delineated on three sides by
�x, �′ and �y. We call the neighbor of x in this rectangle x1

and, for the sake of terminology, we say that it lies to “the

i k

j

l

Figure 4: The quadrilateral formed by crossing

edges �ij and �kl.

right” of �x. We call the neighbor of y in this rectangle y1

and say it lies to “the left” of �y. As before, we continue
building a path px from x that heads to the right at each
step and a path py from y that heads to the left. These
paths must end at boundary vertices x′ and y′. If the paths
intersect or cross, then by Lemma 2 they must lie in the
same component and we have reached a contradiction. If
they do not intersect or cross, then x′ is a boundary vertex
to the left of y′ on the opposite side of the convex hull. If
they are not nearest neighbors on the convex hull, find any
two nearest neighbors on the hull lying between them that
lie in different components in GθI ,θB and call these x′ and
y′ instead. Notice that since we assumed that x and y were
the closest boundary nodes lying in different components,
we have d(x′, y′) > d(x, y); therefore the edge (x′, y′) can-
not be parallel to the edge (x, y) since x′ and y′ lie between
�x and �y . Suppose without loss of generality that the lines
through (x, y) and (x′, y′) intersect to the right of �y. As
before, let �x′ be the line perpendicular to the edge (x′, y′)
through x′, and similarly �y′ . There must be paths from x′

and y′ that cross or stay within the infinite rectangle delin-
eated by (x′, y′), �x′ and �y′ . Since the path py′ originating
at y′ must reach a point on the convex hull to the left of y,
it must intersect the path px. From Lemma 2 this proves
that x and y lie in the same component in GθI ,θB .

Connectivity on a sphere: These proofs can be gen-
eralized to a finite set of sensors on a sphere, where it is now
possible to avoid the boundary constraints altogether. We
assume that if two vertices are connected, then they take
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Figure 5: Proof of Theorem 3
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the shortest path around the sphere. In other words, even
operating at full power, we can assume that there is no link
that has length greater than half the circumference of a great
circle. We show that if the angles at each node satisfy the
θ < π constraint, then Gθ is fully connected. The proof is
similar in spirit to the finite planar setting. We first gener-
alize Lemma 2 to the sphere, and then show that any two
components must have crossing edges. Together this is suf-
ficient to demonstrate that any spherical network satisfying
the θ-constraint everywhere must be connected.

Lemma 4. Let �G = (V, �E) be a graph embedded on the
unit sphere that satisfies the weak-monotonicity condition,
and let G be the undirected version of �G. Then any two
crossing edges must belong to the same component.

Proof. Let �ij and �kl be two crossing edges. The vertices
{i, k, j, l} form a quadrilateral. This quadrilateral divides
the sphere into two pieces, and we refer to the piece contain-

ing the edges �ij and �kl as the interior of the quadrilateral.

Since the length of �ij and �kl are less than half the circum-
ference of any great circle, there must be an interior angle of
the quadrilateral that exceeds π/2. We can use the proof of
Lemma 2 to show that one of the edges of the quadrilateral
must also be a link, assuming the weak-monotone model of
coverage.

One additional lemma will be useful before stating and
proving the main theorem for points on a sphere.

Lemma 5. Let P be a polygon on the sphere, where all
the edges of P have length at most half the circumference of
any great circle. If all the angles exceed π traveling around
the polygon in one direction (viewed from one side of the
polygon), then P lies in one half-sphere.

Proof. Let e1 = (p1, p2), e2 = (p2, p3), e3 = (p3, p4) be
three consecutive edges on the polygon P , and let c be the
great circle containing e2. If all the angles exceed π travel-
ing in one direction around P , then both e1 and e3 lie on
the same half-sphere defined by c. The circles containing e1

and e3 intersect at antipodal points; let q be the one that
lies in the same half-sphere (defined by c) as e1 and e3. We
show P must lie inside the triangle defined by p2, p3 and q
(where the interior of the triangle is the side bounded by
angles that are less than π). It then follows that P lies on a
half-sphere. If P is not contained in triangle (p2, p3, q), then
there are at least two edges that start outside this triangle
and end at a vertex in or on the triangle. Following the
polygon P around starting with e2 in the direction of e3,
let ei be the first edge that ends outside the triangle. If ei

crosses the circle containing e3, then there must be an angle
that exceeded π among the first i edges. If instead it crosses
the circle containing e1, all edges crossing the boundary of
triangle (p2, p3, q) must cross the circle containing e1. Re-
peating the argument starting at e2 and proceeding around
the polygon in the other direction (first through e2), we can
similarly conclude that all edges crossing the boundary of
triangle (p2, p3, q) must cross the circle containing e3. This
is a contradiction, so all of P must lie within the triangle
and hence within a half-sphere.

Theorem 6. If Gθ lies on the sphere with θ < π, then
it is connected.

Proof. Suppose that there is more than one connected
component in Gθ, and call two of these components C1

and C2. Notice that if every vertex i ∈ V satisfies the θ-
constraint, then every vertex has degree at least 3 and each
component can be decomposed into a collection of minimal
cells containing no other points from that component. If
there are no crossing edges, then all of C1 must lie within
a single cell of C2 (and, because all the points are lying
on a sphere, this is equivalent to saying that all of C2 lies
in within a single cell of C1). If we consider the vertices
comprising these two cells, c1 in C1 and c2 in C2, it is not
difficult to see that they cannot all satisfy the θ-constraint
if θ < π. In particular, if the θ-constraint is satisfied by the
vertices in c1, then from lemma 5 c1, and hence all of C2,
lies in one half-sphere. But then the constraint cannot be
satisfied by its boundary cell c2.

Connectivity in the infinite setting: In the infinite

setting, we can establish network connectivity over R2 using
just the θ-constraint on the interior nodes, where θ = θI <
π, under the weak-monotonicity assumption. This mathe-
matical result inspired our definition of (θI , θB) graphs, but
the proofs are somewhat technical. The theorem is stated
here, but proofs deferred to a longer version to be published.

For x �= y ∈ R2 we write [x, y] for the (straight) line
segment joining x and y. For V ⊂ R2 consider a graph G =
(V, E) on vertex set V . We refer to the set ∪{x,y}∈V [x, y] as

the realization of G in R2 and say that G is a θ-graph if for
each x ∈ V every sector at x determined by the realization
of G has angle less than θ.

We show the following theorem.

Theorem 7. Let V ⊂ R2 satisfy the condition that its
intersection with every disk of finite radius is finite. Let
G = (V, E) be a θ-graph on V in the weak-monotone model
with θ < π, and suppose that there is a uniform upper bound
on the lengths of edges. Then G is connected and spans R2.

The proofs follow the general outline of the proofs from
the finite setting, although they are much more sensitive.

3.3 Connectivity for footprints that are mono-
tonic on average

Up until now we have considered constraints on the bound-
ary nodes, and from there determined requirements for the
wireless footprints. Instead here we begin with constraints
on the footprints. Though any individual footprint may have
random deviations from a uniform disk (as shown in Fig. 1),
here we assume that the average over all footprints is mono-
tonic and isotropic. Given this, we can relax all constraints
on boundary nodes and still show connectivity, with high
probability, provided θI < π. In such cases boundary nodes
would just follow the APTC protocol and set their operating
power accordingly. Recall the discussion in Sec. 2 of empir-
ical wireless footprints and the definition of a “good link”,
which leads us to the following definition.

Definition 2. For an arbitrary footprint, let P (d) be the
probability of packet reception at distance d from the source.
We say the footprint is isotropic and monotonic on average
if P (d) has no dependence on angle (isotropic), and decays
monotonically with d.

Note, for the disk graph assumption of strict monotonicity
for a disk of radius r, P (d) = 1 if d ≤ r, and P (d) = 0 if
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d > r. In addition, considering the definition of a “good
link”, if i and j are vertices in G(V, E) and �ij is an edge in
G(V, E), then P (dij) > Γ.

Consider components C1 and C2 each satisfying the θ-
constraint. As mentioned during the discussion of connec-
tivity on a sphere, each component can be decomposed into
a collection of convex minimal cells. Each time cells from
the distinct components intersect, this results in a cross-
ing edge. In most practical implementations, there will
be many such crossing edges. Let M denote the number.
Each pair of crossing edges (see Fig. 4) forms a quadrilat-

eral where some d(i, k) ≤ d(i, j) while edge �ij ∈ G(V, E).
P [d(i, k)] ≥ P [d(i, j)] > Γ, holds for each set of crossing
edges independently. Thus the probably the components are
not merged by a particular crossing edge is less than (1−Γ),
and the probability they are not merged by M independent
crossing edges is less than (1 − Γ)M . Setting Γ = 0.65 as in
[8], if M = 5 the probability that a crossing edge will merge
C1 and C2 exceeds 99.5%.

4. BEHAVIOR ON RANDOM DISTRIBU-
TIONS

There are many advantages to assuming the idealized uni-
form disk coverage model. From an implementation perspec-
tive, it simplifies protocols and ensures reciprocity of signal
reception. Analytically, it simplifies analysis, and allows us
to prove additional features of the algorithm. We prove that
under the disc model of coverage, the graph is sparse, the
radii of the disks are tightly distributed, and moreover, when
θ ≤ 2π/3, greedy routing works.

4.1 Sparseness of Gθ

Consider a Poisson distribution of points on a two-dimensional
plane. Starting with an isolated node we consider the pro-
cess of that node building up connectivity via the APTC
algorithm. We show the resulting graph is sparse: that is,
the average degree of the graph is constant.

Theorem 8. If the vertices are distributed uniformly at
random in the plane, Gθ is sparse.

Proof. Consider an individual node ramping up power
according to the APTC algorithm. The node accumulates
connected neighbors which divide the area around it into
sectors. The node stabilizes its operating power when the
angle of the largest sector is less than θ, where θ = 2πA for
some fixed A ∈ (0, 1). For instance, if A = 1/2 then θ = π,
this is equivalent to stopping once the point is inside the
convex hull of its neighbors.

If Q(t) is the probability this holds after t points, then the
out-degree distribution P (t) of the adaptive power model is
the probability that it first happens after t points, i.e.

P (t) = Q(t) − Q(t − 1) .

Now, recall that, for t ≥ 2, choosing numbers a1, a2, . . . , at

uniformly conditioned on
Pt

i=1 ai = 1 is equivalent to choos-
ing a uniform point �a inside a (t−1)-dimensional equilateral
simplex S of height 1, where the ai are the lengths of the
perpendiculars from �a to the t, (t − 2)-dimensional faces.
Then the event that the largest angular gap is less than θ
is equivalent to the event that �a is within a distance A of
every face (giving us an excluded area).

For simplicity we consider two particular values of θ. For
θ = π, we have A = 1/2, and the excluded areas are t
simplices of height 1/2. Each of these contains a fraction
1/2t−1 of the volume of S, so we have

Q(t) = 1 − t

2t−1

for t ≥ 1, and

P (t) =
t − 2

2t−1

for t ≥ 2. Amusingly, the average out-degree is then an
integer:

t =
∞X

t=2

P (t) t = 1 +
∞X

t=0

t(t − 2)

2t−1
= 5

and the variance, t̄2 − t̄2, is 4.
For the stronger constraint θ = 2π/3, in which case A =

2/3, the expected out-degree is higher but is still a constant.
Now each pair of excluded simplices has an intersection con-
sisting of a simplex of height 1/3 lying on the center of one
edge. By inclusion-exclusion, we have

Q(t) = 1 − t

„
2

3

«t−1

+

 
t

2

!„
1

3

«t−1

for t ≥ 1, and so

P (t) = (t − 3)
2t−2 − t + 1

3t−1

for t ≥ 2. The average out-degree is then 71/8 = 8.875 and
the variance is 783/64 = 12.2344.

It is easy to show that the radius and link length distribu-
tions are tightly concentrated in the following sense: there
is a constant C such that, in a network of n nodes uniformly
distributed in the unit square, with high probability no ra-
dius or link is longer than C

p
(log n)/n. Thus the maximum

power requirements increase very slowly as a function of n.

5. GREEDY ROUTING WORKS
One intuitive approach to routing on a wireless network is

to pass the packet from its current location s to whichever
neighbor is closest to the destination t. This greedy ap-
proach seems to have been first considered by Finn [13],
who noted that it can get stuck at a local optimum where
every neighbor of s is farther from t than s is. Karp and
Kung [9] called the space between s and t a “void”, and pro-
posed a protocol called Greedy Perimeter Stateless Routing
(GPSR) that moves counterclockwise around the face of the
graph containing the void until we reach the destination or
greedy routing can resume. In order to ensure that this ap-
proach works, they first “planarize” the graph by reducing
it to the Relative Neighborhood Graph (RNG) [14] or the
Gabriel Graph (GG) [15].

In Ref. [16] the authors remark on the fact that greedy
routing always works, assuming the uniform disk footprint
model, and that the angular gap between neighbors is at
most 2π/3. Here we prove a more general result about
when greedy routing works even if the footprint is not a
uniform disk. Instead we require that the footprint contain
some smaller region which is a uniform disk, as shown in
Fig. 6(a). More precisely we require that each vertex con-
tains a disk whose radius is some constant fraction of the
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Figure 6: Left, a footprint with eccentricity a; right,
the proof of Theorem 9.

distance to their farthest neighbor. Let us say that a net-
work has eccentricity a ≥ 1 where a is the smallest constant
with the following property: for every u and v, if u and
v are connected, then u is connected to every w such that
d(u, w) ≤ d(u, v)/a.

The next theorem states that as long as a < 2, there is
some θ = θ(a) such that if the angular gap between neigh-
bors is at most θ, then the packet gets closer to its destina-
tion on each step. For simplicity we ignore edge effects and
assume that the network is spread throughout the plane.

Theorem 9. Suppose a network has eccentricity a where
a < 2. Let θ = 2 cos−1(a/2) and let ε > 0, and suppose that
every vertex u has at least one neighbor in every sector of
angle θ − ε. Then for every pair of vertices u and v, u has
at least neighbor w such that d(w, v) < d(u, v). Therefore,
greedy routing on Gθ always succeeds.

Proof. Consider the right-hand part of Figure 6. By
hypothesis, u has a neighbor w somewhere in the sector
between x and y. If this neighbor is inside the circle centered
on v, then d(w, v) < d(u, v) and we are done; but if it is
outside the dashed circle centered on u, then u and v are
neighbors by the definition of eccentricity. By inspection we
have cos(θ/2) = a/2.

When a = 1, we have the uniform disk model of cover-
age, and find that θ = 2π/3, in agreement with the remark
in [16]. Unfortunately, if a > 2 then there are arrangements
of vertices in the plane such that greedy routing fails: for ex-
ample, if the destination v is surrounded by a ring of vertices
which are connected to each other but not to v.

6. DISCUSSION
We have shown it is possible to guarantee global con-

nectivity using only local geometric constraints. We ex-
plored tradeoffs between constraints on interior and bound-
ary nodes and showed that with modest boundary require-
ments, the constraints on interior nodes and footprints can
be relaxed while connectivity is still guaranteed. Many such
tradeoffs exist in cooperative networked environments.

We introduced a “weak-monotonicity” model of wireless
footprints which is much less restrictive than the idealized
disk model; while the latter is most common model currently
used for analysis, it is highly unrealistic. Weak-monotonicity
captures the correlations of signal strength with direction
without assuming isotropy. We showed that our approach
ensures global connectivity under this weaker model; we also

considered a “bounded eccentricity” model of the wireless
footprint, and showed in that model how to ensure that
greedy geometric routing always succeeds.

Our proofs are constrained to nodes on R2 or a sphere.
Determining a corresponding geometric constraint for three-
dimensional systems would be extremely interesting.
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