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ABSTRACT 

Write ~- for the set of homomorphisms from {0, 1} d to Z which send 0 

to 0 (think of members of S as labellings of {0, 1} d in which adjacent 
strings get labels differing by exactly 1), and Jr'/ for those which take on 

exactly i values. We give asymptotic formulae for 171 and [Fi[. 

In particular, we show that the probability that a uniformly chosen 

member f of F takes more than five values tends to 0 as d -+ oc. This 

settles a conjecture of J. Kahn. Previously, Kahn had shown that there is 

a constant b such that f a.s. takes at most b values. This in turn verified 

a conjecture of I. Benjamini et al., that for each t > 0, f a.s. takes at 

most td values. 

Determining l~-l is equivalent both to counting the number of rank 

flmctions on the Boolean lattice 2[ d] (functions f: 2[ d] ---+ N satisfying 

f(0)  = 0 and f ( A )  _~ f ( A U x )  ~ f ( A ) + l  for all A C 2 [d] and x G [d]) and 
to counting the number  of proper  3-colourings of the discrete cube (i.e., 

the  number  of homomorphisms from {0, 1} a to K3, the complete graph 
on 3 vertices). 

Our proof uses the  main lemma from Kahn 's  proof of constant  range, 
together  with some combinatorial  approximat ion techniques introduced 

by A. Sapozhenko. 
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1. I n t r o d u c t i o n  

D. GALVIN Isr. J. Math. 

1.1 BACKGROUND AND STATEMENT OF THE RESULT. Write Qd for the d- 

dimensional  H a m m i n g  cube (the graph whose ver tex set is {0, 1} d and in which 

two vertices are joined by an edge if they differ in exact ly  one coordinate) .  Set 

-- {f :  V(Qd)  -+ Z: f(0_) = 0 and u ~ v ~ I f (u )  - f (v ) l  = 1}. 

(Tha t  is, 5 ~ is the set of g raph  homomorph i sms  from Qd to Z, normalized to 

vanish a t  0.) 

In [2], this set of functions is studied from a probabil ist ic  point  of view, a 

mot iva t ing  idea being tha t  a typical  element of ~ should exhibit  s t ronger  con- 

centrat ion behaviour  than  an a rb i t ra ry  element. P u t  uniform probabi l i ty  measure  

on P ,  and define the function R on 9 ~ by R ( f )  = {f (v) :  v E V (Qd)}  (R  is the 

r a n g e  of f ) .  In [2] the following conjecture is made abou t  the concentra t ion of 

IRI: 

CONJECTURE 1.1: For each t > 0, P ( I R  I > td) -+ 0 as d -+ c~. 

In [7], something stronger  is proved, and something s t ronger  still conjectured: 

THEOREM 1.2: There is a constant  b such that  P(IR]  > b) = e -a(a) .  

CONJECTURE 1.3: P(IRI  > 5) = c -~(d) and P( IRI  = 5) = ~2(1). 

In this pape r  we prove Conjecture  1.3 by (asymptot ical ly)  counting the number  

of homomorph i sms  with various ranges. Specifically, if we set 

. r ,  = {y  e . r :  IR(f ) I  = i}, 

we prove 

THEOREM 1.4: 

19cl =(2e  + e -a (d ) )22" - '  , 

If3L =(2 + e-~(d))22"-1, 

If41 = (4v~  - 4 + ~-a(d))22d-', 

which gives Conjecture 1.3. Set t ing 5~<5 = Ui<5 -Pi, we see tha t  Theorem 1.4 has 

the following weaker but  more elegantly formulated consequence: 
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_ 9 2d--1 
C O R O L L A R Y  1 . 5 :  I.)t'l ~ I.fi'<51 ~ . C 2  . 

Corollary 1.5 makes sense: a little thought suggests that  a typical member  of 

should be constant on either even or odd vertices of the cube, except for a 

small set of "blemishes" on which it takes values 2 away from the predominant 

value, and take just two values on vertices of the other parity. 

The problenl under discussion is equivalent to the question of the number 

of rank functions on the Boolean lattice 2 [d] (here [d] = {1 . . . . .  d}). A r a n k  

f u n c t i o n  is an f :  2 [d] ~ N satisfying f(0)  = 0 and f(A) <_ f(AUx) <_ f (A)+ 1 
for all A E 2 [d] and x E [d]. An easy lower bound on the number of rank functions 

is 22~-1 (consider those functions which take the value k/2 on each element of the 

kth level of the Boolean lattice for each even k). Athanasiadis [1] conjectured that  

the total  number of rank functions is 22~-1(1+°(1)). This conjecture is proved in 

[8], where it is further conjectured that  the number is in fact 0(22d-1). Theorem 

1.4 answers this conjecture in the affirmative; for, as observed by Mossel (see [7]), 

there is a bijection from the set of rank functions to F:  identifying a subset A 

of [d] with a vertex of Qd in the natural way, the bijection is given by g - -+  f 

where f(A) = 2g(A) - I A I .  

Theorem 1.4 also provides information about the nmnber of proper 3-colourings 

of Od. A p r o p e r  3 -co lour ing  of a graph G with vertex set V and edge set E is 

a function \ :  V ~ {0, 1, 2} satisfying (x, y) E E ~ l(x) ¢ )i(Y). Theorem 1.4 

implies that  the number of proper 3-colourings of Qd is asymptotic to 6e2Sd-~; 

for, as observed by Randall [13], there is a bijection from .P to the set of proper 3- 

colourings of Qd with \ (0)  = 0: the bijection is given by f ~ ~/where ~(v) = i 

iff f (v)  ----i (rood 3). 
The main inspiration for the proof of Theorem 1.4 is the work of A. Sapozhenko 

who, in [15], gave a relatively simple derivation for the asymptotics of the number 

of independent sets in Qd (earlier derived in a more involved way in [11]). Our 

Lemma 7.2 is a modification of a lemma in [14], and our overall approach is 

similar to [15]. The other key ingredient in our proof is the main lemma from 

[7], which was already used by Kahn to give Theorem 1.2. 

In the rest of this section, we establish basic notation and gather together the 

main external ingredients that  will be used in the proof of Theorem 1.4, before 

giving an outline of the rest of the paper. 

1.2 NOTATION AND CONVENTIONS. For graph theory basics, see e.g. [4], [5]. 

For basics of the combinatorics of the Hamming cube, see e.g. [3]. 

The Hamming cube Qd is a d-regular, biparti te graph. Write V for the vertex 

set of the cube, E for the set of even vertices (those whose/)1 distance from 0 is 
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even) and O for the set of odd vertices. Set M = 2 d-1 = Igl = IOI. 

For u, v E V and A, C C_ V we write u ~ v if there is an edge in Qd joining u 

and v, V(A) for the set of edges having exactly one end in A and (when A~C = ~) 
V(A, C) for the set of edges having one end in each of A, C. 

Set N(u) = {w • V: w ,.~ u} (N(u) is the n e i g h b o u r h o o d  of u). Set 

N(A) = UwEA N(w), Nc(u) = {w • C: w ~., u}, No(A) = UweA Nc(w), and 

de(u) = INc(u)l. Set B(A) = {v • V: N(v) C_ d}. 

Write p(u, v) for the length of the shortest u-v path in Qd, and set p(u, A) = 

min,oeA{p(u, w)} and p(d, C) = min~,eA,w,ec{p(w, w')}. 

We say that  A is k- l inked if for every u ,v  • A there is a sequence u = 

u0, u b . . . , u t  = v in A w i t h p ( u i , u i + l )  < k for i = 0 , . . . , 1 - 1 .  Note that  for 

any k, A is the disjoint union of its maximal k-linked subsets we call these the 

k - c o m p o n e n t s  of A. Write C -4 A if C is a 2-component of A, and c(A) for the 

number of 2-components of A. 

We say that  A is sma l l  if ]A] < Oz d for a certain constant ct < 2 that  will be 

discussed in Section 2 (and l a rge  otherwise), s p a r s e  if all the 2-components of 

A are singletons (and n o n - s p a r s e  otherwise), and n ice  if A is small, 2-1inked 

and of size at least 2. Note that  all sets A that  we will consider will satisfy either 

A C _ g o r A C O .  

For integers a < b we define [a, b] = { a , . . . ,  b}. 

We use "ln" for the natural  logarithm and "log" always means the base 2 loga- 

rithm. The implied constants in the O and f~ notation are absolute (independent 

of d). We always assume that  d is large enough to support our assertions. No 

a t tempt  has been made to optimize constants. 

1.3 EXTERNAL INGREDIENTS. We list here the main results that  we will be 

drawing on in the rest of the paper. 

We begin with a lemma bounding the number of connected subgraphs of a 

graph. The infinite A-branching rooted tree contains precisely 

An (n) 
(A - 1)n + 1 

rooted subtrees with n vertices (see e.g. Exercise 11 (p. 396) of [9]) and this 

implies that  if G is a graph with maximum degree A and vertex set V(G) then 

the number of n-vertex subsets of V(G) which contain a fixed vertex and induce 

a connected subgraph is at most (cA) n. (This fact is rediscovered in [14].) We 

will use the following easy corollary. 
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LEMMA 1.6: Let E be a graph with vertex set V(E) and ma~ximum degree A. 

For each fixed k, the number of k-linked subsets of V(E)  of size n which contain 

a fixed vertex is at most 2 °0~ log A). 

This follows from the fact that  a k-linked subset of E is connected in a graph 

with all degrees O(Ak+l) .  

The next lemma is a special case of a fundamental result due to Lov~sz [12] 

and Stein [16] (see also [6]). For a biparti te graph E with bipartit ion X U Y, say 

Y' C_ Y cove r s  X if each x C X has a neighbour in Yq 

LEMMA 1.7: I r a  bipartite graph E with bipartition X U Y satisfies d(x) >_ a for 

all x C X and d(y) <_ b for all y E Y ,  then X is covered by some Y~ c_ Y of size 

at most ([Yl/a)(1 + Ink). 

The next lemma is from [14] (see Lemma 2.1); the reader should have no 

difficulty supplying a proof. 

LEMMA 1.8: Let E be a graph on vertex set V(E). I f  A C_ V(E) is k-linked and 

C C V(E) is such that p(u, C) <_ I for each u E A and p(v, A) <_ l for each v E C, 

then C is (k + 2l)-linked. 

The main step from the proof of Theorem 1.2 in [7] (obtained via entropy argu- 

ments) will also be used here. For f C J ' ,  set C( f )  = {v E V: fiN(v) is constant}. 

LEMMA 1.9: For u ~ v and f drawn uniformly from 3 c, P(l{u, v} N C(f)[ = 1) = 
1 - e -f2(d). 

Finally, we need to know something about isoperimetry in the cube. A 

H a m m i n g  bal l  c e n t e r e d  a t  x0 in Qd is any set of vertices B sat is[ving 

{u c V: p(u, xo) <_ k} C_ B c {u E V: p(u, Xo) <<_ k + l}  

for some k < d. An e v e n  (resp. odd )  H a m m i n g  bal l  is a set of vertices of the 

form B M g (resp. B O O) for some Hamming ball B. We use the following result 

of Khrner and Wei [10]. 

LEMMA 1.10: For every C C_ £ (resp. O) and D C_ V, there exists an even 

(resp. odd) Hamming ball C' and a set D' such that [C'[ --- ]C[, ID'I = Iol and 

p(C', O') > p(C. O). 

1.4 OUTLINE. The rest of the paper is organized as follows. 

In Section 2 we use Lemma 1,9 to reduce Theorem 1.4 to the problem of 

counting the number of homomorphisms which are predonfinantly 0 on g. The 
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easy lower bounds on the number of homomorphisms which take on four and 

five values are given in Section 3. In Section 4 we examine a general type of 

sum over small subsets of E and establish some of its properties. In Section 5 

we write down all explicit sum of the type examined in Section 4 for the number 

of homomorphisms which are predominantly 0 on £. The rest of the paper is 

devoted to estimating this sum. In Section 6 we establish lower bounds on the 

sizes of neighbourhoods of single-parity sets in the cube. In Section 7 we arrive 

at the heart of the matter ,  showing that  the set of nice subsets of $ can be "well- 

approximated" in a precise sense by members of a "small" collection; this allows 

us to swiftly complete the proof of Theorem 1.4 in Section 8. We postpone a 

more detailed outline of the latter portion of the argmnent until the beginning 

of Section 7. Finally, in Section 9, we make some brief remarks on the proof and 

possible extensions of the techniques used. 

2. R e d u c t i o n  to  m o s t l y  c o n s t a n t  

We begin the proof of Theorem 1.4 by using Lemma 1.9 to reduce the problem 

to that  of counting homomorphisms which mainly take a single value on E. 

There is an inherent odd-even symmetry  in the problem; we now reformulate 

slightly to make use of this. Write 

.A = {f: V --+ Z: u , - ~  v ~ I f ( u )  - f ( v ) l  = 1) 

and write 0 for the quotient of A by the equivalence relation 

f = g  ~ f - g i s c o n s t a n t o n V .  

For each f E A write [f] for the equivalence class of f in B. Noting that  R is 

constant on equivalence classes, we may define 

Oi : {[f] e O: IR(f)I = i). 

Clearly IBil = I~]  for each i (~" is a complete set of representatives for B). 

For f E ,4, we say that  f is m o s t l y  c o n s t a n t  on  $ if there is some c such 

that  {v C E: f (v )  ¢ c} is small (see Section 1.2 for the definition of small; the 

constant c~ in that  definition will be specified in the proof of Lemma 2.2), and 

we define m o s t l y  c o n s t a n t  o n  (9 anMogously. These definitions respect the 

equivalence relation, so we may define 

B E = {[f] E 0: f is mostly constant on E}. 
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Define B ° analogously. By symmetry,  IBEI ---- IB°[ (any automorphism of Qd 
that  sends g to O induces a bijection between the two sets). 

LEMMA 2.1: [B C A B°[ = e-a(d)lB 1. 

Proof." To specify an If] E B E N B ° we first specify the predominant values of 

the representative f on g and O. W.l.o.g. we may assume that  the predominant 

value on g is 0, and so the predominant value on O is one of 4-1. We then specify 

the small sets from $ and O on which f does not take the predominant values, 

and finally the values of f on these small sets. Noting that  once f (v)  has been 

specified for any v E 1/ there  are most 2d + 1 values that  f can take on any other 

vertex and that  2 M is a trivial lower bound on IBI, we get 

]BcNB°] -<2  E ( ~ / ) ( ~ I )  (2d+l ) i+j  
i,j<_c~ d 

<e-~(d) lN. 

LEMMA 2 . 2 :  IB] = (2 4- e-a(d))lBc[. 

Proof: For f C A, set C( f )  = {v e V: f iN(v) is  constant} (extending the 

definition given in Section 1.3). We choose a uniform member If] of B by choosing 

f unifornfly from ~-. For [f] and u, v E V, let Q~ be the event {u G C(f)},  Q5 the 

complementary event, Q ~  = Qu A Q~ and Q~-T = Q~-N Q~. Write K~ = Ku(f)  

for the set of vertices that  can be reached from u in C(f)  via steps of size exactly 

2, and let Q*,, be the event {v C K~}. (Note that  if f , g  E A are equivalent then 

C( f )  = C(g), so all these events are well defined.) 

Let u and v be two vertices of the same parity. We claim that  Q-a-euQ*~, occurs 

with probability 1 - e  - f ~ ( d ) .  For, let ua la2 . . . a2k - l v  be a u-v path  of length at 

most d (the diameter of Qd). Writing a0 for u and a2k for v, we have 

* ~ 2 k - l l t ,  D _ _  
Q ~  u Q~, 2 ~=0 ,-~,~,+~ u Q<~,+~). 

By Lemma 1.9, P(Qa,a-;~ u Q~a~+,) = 1 -  e -~(d) for each i. Hence 

P ( Q ~  U Q*~) >_ 1 - de -~(d) = 1 - e -~(d), as claimed. 

We therefore have, for fixed u E V and any v of the same parity as u, 
p * (Quv[Qu) > 1 c -d,  where c > 1 is fixed. So, conditioning on Qu, we have 

E(l{v: p(.u,v) even, v ¢ K.~}I ) _< (2/c) d, 

so that,, by Markov's Inequality (with the constant c' chosen so that  2/c < c' < 2), 

(1) P ( l I ( u l  < M - ( c ' ) d lQ~)  < ( 2 / e c ' )  d = e - n ( d ) .  
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If u ~ C(f) ,  then t(~(f)  = 0, so that P(It(~I < M - (c')dlQg) = 1. By 

symmetry, P(Q~v) is the same for every adjacent u and v, and this together with 

Lemma 1.9 gives 1/2 + e -a(d) > P(Qu),  P(Qg) > 1/2 - e -n(d) .  Combining these 

observations with (1), we get 

P(IK~I < M -  (c') d) < 1/2 + e -a(d).  

Noting that f is constant on the neighbourhood of K~, this says (taking u to be 

any vertex in (9) that there is a constant/3 < 2 such that 

P ( f  is constant on a subset of g of size at least M - /34)  > 1/2 - e - f ~ ( d ) .  

Taking c~ =/3  in the definition of small, this says 

I~EI _> ( 1 / 2 -  ~-a(d))lBI. 

The lemma now follows from Lemma 2.1. 1 

It is now convenient to choose as a complete set of representatives for B E the 

collection 
~T "£ = {f  • ,A: c \ f - l ( 0  ) is small}. 

Set 

9c~ = { f  e S :  [R(f)l  = i}. 

Noting that I$-~l >_ 2 M, we see that Theorem 1.4 will now follow from 

THEOREM 2.3: 

(2) I S I  <(¢ + e-a(d))2 M, 

(3) 17~1 > ( 2 ~  - 2 - ~ -~(d) )2~ ,  

(4) i~hC[ >(c - 2x/~+ 1 - e-~(d))2 M. 

It is this that we proceed to prove. 

3. Lower  b o u n d s  on  Ibr4EI and  ]$-5EI 

The aim of this section is to prove (3) and (4). 

With each sparse A C_ g of size at least 2 we associate a subset 5ChC(A) C_ ¢'5 E 

of size 
(2IAI _ 2)2M-dl A] = 2MAI- IAI (1  _ 2-IA[+ 1) 

consisting of those f e 5c5 E for which R ( f )  = [-2,  2] and f -1 ({+2})  = A (on A, 

choose values for f from { i2} ,  choosing at least one 2 and at least one -2 ;  on 
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g \ A give f value 0; and on O \ N(A) choose values from {+1},  all choices made  

independent ly) .  Then  ~ '~(A) A .T~(B) = 0 whenever A # B. Noting t ha t  there 
M - 2  are a t  least (~I) _ Md2(k_2) sparse subsets of g of size k, and tha t  for k _< d, 

this number  is (1 - e - ~ ( d ) ) ( ~ ) ,  we can lower bound  I.TsEI by 

ImSI _>2" ~ I{A c c: A sparse,  IAI = k } l M - k ( 1  - 2-k+l) 
k>2 

d 

> _ 2 M ( l - - e - f ~ ( d ) ) E ( f ) M - k ( l - - 2 - 1 " + l  ) 
k=2 

d 

>2M(1 -- e -a(d))  E ( 1  -- e-a(a))(llk!)(1 - 2 -k+ l )  
/,'=2 

d d 

> 2 M ( l - - e - f t ( d ) ) ( E l l k ! - - 2 E 2 - k l k !  ) 
k=2 k=2 

_>2M(1 -- e-~(d))((e - 2) - 2(v/e - 3/2))  

>_2M(e -- 2v"-e ÷ 1 - e-fl(d)), 

so we have (4). 

We do something  similar for (3). Wi th  each non-empty,  sparse A C_ g we 

associate a subset  .T4E(A) C ~-4 E of size 

21+M-diAl = 2M M-IAI2-1AI+ 1 

consisting of those f E -~4 ~ for which either R(f)  = [ -2 ,  1] or R(f)  -- [ -1 ,  2] and 

f - l ( { + 2 } )  = A (choose a value from 4-2 for f to take on .4; on £ \ A  give f value 

0; and choose values from +1 on (9 \ N(A), all choices made  independent ly) .  So 

We h a v e  

If~l >2" Z I(a ~_ E: A s p a r s e ,  IA[ = k}lM-k2 -a:+' 
k > t  

>2M(2v/~ -- 2 -- e -a(d) ) .  

4.  S u m s  o v e r  s m a l l  s u b s e t s  o f  g 

In this section, we examine a certain kind of sum tha t  will arise when we t ry  to 

write down an explicit expression for 15rEI. Specifically, we prove 

LEMMA 4.1: Suppose that g: 2 g --~ R + satisfies 

(5) g(A) = H{g(A~): .~, ~ :a}, 

(6) g({y}) = c2 -d for all y C $ for some constant e> 0 
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and 

(7) E g(A) = e -n(d). 
A nice 

Then for all D C_ E, 

g(A) - (1 + c2-~) j~l = ~-~(d/. 
ACD, A small 

Remark: Because 0 -~ 0, any g satisfying (5) must also satisfy g(0) = 1. 

Proof of Lemma 4.1: All summations below are restricted to subsets of D. We 
begin by observing that (1 + c2-d) lOB ~- ~,A clAI2-d[AI and that if A is sparse 
then g(A) = cIAI2 -diAl, SO that 

I I I  I I I  

A small 

where )-~' is over A small and non-sparse, )--~" is over A large and ~-~,,i is over A 

non-sparse. 

We bound each of the terms on the right-hand side of (8). For the first we 

have 

f i g ( A )  <_ E { g ( A ' ) g ( A ' \  A): A' nice, A small, A' -~ A} 

< ~ g(A') ~ g(A) 
A' nice A small 

(9) =e-~(d) E g(A). 
A small 

For the second we have 

(10) 

I !  

E c]A[2-dIA] ~-- E cIAI2--dIAI 

iAi>d 
IDI 

i = d  

i>d 

_-e-a(a). 
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Finally, for the third we have 

(11) 

I I I  

x,xrED,p(x,x ')=2 A 

~_lDIc2d22-2d(1 + c2-d) IDI 

--e-ft(d). 

Combining (9), (10) and (11) we get 

(12) Z g ( A ) - - ( l + c 2 - d )  IDI =e-n(d) (  
A small 

(13) --e -n(d). 

E g(A) + 1) 
A small 

(We get (13) from (12) because the latter implies that y~Asm~ug(A) is 

bounded.) | 

The most important g that we will be considering is 

g(A) = 2 - IN(A) I+IB(A) I  

(recall that B(A) = {v • N(A): N(v) C_ A}). It is easy to see that this satisfies 

(5) and (6) (with c -- 1). It is far fi'om obvious that it satisfies (7): Sections 7 

and 8 are devoted to the proof of this fact, which we state now for use in Section 

5. 

THEOREM 4.2: ~AC_~,~c~ 2--1N(A)[+IB(A)[ = e - ~ ( d ) "  

5. P r o o f  of  (2) 

In this section, we write an explicit sum of the type introduced in Section 4 for 

15rct and use Lemma 4.1 to estimate it, modulo Theorem 4.2. This will give (2). 

For each small A C C, set 

5rE(A) = {f  • 5rE: f -x(0)  = $ \ A}. 

We may specify an f • 5rE(A) by the following procedure. First, noting that 

f must be either always positive or always negative on a 2-component of A, we 
specify a sign (+) for each such 2-component. Next, we specify a nested sequence 

A = C2 ~_ C4 ~_ . "  9_ C2[d/21. 
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For each i = 1 , . . . ,  [d/21, C2i = {u E g: If(u)l  2/}. Because the d iameter  of 

Qa is d, we have If(u)l _ 2[d/21 for all u e g,  so this second step completes  

the specification of f on g. Note tha t  not every sequence of C2i's gives rise to a 

legi t imate  f E .~-e. 

To specify f on (9, we first specify a value from +1 on each ver tex of O \ N ( A ) ,  
and then, for each i = 1 . . . .  , [d/2], specify a value f rom 2i + 1 for If(u)] for each 

u • B(C2i)\N(C2i+2) (note tha t  the sign of f(u) for such u has been de termined  

by the specification of signs on A). To see tha t  this completes  the specification 

of f on (9, note t ha t  we have a choice for the value of If[ at  u • N(A) iff f 

is constant  on N(u) iff u • B(C2i) \ N(C2i+2) for some 1 < i < [d/2] (set t ing 

C2[d/21+2 = 0), and tha t  in this case we can choose f rom two possible values, 

2i + 1 (see Figure 1). 

I 

f i 

t " '"  a B ( C ~ ) ,  

• . .  ~ C s  

Figure 1. A ver tex in N(A) \ B(A) has neighbours in bo th  g \ A and 

A, and a ver tex in N(C4)  \ B(C4) has neighbours in bo th  A \ C4 and 

C4, but  a ver tex in B(A) "-. N(C4) only has neighbours in A \ C4. 

So, noting tha t  N(C2i+2) C_ B(C2i) for each i = 1 , . . . ,  [d/2], we have 

[all21 
IfC(A)l = 2c(A)+M-IN(A)I+ImA)I Z 1-I 2-1N(C,,)I+IB(C=,)I 

i=2  

where the sum here and in the next  line --- is over all legi t imate choices of 

6',2 D .. .  D C2[e/2]. Sett ing 

[all2] 
h(A) = 2 ~(A)-IN(A)HB(A)I ~ I-[ 2-[uCc~)I+IB(c=~)I 

/=2 

we get 
17 1=2 M h(A). 

A C E  small 
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We claim that  h satisfies all the conditions of Lemma 4.1. For A = {y} we 

have B(A) = 0, and so h(A) = 21-d; this gives (6) (with e = 2). To see that  h 

satisfies (7), note that  for each A C_ g small, each C2i is a small subset of A, and 

so we can crudely upper bound h(A) by 

(14) 

h(A) ~2c(A)-IN(A)I+IB(A)I ( CCA~smalI2-1N(C)I+IB(C)I) [d/2] 

<U (A)-fN¢A)I+IB(A)I((1 + 2-d) ~ + -a(d))[d/2] 

_(1 + o(1))2 c(A)-IN(A)I+IB(A)I. 

The inequality in (14) is obtained by applying Lemma 4.1 and Theorem 4.2, and 

(7) for h now follows directly from Theorem 4.2. Finally, to establish (5) for 

h, note that  C2 _D C4 _D . . .  _D C2[d/2] is a legitimate sequence of C 's  for A iff 

C2 n Ai D_ C4 N Ai D_ ... D_ C2[d/21 VIAi is a legitimate sequence for Ai for each 

2-component Ai of A, from which the claimed factorization of h(A) follows. 

We can now easily establish (2), thus completing the proofs of Theorems 2.3 

and 1.4. Applying Lemma 4.1, we have 

( ' h,A, ,1 ) I I H I  - e2MI ---2 M \ - - 2 ' -d ) lE l l  ÷ 1(1 - 2 1 - d )  ICl - el 

=e-~(d)2 M, 

where ~ is over A C_ $ small. 

6. I s o p e r i m e t r y  in t h e  c u b e  

The aim of this section is to put some lower bounds on the neighbourhood size 

of a small set in Qd. We begin with 

LEMMA 6.1: For all A C_ g or A c (9 small, IA] < (1 - fI(1))IN(A)I.  

Proof'. By symmetry,  we need only prove this when A C_ £. Let small A _C g be 

given. Applying Lemma 1.10 with C = A and D = V ", (AUN(A)),  we find that  

there exists an even Hamnfing ball A' with IA'] = IAI and IN(A)I >_ IN(A')I. So 

we may assume that  A is a small even Hamming ball. 

We consider only the case where A is centered at an even vertex, w.l.o.g. 0_, 

the other case being similar. In this case, 

{v E £: p(v,0) _< k} c_ A c {t, C $: p(v,_0) _< h + 2} 
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for some even k << d/2 - ~(d) (the bound on k coming from the fact that  A is 

small). For each 0 < i < ( k + 2 ) / 2 ,  set Bi = An{v: p(v,O_) = 2i}, and N+(Bi) = 
N(Bi) N {u: p(u,O) = 2i + 1}. It  is clear that  N(A) = Uo<i<(k+2)/2N+(Bi) and 

that  for i = 0 . . . .  , (k + 2)/2 

(15) IBil < 2 i + 1  
[N+(Bi)[ - d -  2i 

(16) =1 - gt(1), 

from which the lemma follows. The inequality in (16) comes from the bound on 

k. The inequality in (15) is actually an equality except when i = (k + 2)/2, in 

which case it follows from the observation that  each vertex in Bk+2 has exactly 

d - (k + 2) neighbours in N+(Bk+2), and each vertex in N+(Bk+2) has at most 

(k + 2) + 1 neighbours in Bk+2. 1 

Lemma 6.1 is true for all small A, but  can be strengthened considerably when 

we impose stronger bounds on IA[. In this direction, we only need the simple 

LEMMA 6.2: If [d[ < d °(1) , then [A I < O(1/d)[N(A)l, and if [A[ < d/2, then 
[N(A)[ _> diAl-  2[A[(IAI- 1). 

Remark: Note that  the second statement is true for all A, but vacuously so for 

IAt > g/2. 

Proof of Lemma 6.2: If IA] < d °(~), then we have k -- O(1) in the nota- 

tion of Lemma 6.1, and repeating the argument of that  lemma we get [AI _< 

O(1/d) IN(A)I. 
For the second part,  note that  each u G A has d neighbours, of which at least 

d - 2(IA[ - 1) must be unique to it, since a pair of vertices in the cube can have 

at most two common neighbours. II 

From here on, the only properties of the cube that  we will use are the isoperi- 

metric bounds of Lemmas 6.1 and 6.2. 

7. The main approximation 

We now begin the proof of Theorem 4.2. The approach will be to parti t ion the set 

of A's over which we are summing according to the sizes of A, N(A),  B(A) and 

N(B(A)) (note that  the summand in Theorem 4.2 is constant on each parti t ion 

class). The bulk of the work will be in bounding the sizes of the partition classes. 

Given A C_ E, set G = G(A) = N(A),  B = B(A) and H = H(A) = N(B). In 

what follows, G, B and H are always understood to be G(A), B(A) and H(A) 
for whatever A is under discussion. Note that  B C_ G and H C_ A. 
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Given a, g, b and h, set 

7/(a ,g ,b ,h)  = {A C_ g 2-1inked: IAI = a, IGI--  g, I B] = b and IHI -- h}. 

The aim of this section is to prove 

LEMMA 7.1: For each a, g, b and h with a <_ oz d,. 

IH(a, g, b, h) l < M2  g-b-f~(g/log d) 

from which we will easily derive Theorem 4.2 in Section 8. 

From now until the beginning of Section 8, a, g, b and h are fixed, and we write 

7 / for  7/(a, g, b, h). The proof of Lemma 7.1 involves the idea of "approximation". 

We begin with an informal outline. To bound 17/I, we produce a small set U with 

the properties that  each A E ~ is "approximated" (in an appropriate sense) by 

some U E /~/, and for each U E ///, the number of A C 7/ that  could possibly 

be "approximated" by U is small. (Each U E L/ will consist of four parts, one 

each approximating G, A, H and B.) The product of the bound on 15/1 and the 

bound on the number of A E 7/ that  may be approximated by any U is then a 

bound on 17/I. Another way of saying this is that  we produce a set L/and a map 

app: 7 / ~  L/; we then bound 17/I by 

17/I <- II~l max lapp- l (U) l  . 
U ELt 

The set U is itself produced by an approximation process - -  we first produce a 

small set F with the property that  each A E 7/ is "weakly approximated" (in 

an appropriate sense) by some V E F, and then show that  for each V there 

is a small set W(V) with the property that  for each A C 7/ that  is "weakly 

approximated" by V, there is a W E W(V) which approximates A; we then take 

U = U v e v  W ( V ) .  (Each V E )2 will consist of two parts,  one each approximating 

G and H.) 

We now begin the formal discussion of Lemma 7.1 by introducing the two 

notions of approximation that  we will use, beginning with the weaker notion. A 

c o v e r i n g  a p p r o x i m a t i o n  for A C_ g is a pair (F ~, P~) E 2 ° x 2 E satisfying 

(17) F' c_ a, N(F') 2 A 

and 

P' c_ H, N ( P ' )  ~_ B 
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(see Figure 2). An a p p r o x i m a t i n g  q u a d r u p l e  for 
(F, S, P, Q) c 2 ° × 2 C x 2 E x 2 ° satisfying 

A C 

(18) FC_G,  S_DA, 

(19) dr(u)  > d - x / d  for a l l u C S ,  

(20) d E \ s ( v ) > d - v ~  for a l l v E O \ F ,  

(21) P C_ H , Q  _D B, 

(22) dp(u)>d-v~ for a l l u E Q ,  

and 

(23) do..Q(V) > d - ~  for a l l v E g \ P  

Isr. J. Math .  

[ is a quadruple 

, (9  

[ [ IA IN/,~ g 

Figure 2. F '  satisfies both the conditions of (17). 

~ [ ttt/! J I 

JA I 

O 

Figure 3. The pair (F ,S)  satisfies (18). To satisfy (19) and (20), 
each vertex u C S should have most (all but v/-d) of its neighbours 

in F,  and each vertex v C O \ F should have most of its neighbours 

i n $ \ S .  
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(see Figure 3). Note that  if x is in A then all of its neighbours are in G, and if y is 

in (9 \ G then all of its neighbours are in g \ A. If we think of S as "approximate 

A" and F as "approximate G", (19) says that  if x E £ is in "approximate A" 

then almost all of its neighbours are in "approximate G", while (20) says that  

if y E (.9 is not in "approximate G" then almost all of its neighbours are not in 

"approximate A", and there are similar interpretations for (22) and (23). 

There are two parts to the proof of Lemma 7.1: the "approximation" step 

(Lemma 7.2) and the "reconstruction" step (Lemma 7.3). We now state these 

two lemmas (from which Lemma 7.1 follows immediately). 

LEMMA 7.2: There is a family 

Lt = L t ( a , g , b , h )  C_ 2 ° x 2 E x 2 E x 2 ° 

uqth 
ill[ <_ M2O(g log d/v~l 

such that  every A C 7{ has an approximating quadruple in Lt. 

LEMMA 7.3: For each (F, S, P, Q) c 2 ° x 2 C x 2 e x 2 ° satisfying (19). (20), (22) 

and (23), there are at most 2 g-v-a(g/l°gd) A ' s  in 7{ satisfying (18) and (21). 

Lemma 7.2 follows directly from the next two lemmas. 

LEMMA 7.4: There is a family 

V = V ( a , g , b , h )  c_ 2 ° x 2 e 

with 

]VI <_ M2 °(gl°g~ d/a) 

such that each A c 7{ has a covering approximation in V. 

LEMMA 7.5: For each (F  ~, P~) E 2 ° x 2 E there is a family 

W = W ( F ' , P ~ , a , g , b , h )  C_ 2 ° x 2 ~ x 2 E x 2 ° 

with 

IWl _< 2 °Cgl°gd/~/ 

such that  any A E 7-I for which (F  I, p t )  is a covering approximation has an 

approximating quadruple in W .  

We prove Lemmas 7.4 and 7.5 in Section 7.1. We then prove Lemma 7.3 in 

Section 7.2. The main point in the proof of Lemma 7.5 is an algorithm which 
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produces approximating quadruples from covering approximations; the idea for 

this algorithm is from [14]. 

7.1 PROOFS OF LEMMAS 7.4 AND 7.5: APPROXIMATIONS. We begin with 

a simple observation about sums of binomial coefficients which we will draw 

on repeatedly (and usually without comment) in this section and the next. If 

k = o(n), we have 

_<(1 + O(k/n))(en/k) k 

(24) _<2(1+o(1))k log(n/k) 

Proof of Lemma 7.4: For each A E 7-/we obtain a covering approximation for A 

by taking F'(A) C G to be a cover of minimum size of A in the graph induced by 

G U A and P'(A) C H to be a cover of minimum size of B in the graph induced 

by H U B. Note that  P'(A) C_ N(F'(A)). 
By Lemma 1.8, F'(A) is 4-1inked (A is 2-1inked, p(x,F'(A)) = 1 for each x C A 

and p(y,A) = 1 for each y c: F'(A)). By Lemma 1.7, IF'(A)[ <_ g(1 + lnd)/d = 

O(91ogd/d) and IP'(A)i < IHl(1 + lnd)/d = 0(91og4/d) (noting that  h <_ 9). 

We may therefore take V to be the set of all pairs (F ' ,  P ' )  E 2 ° x 2 s with 

F '  4-1inked and P' C__ N(F'), and F' ,P '  both of size at most O(glogd/d). By 

Lemma 1.6, there are at most 

M E 20(il°gd) "= M20(gl°g2d/d) 

i<_0(9 log d/d) 

possibilities for F '  (the factor of M is for the choice of a fixed vertex in F'), and, 

given F ~, a further 

i<0(9 log d/d) 

choices for P '  (here we are using (24) and the fact that  IN(F')I <_ 49). 
lemma follows. | 

The 

Proof of Lemma 7.5: Fix A C_ g. We give an algorithm which, for input 

(F', S') c 2 ° x 2 E satisfying F '  C_ G and S' D_ A, produces an output (F, S) C 

2 ° x 2 C satisfying (18), (19) and (20). 

Fix a linear ordering << of V. 



Vol. 138, 2003 ON HOMOMORPHISMS FROM THE HAMMING CUBE TO Z 207 

STEP 1: If {u E A: da. .F,(u) _ x/~} ¢ 0, pick the smallest (with respect to <<) 

u in this set and update F ~ by F '  < F '  U N(u) .  Repeat this until 

{u C A: da..F,(u) >_ v~}  = O. 

Then set F"  = F'  and S" = S' \ {u E $: do,.g,, (u) > x/~} and go to Step 2. 

STEP 2: If {w C (9 \ G: ds,, (w) > v/d} ¢ 0, pick the smallest (with respect to 

<<) w in this set and update S" by S" ~ S"  \ N(w) .  Repeat this until 

{w e 0 \ G: ds,,(w) >_ ~ }  = O. 

Then set S = S" and F = F" U {w e O: ds(w)  _> v/-d} and stop. 

CLAIM 7.6: The output of this algorithm satisfies (18), (19) and (20). 

Proof  To see that F c_ G and S _D A, first observe that  F "  C_ G (since F '  C_ G, 

and the vertices added to F p in Step 1 are all in G) and that  S" D A (or Step 1 

would not have terminated). We then have S _D A since Step 2 deletes from S" 

only neighbours of O \ G, and F C_ G since the vertices added to F "  at the end 

of Step 2 are all in G (or Step 2 would not have terminated). 

To verify (19) and (20), note that dF,, (u) > d -  x/~ for all u E S" by definition, 

S C_ S", and F _D F ' ,  so that dF(U) > d - v ~  for all u E S; and i fw  C O \ F  then 

ds(w)  < ~ (again by definition), so that de. .s(w) > d - ~ for all w E O \ F.  
| 

The proof of Lemma 7.5 involves a two-stage procedure. Stage 1 runs the 

algorithm described above with (F ' ,g )  as input. Stage 2 runs it with (P', O) 

as input and with the roles of g and O reversed. By Claim 7.6, the quadruple 

(F, S, P, Q), where (F, S) is the output of Stage 1 and (P, Q) the output of Stage 

2, is an approximating quadruple for A. 

CLAIM 7.7: The procedure described above has at most 20(91°g d/v~) outputs as 

the input runs over those .4 C ~ for which (F', P') is a covering approximation. 

Taking W to be the set of all possible outputs of the algorithm, Lemma 7.5 

follows. 

Proof  of Claim 7. 7: The output of Stage 1 of the algorithm is determined by 

the set of u's whose neighbourhoods are added to F '  in Step 1, and the set of 

w's whose neighbourhoods are removed from S" in Step 2. 
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Each iteration in Step 1 removes at least x/d vertices from G, so there are at 

most g/v/d iterations. The u's in Step 1 are all drawn from A and hence N(F~), 

a set of size at most dg. So the total  number of outputs for Step 1 is at most 

E (?) ~-20(gl°gd/V~)" 
i<_g/v~ 

We perform a similar analysis on Step 2. Each u E S"  \ .4 contributes more 

than d -  v/d edges to V(G),  so initially I S " \  A I <_ g d / ( d -  v~) = O(g). Each 

w used in Step 2 reduces this by at least v/-d, so there are at most O(g/v/-d) 
iterations. Each w is drawn from N ( S ' ) ,  a set which is contained in the fourth 

neighbourhood of F ~ (S" C_ N(G) by construction of S ' ,  G = N(A) and A C_ 

N(F~)) and so has size at most d4g. So as with Step 1, the total number of 

outputs for Step 2, and hence for Stage 1, is 2 °(9~°gd/~/~). 

Noting that  h <_ g, a similar analysis applied to Stage 2 gives that  that  stage 

also has at most  20(gl°gd/v'~) outputs, and the claim follows. | 

7.2 PROOF OF LEMMA 7.3: RECONSTRUCTION. We first note an important  

property of approximating quadruples. 

LEMMA 7.8: If (F, S, P, Q) is an approximating quadruple for A C 74 then 

(25) ISI <_IFI + O(g/x/d), 

(26) [Q[ <_IP] + O(h/v~).  

Proo~ Observe that  IV(S, G)] is bounded above by dlF [ + x/diG \ F[ and below 

by dlA I + (d - v/3)lS \ A[ = diS[-  v/-dlS \ d[, giving 

ISl _< IFI + I(a \ F)  u (S \ A ) I / ~ ,  

and that  each u E (G \ F)  U (S \ A) contributes more than d - ~ edges to 

V(G),  a set of size gcl, giving 

I(G \ F)  U (S \ A) I _< 2gd/(d - V~) = O(g). 

These two observations together give (25). The proof of (26) is sinfilar. | 

Lemma 7.3 now follows from 

LEMMA 7.9: For each (F, S, P, Q) E 2 (9 × 2 E × 2 E × 2 ° satisfying (25) and (26), 
there are at  most 2 9-b-a(g/log d) A's in 74 satisfying (18) and (21). 

Proof." For A E 7/, write 

[A] = {u E £: N(u) c_ N(A)}, 
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and write a' for I[A]I. Note that although G does not determine A, it does 
determine [A]. By Lemma 6.1, there is an absolute constant 7 > 0 (independent 

of al,g, b and h) such that 

(29) g - a ' > ' ~ g  and h - b > ? h .  

Say that Q is t i gh t  if IQI < b + ~/h/logd, and slack otherwise, and that S is 

t i gh t  if tSI < g - "/9/(4 logd) and slack otherwise. 

We now describe a procedure which, for input (F, S, P, Q), produces an output 

A which satisfies (18) and (21). The procedure involves a sequence of choices, 

the nature of the choices depending on whether S and Q are tight or slack. 

We begin by identifying a subset D of A which can be specified relatively 

"cheaply": if Q is tight, we pick B C_ Q with [B I = b and take D = N(B); if Q 

is slack, we simply take D = P (recalling that P C_ H C_ A). 

If S is tight, we complete the specification of A by choosing A \ D C_ S \ D. If 

S is slack, we first complete the specification of G by choosing G'-. F C N(S)"-. F. 
Note that in this case, (25) implies 

(28) [O \ F I < "~g/(31ogd). 

We then complete the specification of A by choosing A \ D c_ [A] \ D (noting 

that we do know [A] \ D at this point). 

This procedure produces all possible A E 7-/ satisfying (18) and (21) (and 

more). Before hounding the number of outputs, we gather together some useful 

observations. 

From (25) and (26) we have 

(29) ISI = O(g) and 

If Q is tight then there are at most 

(30) 

I0,1 = O ( h ) .  

i<'~h / log d i<'~h / log d 

<20('~h / log d) log(O(log d/'~ ) ) 

<2-yh/2 

possibilities for D, and in this case ]D] = h; while if Q is slack there is just one 

possibility for D, and in this case (using (26)) 

IDI--IPl >IQI- f~(h/v~) 
>b + "~h/ log d - f t (h / v~)  

(31) >_b + "~h/(21og d). 
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If S is slack then (since I N ( S )  \ F] < d]SI <_ O(dg);  see (29)) the number of 

possibilities for G \ F is at most 

i<7g/(3 log d) 

(32) <2 "~g/2. 

We now bound the number of outputs of the procedure, considering separately 

the four cases determined by whether S and Q are slack or tight. 

If S and Q are both tight then the number of possibilities for A is at most 

(33) 2[~h/2]+[g-,~g/(4 log d)-h] < 2g-'~g/(4 log d)-b--~h/2, 

(The first term in the exponent on the left-hand side corresponds to the choice 

of D (using (30)), and the second to the choice of A \ D (note that  since S and 

Q are both tight, IS \ D I <_ g - 7 g / ( 4 1 o g d )  - h).  To get the right-hand side, we 

use the second part of (27).) 

If S is tight and Q is slack then the total is at most 

(34) 2[g-~g/(4 log d)-b-yh/(2 log d)] 

(Here there is no choice for D, and the exponent corresponds to the choice of 

A \ D (using (31)).) 

If Q is tight then ][A] \ D] = a' - h, so that if S is slack (and Q tight) then 

the number of possibilities for A is at most 

(35) 2 ['~h/2]+['~g/2]+[a'-h] < 2 g-'~g/2-b-~/h/2. 

(The first term on the left-hand side corresponds to the choice of D (using (30)), 

the second to the choice of G \ F (using (32)) and the third to the choice of 

A \ D. On the right-hand side, we use both parts of (27).) 

Finally, if Q is slack then ][d] ".. D I < a' - b - 7 h / ( 2 1 o g d )  (see (31)), so that 

if S and Q are both slack the number of possibilities for A is at most 

(36) 2[,~9/2]+[a'-b-,yh/(2 log d)] < 2g-~/g/2-b-'~h/(2 log d). 

(The first term on the left-hand side corresponds to the choice of G \ F and the 

second to the choice of A \ D. The right-hand side uses the first part of (27).) 

Noting that  h _< g, the lemma follows from (33), (34), (35) and (36). | 
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8. P r o o f  o f  T h e o r e m  4.2 

We say that  a nice A C_ g is o f  t y p e  I if HAt < d/2, of  t y p e  I I  if d/2 < IAI < d 2 
and of  t y p e  I I I  otherwise. We consider the portions of the sum in Theorem 4.2 

corresponding to type I, II  and I I I  A's separately. 

If A is of type I, then by Lemma 6.2, IN(A)I >_ dlAi - 21AI(IAI- 1). Note also 

that  in this case, B(A) = 0. By Lemma 1.6, for each 2 < i < d/2, there are at 

most M2 °(i ~og d) < 2d+o(i log d) 2-1inked subsets of g of size i. So 

d/2 
2-1N(A)I+iB(A)i < ~ 2d+O(ilogd)-di+2i(i-1) 

A of type I i=2 

(37) =e -~(d). 

We do something similar if A is of type II. Here Lemma 6.2 gives IN(A)] _> 

~(d)ld I and IB(A)] < O(1/d)ld I (recalling that  N(B) C A), and so 

d 2 
2 -]N(A)j+[B(A)I <_ ~ 2 d+O(il°gd)-~(d)i+O(1/d)i 

A of type II i=d/2 

(38) =e -a(d). 

We partit ion the set of A's of type I I I  according to the sizes of A, N(A), B(A) 
and H(A) (= N(B(A))) and use Lemma 7.1 to bound the sizes of the parti t ion 

classes. In this case we have ]N(A)I > d 2. So (summing only over those values 

of a, g, b and h for which ?-/(a, g, b, h) ¢ 0 and g > d 2, and with the inequalities 

justified below) 

Z 2-1N(A)H'(A)t= I (a,g,b,h)12-g+b 
A of type III a,g,b,h 

(39) < M  ~ 2 -a(9/l°gd) 

a,g,b,h 

(40) < M  4 ~ 2 -~(g/]°gd) 
g>_d 2 

< (M4/(1 - 2 -a(1/log d) ) 2)2-a(d~ / log d) 

(41) =e -~(~). 

Here (39) is from Lemma 7.1 and in (40) we use the fact that  there are fewer 

than M choices for each of a, b and h. 

Combining (37), (38) and (41), we have Theorem 4.2. | 
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9. R e m a r k s  

The point of departure for our proof of Theorem 1.4 is Lemma 1.9, which allows us 

to focus immediately on those homomorphisms which are predominantly single- 

valued on one side of the cube. The proof of this lemma given in [7] relies heavily 

on the structure of the cube (in particular on the fact that the neighbourhoods 

of adjacent vertices induce a perfect matching), and it does not seen: obvious at 

the moment how to get beyond this and generalize Theorem 1.4 to a larger class 

of graphs. 

On the other hand, the proofs of Theorem 4.2 and Lemma 7.1 are much less 

dependent on the specific structure of the cube, using only the isoperimetric 

bounds of Section 6. As such, it should be possible to extend these results 

considerably. To illustrate this, it is worth comparing Lemma 7.1 with the main 

lemma of [14]. To state that,  we need some notation. Let G be a d-regular 

bipartite graph with bounded co-degree (i.e., every pair of vertices has a bounded 

number of common neighbours). Write X and Y for the bipartition classes of G. 

For any a' and g, set 

G(a',g) = {A C_ X: A 2-1inked, IN(A)I = g, [[A]I < a'} 

(recall that [A] = {z E X: N(x) C_ N(A)}), and set 5 = (g-a ' ) /g .  Using slightly 

more versatile notions of approximation than those introduced in Section 7, the 

following is proved in [14]: 

THEOREM 9.1: For d suNciently large, and for any a' and 9 satisfying 1 > 5 > 
log 9 did 2, 

IG(a',g)l < Ixl2 g(:-~/(B'°gd)). 

Notice that (by the results of Section 6) the sum in Theorem 4.2 is extending 

only over sets A which satisfy (IN(A)I- IAI)/IN(A)I >_ 12(1), a much stronger 

condition than that imposed in Theorem 9.1. By slightly modifying our notions 

of approximation, we :nay extend the validity of Lemma 7.1 to cover a similar 

range as Theorem 9.1. However, the analysis is considerably more involved, and 

we do not do so here. 
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