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Abstract
Let G be a graph G whose largest independent set has

size m. A permutation ا of m{1, …, } is an independent

set permutation of G if

a G a G a G( ) ( ) ( ا,( ا ا m(1) (2) ( )- - ߄-

where a G( )k is the number of independent sets of size
k in G. In 1987 Alavi, Malde, Schwenk, and Erdős
proved that every permutation of m{1, …, } is an in-
dependent set permutation of some graph with
ؘ G m( ) = , that is, with the largest independent set
having sizem. They raised the question of determining,
for each m, the smallest number f m( ) such that every
permutation of m{1, …, } is an independent set per-
mutation of some graph with ؘ G m( ) = and with at
most f m( ) vertices, and they gave an upper bound on
f m( ) of roughly m m2 . Here we settle the question,
determining f m m( ) = m, and make progress on a re-
lated question, that of determining the smallest order
such that every permutation of m{1, …, } is the unique
independent set permutation of some graph of at most
that order. More generally we consider an extension of
independent set permutations to weak orders, and ex-
tend Alavi et al.'s main result to show that every weak
order on m{1, …, } can be realized by the independent
set sequence of some graph with ؘ G m( ) = and with at
most mm+2 vertices. Alavi et al. also considered
matching permutations, defined analogously to in-
dependent set permutations. They observed that not
every permutation of m{1, …, } is a matching permu-
tation of some graph with the largest matching having
sizem, putting an upper bound of 2mࠩ1 on the number



of matching permutations of m{1, …, }. Confirming
their speculation that this upper bound is not tight, we
improve it to O m(2 )mٵ .

KEYWORD S

independent set, matching, permutation, stable set, unimodality

1 | INTRODUCTION

To a real sequence a a a, , …, m1 2 we can associate a permutation ا of m m[ ] {1, …, ܃{ , which
gives information about the shape of the histogram of the sequence, via

a a a ا. ا ا m(1) (2) ( )- - ߄- (1)

If there are some repetitions among the ai then ا is not unique. For example, the sequence
(5, 10, 10, 5, 1) has associated with it each of the sequences 51423, 54123, 51432, and 54132.
(Here and elsewhere we present permutations in one‐line notation, so, e.g., 51423 represents
the permutation ا with ا (1) = 5, ا (2) = 1, etc.)

This association was introduced by Alavi, Malde, Schwenk, and Erdős in [1], where they
proposed using it to investigate sequences associated with graphs. For example, let G be a
(simple and finite) graph with ؘ G m( ) = , that is, whose largest independent set (set of mu-
tually nonadjacent vertices) has size m. The independent set sequence of G is the sequence
i G( ( ))k k

m
=1 where i G( )k is the number of independent sets of size k in G. Say that ا is an

independent set permutation of G if ا is one of the permutations that can be associated to the
independent set sequence of G via (1). (We do not consider i G( )0 , as it equals 1 for every G.)

The main theorem of [1] is that all m! permutations of m[ ] are independent set
permutations.

Theorem 1.1 (Alavi et al. [1]). Givenm 1. and a permutation ا of m[ ], there is a graph
G with ؘ G m( ) = and with

i G i G i G( ) < ( ) < < ( ا.( ا ا m(1) (2) ( ߄( (2)

In the language of [1] the independent set sequence of a graph is unconstrained—it can
exhibit arbitrary patterns of rises and falls.

For a permutation ا denote by g )ا ) the minimum order (number of vertices) over all
graphs G for which ا is an independent set permutation of G, and for eachm denote by f m( )
the maximum, over all permutations ا of m[ ], of g )ا ). Alavi et al. showed that f m( ) is at most
roughly m m2 +1 (they did not calculate their upper bound explicitly). They speculated that
f m m( ) m. , and proposed the question of determining f m( ).

Problem 1.2 (Alavi et al. [1, Problem 1]). Determine the smallest order large enough to
realize every permutation of order m as the sorted indices of the vertex independent set
sequence of some graph.
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Our first result settles this question exactly.

Theorem 1.3. (Part 1, f m m( ) m- ). For eachm 1. there is a graph Gm onmm vertices
with ؘ G m( ) = and with

i G i G i G m( ) = ( ) = = ( ) = .m m m m
m

1 2 ߄ (3)

(Part 2, f m m( ) m. ). On the other hand, if ؘ G m( ) = and i G m( ) <m
m then

i G i G( ) < ( )m mࠩ1 .

Note that Part 1 of Theorem 1.3 immediately implies that f m m( ) m. , since for every
permutation ا of m[ ], ا is an independent set permutation of Gm. To see that Part 2 implies
f m m( ) m. , consider any permutation of the form

m m( ࠩ 1) 1 ߄. ߄ ߄ ߄

Since m appears later in the permutation than m ࠩ 1, for this to be an independent set per-
mutation of some graph G requires i G i G( ) ( )m mࠩ1. , and so, by (the contrapositive of) Part 2,
i G m( )m

m. . But then since 1 appears later in the permutation than m, this further requires
i G m( ) m
1 . , so G must have at least mm vertices.

Our proof that f m m( ) m. follows almost immediately from a result of Fisher and Ryan [8] on
the monotonicity of a sequence related to the independent set sequence. Our construction ofGm, to
establish f m m( ) m- , follows the same general scheme introduced in [1]. There, it is shown how
to construct a graph G with ؘ G m( ) = , with i G( )k being a sum. The first term of the sum is
ا k T( )ࠩ1 (for some arbitrary constant T ), and for T sufficiently large the sum of the remaining
terms can be bounded above by T . This puts i G( )k in the interval ا k T ا k T[ ( ) , ( ( ) + 1) )ࠩ1 ࠩ1 , and
so ا is an (actually, the unique) independent set permutation ofG. (We describe this construction
in more detail in Section 2.) We obtain f m m( ) m- by carefully carrying out the construction in a
way that allows perfect control over the lower order terms in the sum.

It is worth noting here a difference between (1) (which allows different terms of the sequence to
have the same value) and (2) (which does not). It is quite natural to ask what happens in Problem 1.2
when we require that the permutations associated with independent set sequences be unique.

Problem 1.4. Determine, for each m 1. , the smallest M such that for every
permutation ا of m[ ] there is a graph G of order at most M with ؘ G m( ) = and with

i i i< < < ا. ا ا m(1) (2) ( ߄(

In [1] the comment is made that Problem 1.2 “is likely to remain exceeding difficult.” Given
the surrounding discussion in [1], it seems likely that the authors were implicitly thinking
about Problem 1.4 when they made this comment. While we do not have an exact answer to
Problem 1.4, we are able to extend the approach used in Theorem 1.3 to obtain bounds for M in
Problem 1.4 that are significantly better than those implicit in [1] (see Theorem 1.5).

To a real sequence a a a, , …, m1 2 we can associate a unique weak order (an ordered partition
(B B, …,1 (࠾ of m[ ] into nonempty blocks) via B b b= { , , …}i i i1 2 , where

a a a a a a= = < = = < < = = .b b b b b b11 12 21 22 1࠾ ߄2࠾ ߄ ߄ ߄
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For example, the sequence (4, 6, 4, 1) (the independent set sequence of the edgeless graph on
four vertices) induces the weak order B = {4}1 , B = {1, 3}2 , and B = {2}3 . Theorem 1.1 says that
every weak order in which all blocks are singletons is the weak order induced by some graph,
while Part 1 of Theorem 1.3 says the same for the weak order with a single block.

Theorem 1.5. For m 1. , for every weak order w on m[ ] there is a graph G with
ؘ G m( ) = , and with fewer than mm+2 vertices, which induces w.

So although there are many more weak orders on m[ ] than there are permutations
— m e(1 2) ! (log )m2

ٵ1+ (see, e.g., [3]) as opposed tom!—it does not take too many more vertices
to induce them all. Note also that by Theorem 1.3, any weak order on m[ ] that hasm ࠩ 1 andm
in the same block, and 1 in a block with a higher index, cannot be induced by a graph withmm

or fewer vertices. The analog of Problem 1.2 for weak orders—wherein the range (m m,m m+2) is
the smallest order sufficient to realize every weak order on m[ ]?—remains open.

Alavi et al. also considered the edge independent set sequence or matching sequence of a graph.
Let n% denote the set of graphs with ؤ G n( ) = , that is, whose largest matching (set of edges no
two sharing a vertex) has n edges. The matching sequence ofG n�% is m G( ( ))k k

n
=1 wherem G( )k

is the number of matchings inG with k edges. Say that ا is amatching permutation ofG if ا is one
of the permutations that can be associated to the matching sequence of G via (1). (Note that
throughout our discussion of matchings, we will only consider simple graphs.)

In contrast to independent set permutations, there are permutations that are not the
matching permutation of any graph. Indeed, Schwenk [19] showed that the matching sequence
of any graph G n�% is unimodal in the strong sense that for some k,

m G m G m G m G m G m G( ) < ( ) < < ( ) ( ) > ( ) > > ( ).k k k n1 2 +1 ߄.2+ ߄

It follows that the permutations of n[ ] that can be the matching permutations of a graph in n%
must have

ا ا ا k

ا n ا n ا k

(1) < (2) < < ( ࠩ 1)
and

( ) < ( ࠩ 1) < < ( + 1),

ࠩ1 ࠩ1 ࠩ1

ࠩ1 ࠩ1 ࠩ1

߄

߄
(4)

where k ا n= ( ). (This restriction on ا can also be deduced from the real‐rootedness of the
matching polynomial, first established by Heilmann and Lieb [13].) Following Alavi et al., we
refer to permutations satisfying (4) as unimodal permutations.

There are ½ ( ) = 2k
n n

k
n

=0
ࠩ1 ࠩ 1 ࠩ1 unimodal permutations of n[ ]. To see this, note that to con-

struct a unimodal permutation we first select k ا n= ( ), which must appear as the last entry of
the permutation in one‐line notation, and then select the k ࠩ 1 locations (from among the first
n ࠩ 1) where k1,…, ࠩ 1 appear; this completely determines the permutation since, as observed
in (4), the entries 1 through k must appear in ا in ascending order, while the entries k + 1
through n must appear in descending order. So, writing Mn for the set of permutations ا that
are the matching permutations of some graph in n% , we have M 2n

nࠩ1- . This bound was
observed in [1], where the following problem was posed.

Problem 1.6 (Alavi et al. [1, Problem 2]). Characterize the permutations realized by the edge
independence sequence. In particular, can all 2nࠩ1 unimodal permutations of n[ ] be realized?
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We do not address the characterization problem, but our next result answers the particular
question: a vanishing proportions of unimodal permutations are the matching permutations of
some graph.

Theorem 1.7. We have M o= (2 )n
n . More precisely, there is a constant c such that

for n 1.

M c
n
2 .n
n

- (5)

In the other direction, the perfect matching with n edges gives a lower bound on Mn of

G W2 n( ࠩ1) ٵ2 . Indeed, the matching sequence of the perfect matching with n edges is (( ))n
k

k

n

=1
,

which has G Wn( ࠩ 1) ٵ2 pairs of equal terms (( ) ( )=n n
n1 ࠩ 1 , )( ) ( )= ,{etc.n n

n2 ࠩ 2 , leading to

G W2 n( ࠩ1) ٵ2 associated permutations of n[ ]. We can improve this by an additive term of n( ), but
we do not give the details here.

We give the proofs of our results concerning independent set permutations and weak orders
in Section 2, and address matching permutations in Section 3. We end with some questions and
comments in Section 4.

2 | INDEPENDENT SET PERMUTATIONS

We begin with the proof of Part 2 of Theorem 1.3, f m m( ) m. . This turns out to come almost
immediately from a theorem of Fisher and Ryan [8], a result which they remark “brings order
into [the] chaos” of the independent set sequence observed by Alavi et al.

Theorem 2.1. For any graph G with ؘ G m( ) = , we have

L
N
MMMMMMMMM

\
^
]]]]]]]]]

L
N
MMMMMMMMM

\
^
]]]]]]]]]

L
N
MMMMMMMMM

\
^
]]]]]]]]]

L
N
MMMMMMMMM

\
^
]]]]]]]]]( ) ( ) ( ) ( )

i G i G i G i G( ) ( ) ( ) ( ) .
m m

m
m

m

m
m
m

1

1

2

2

ࠩ1

ࠩ 1

m m
1
1

1
2

1
ࠩ1

1

. . . ߄.

The last inequality above (which is all we need) says that m i G i G( ) ( )m
m

m
m

mࠩ1
ࠩ1- . If also

i G m( ) <m
m then this implies that i G i G( ) < ( )m

m
m

m
ࠩ1 , or i G i G( ) < ( )m mࠩ1 , as claimed.

Remark 2.2. In an earlier version of this paper [2] we obtained Part 2 of Theorem 1.3 by
combining results of Frankl, Füredi, and Kalai [9] and Frohmader [10] on
Kruskal–Katona‐type theorems for colored (or balanced) flag complexes. Invoking
Theorem 2.1 (whose short proof does not require consideration of flag complexes) leads
to a considerably more direct proof.
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We now move on to the proof of Part 1 of Theorem 1.3, f m m( ) m- . We begin with an
outline of the construction, which is very similar to one described in [1]. Recall that our goal is
to construct a graphGm with ؘ G m( ) = that hasmm independent sets of size k for each k m[ ]� .
A key idea that we use throughout is the effect of the join operation on independent set
sequences. For a collection G j J{ : }j � of graphs, denote by Gj J j�ݝ the graph consisting of a
union of disjoint copies of theGj, with every vertex in each Gj adjacent to every vertex in Gjࠫ for
each j jࠫ  —the mutual join of theGj. The effect ofݝ on independent set sequences is additive:
if G G= j J j�ݝ then for k 1. , ½i G i G( ) = ( ),k

j J
k j

�
(6)

because no independent set in G can have vertices in two different Gj's. We will use (6)
repeatedly in the sequel, usually without comment.

Given a permutation ا of m[ ], to construct a graph G satisfying (2) (i.e.,
i G i G( ) < < ( ا( ا m(1) ( ߄( ) Alavi et al. [1] consider a graph of the form

G kK ا, k
m

n=1 k܃ ݝ

where n ا k T= ( ( ) )k
kࠩ1 ٵ1 for some large integer T , and where kKnk denotes k vertex‐disjoint

copies of the complete graph Knk on nk vertices. By (6) we have

½ LNMMM \̂]]]i G ا k T
j
k

ا j T( ) = ( ) + ( ( ) ) .k ا j k
mࠩ1
= +1

ࠩ1 k
j (7)

Here the term ا k T( )ࠩ1 is the count of independent sets of size k in kKnk, and for j k> the

summand ( ) ا j T( ( ) )j
k

ࠩ1 k
j counts independent sets of size k in jKnj; there are no independent

sets of size k in any jKnj for j k< . For k m< we have

½ ½LNMMM \̂]]] LNMMM \̂]]] ( )j
k

ا j T T
j
k
ا j T m m( ( ) ) ( ) 2 .

j k

m

j k

m
m

= +1

ࠩ1

= +1

ࠩ1k
j

k
k

k
j

m
m

m
m+1 +1 +1- -

For large enough T T m= ( ) the last expression above is strictly smaller thanT , so that from (7)
we get ا k T i G ا k T( ) ( ) < ( ( ) + 1)k ا

ࠩ1 ࠩ1- . This inequality also holds when k m= (in which
case the summation in (7) is empty). From all this (2) follows.

To more carefully control the sum in (7), and allow us to construct a graph Gm with mm

independent sets of all sizes from 1 tom, we modify this construction. Before doing so, we give
some intuition.

The graphG mKm0 ܃ has ؘ G m( ) =0 , i G i G m( ) = ( ) =m m
m

0 ࠩ1 0 , and ( )i G m m( ) = <k
m
k

k m
0

for k m< ࠩ 1. We need to increase the count of independent sets of size m ࠩ 2 by

LNMMM \̂]]] LNMMM LNMMM \̂]]]\̂]]]m m m m m m a mࠩ
2

= ࠩ
2

,m m m m mࠩ2 ࠩ2 2
2
( ) ܃2ࠩ
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without changing the number of independent sets of sizes m or m ࠩ 1. By (6), the graph

G m K( ࠩ 2)i
a

m2 =1
m
2
( )

܃ ݝ (the mutual join of a m
2
( ) copies of m K( ࠩ 2) m) has i G a m( ) =m

m m
ࠩ2 2 2

( ) ࠩ2,
and also has i G i G( ) = ( ) = 0m m2 ࠩ1 2 . Hence, again by (6), ؘ G G m( ) =0 ݝ2 , i G G( ) =m 0 ݝ2

i G G i G G m( ) = ( ) =m m
m

ࠩ1 0 2 ࠩ2 0 ݝ2 ݝ , and ( )i G G m( ) =m
m m

ࠩ3 0 2 3
ݝ3ࠩ a m m+ ( ࠩ 2)m m

2
( ) ࠩ3.

We need to add

LNMMMM LNMMM \̂]]] \̂]]]]m m m a m a mࠩ
3

ࠩ ( ࠩ 2)m m m mࠩ3 3
2
( )

3
( ) ܃3ࠩ

independent sets of size m ࠩ 3 (without adding any independent sets of sizes m m, ࠩ 1 or
m ࠩ 2). We achieve this by setting

G m K( ࠩ 3)i
a

m3 =1
m
3
( )

܃ ݝ

and considering G G G0 2 ݝ3 ݝ . (Note that a 0m
3
( ) . , being a cubic in m with nonnegative

coefficients.)
We continue in this manner until we reach a graph which satisfies (3), which we declare to

beGm. We have to check that at no point, while fixing the number of independent sets of size k
to bemm, do we cause the number of independent sets of size j to be greater thanmm, for some

j k1 <- . This check is the main point of the formal proof of Theorem 1.3, Part 1.

Proof 8 (Theorem 1.3, Part 1). For m 1. , define a sequence (a a a, ,…,m m
m
m

0
( )

1
( )

ࠩ1
( ) ) via

LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]m a m
k

a m
k

a m k a m k= + ࠩ 1
ࠩ 1

+ + ࠩ ( ࠩ 1)
1

+ ࠩ
0

k m m
k
m

k
m

0
( )

1
( )

ࠩ1
( ) ( ߄( (8)

for k m= 0,…, ࠩ 1. Note that the m relations in (8) do indeed uniquely determine the

ak
m( ): first taking k = 0 forces a = 1m

0
( ) ; then taking k = 1 further forces a = 0m

1
( ) ; then

taking k = 2 forces ( )a m= ࠩm m
2
( ) 2

2 , and so on. The motivation behind this definition as

follows: we will go through an iterative procedure (the one described above) to set the
number of independent sets of each size to bemm, starting with independent sets of size
m, and working down. When we come to fix the number of independent sets of size

m kࠩ to be mm, it will turn out that we need to add a mk
m m k( ) ࠩ such, which we will

achieve by successively joining ak
m( ) copies of m k K( ࠩ ) m to what has thus far been

constructed. Evidently each ai
m( ) is an integer; but in fact a 0i

m( ) . , as we now show.
Form = 1 the sequence consists of the single term a = 10

1 , and form = 2 the sequence
is (1, 0). So consider m 3. . We will show, for each such m, that a 0k

m( ) . for all
k m0 ࠩ 1- - . We evidently have a = 1m

0
( ) . Now consider a k with k m1 ࠩ 1- - .

Starting by multiplying both sides of the k ࠩ 1 instance of (8) by m, and with the rest of
the steps justified below, we have
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LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]
m a m m

k
a m m

k
a m m k

a m
k

a m
k

a m k

m a

=
ࠩ 1

+ ࠩ 1
ࠩ 2

+ + ࠩ ( ࠩ 1)
0

+ ࠩ 1
ࠩ 1

+ + ࠩ ( ࠩ 1)
1

= ࠩ ,

k m m
k
m

m m
k
m

k
k
m

0
( )

1
( )

ࠩ1
( )

0
( )

1
( )

ࠩ1
( )

( )

.

߄

߄

so a 0k
m( ) . . The first inequality uses

LNMMMM \̂]]]] LNMMMM \̂]]]]m
m j

k j
m j
k j

ࠩ
ࠩ 1 ࠩ

ࠩ
ࠩ

,.

valid for m 3. , k m{1,…, ࠩ 1}� and j k{0,…, ࠩ 1}� , and the second equality uses (8).
Now consider the graph G G=m k

m
k=0

ݝ1ࠩ where G m k K= ( ࠩ )k j
a

m=1
k
m( )

ݝ . We have
ؘ G m( ) =m and, for each k m{0…, ࠩ 1}�

LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]LNMMMM LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]\̂]]]]
i G a m

k
m a m

k
m a m k m

m a m
k

a m
k

a m k

m

( ) = + ࠩ 1
ࠩ 1

+ + ࠩ
0

= + ࠩ 1
ࠩ 1

+ + ࠩ
0

= ,

m k m
m m k m m k

k
m m k

m k m m
k
m

m

ࠩ 0
( ) ࠩ

1
( ) ࠩ ( ) ࠩ

ࠩ
0
( )

1
( ) ( )

߄

߄

the last equality by (8). The main points of the calculation above are that the only
parts of Gm that contribute to i G( )m k mࠩ are those of the form aKm for a m kࠩ. ,
and that

LNMMM \̂]]] LNMMMM \̂]]]]i aK a
m k

m m m a
k m a

m( ) =
ࠩ

= ࠩ ( ࠩ )
ࠩ ( ࠩ )

.m k m
m k m k

ࠩ
ࠩ ࠩ

ࣕ

We now turn to the proof of Theorem 1.5, concerning weak orders. The casem = 1 is trivial,
and m = 2 is easy: the three weak orders on [2] are achieved by K2 1, K2 2 and K K3 ڢ2 . So from
here on we assume m 3. .

We will construct

• a graph H1 withm m+m mࠩ1 vertices, withmm independent sets of each size in m{2,…, },
m m+m mࠩ1 independent sets of size 1, and with ؘ H m( ) =1 ;

• a graph Hm with m m2 ࠩm mࠩ1 vertices, with m m2 ࠩm mࠩ1 independent sets of each size
in m{1,…, ࠩ 1}, m2 m independent sets of size m, and with ؘ H m( ) =m ;

• and for each k m{2,…, ࠩ 1}� , a graph Hk withmm vertices, withmm independent sets of
each size in m k{1,…, } { } , with m m+m mࠩ1 independent sets of size k, and
with ؘ H m( ) =m .

The main point here is that for each k there is a value s k( ) such that Hk has s k( ) independent
sets of all sizes except k, and has s k m( ) + mࠩ1 independent sets of size k (specifically
s k m( ) = m for k m and s m m m( ) = 2 ࠩm mࠩ1).
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Let w B B= ( ,…, )1 ࠾ be a weak order on m[ ]. Construct a graph H w( ) as follows: H w( ) is the
mutual join of

• one copy of Gm for each k B1� (here and later, Gm is the graph from Theorem 1.3, Part
1; recall that it is a graph on mm vertices, with largest independent set having size m,
and with mm independent sets of size k for each k m= 1,…, );

• one copy of Hk for each k B2� ;
• and in general j ࠩ 1 copies of Hk for each k Bj� .

For t Bj� , for any j1 -࠾ - , we have

½ ½ ½L
NMMMMMM

\]̂]]]]]i H w m B s k s k s k j m( ( )) = + ( ) + 2 ( )+ + ࠾) ࠩ 1) ( ) + ( ࠩ 1) .t
m

k B k B k B

m
1

ࠩ1

2 3 �࠾ � �
߄ (9)

Indeed, H w( ) hasmm independent sets of size t , coming from each of the Þ ÞB1 copies ofGm in the
construction; for each k B2� it has a further s k m1( ) + t k

m
{ = }

ࠩ1 independent sets of size t ,
coming from the Hk; and in general, for each k Bj� ( j1 -࠾ - ) it has a further
j s k m1( ࠩ 1)( ( ) + )t k

m
{ = }

ࠩ1 independent sets of size t , coming from the j ࠩ 1 copies of Hk.
Summing all these up, and noting that 1 t k{ = } will take the value 1 at most once (for that j for
which t Bj� , if j > 1), we obtain (9).

Note that the term in parentheses in (9) depends only on the weak order w, and in parti-
cular is independent of t; let this term be denoted by c w( ). We have that H w( ) has

• c w( ) independent sets of size t for each t B1� ;
• c w m( ) + mࠩ1 independent sets of size t for each t B2� ;
• and in general, c w j m( ) + ( ࠩ 1) mࠩ1 independent sets of size t for each t Bj� ,
for j1 -࠾ - ,

and so the weak order induced by H w( ) is indeed w.
Among the Hk none has more than m m2 ࠩm mࠩ1 vertices, so the order of H w( ) is at most

Þ Þ Þ Þ Þ Þ Þ Þm B B B B m m+ ( + 2 + ࠾)+ ࠩ 1) )(2 ࠩ ).m m m
1 2 3 ࠾

߄1ࠩ (10)

If any of the Bi's has size at least 2, then the quantity in (10) can be increased by replacing Þ ÞBi
with Þ ÞB ࠩ 1i and Þ ÞBi+1 with Þ ÞB + 1i+1 (creating a new, ࠾) + 1)st, block if i = .(࠾ It follows that
subject to the constraints ½ Þ ÞB m=i i and Þ ÞB 1i . , the quantity in (10) is maximized by

m m m m m+ (1 + 2+ +( ࠩ 1))(2 + ) < .m m m mࠩ1 ߄2+

This gives Theorem 1.5; so our goal (which occupies the rest of the section) is to construct Hk,
for k m{1,…, }� .

In the proof of Theorem 1.3, we required a 0k
m( ) . . To construct Hk, we need a better bound.

Lemma 2.3. For k 2. (and m 3. ), a mk
m k( ) ࠩ1. .
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Proof. We will use an explicit expression for the ak
m( ). It will be convenient in what

follows to extend the sequence (a a,…,m
m
m

0
( )

ࠩ1
( ) ) to (a a,…,m

m
m

0
( ) ( )), by using (8) to also define

amm( ).

Let a m( ר( be the column vector with aj
m( ) in the jth position (with the positions indexed

from 0 to m), and mר the column vector with mj in the jth position; so

cedddddd fhgggggg cedddddd fhgggggga a a a m m m= and = 1 .m m m
m
m m( )

0
( )

1
( ) ( ) T Tר ߄ ר ߄

From (8) we have Ma m=m( ר( ר where M is the (m + 1) by (m + 1) matrix with ( )m j
i j
ࠩ
ࠩ in

the (i j, ) position (rows and columns indexed from 0). Here we understand ( )nc to be 0 for

negative c. Since M is lower triangular with 1's down the diagonal it is invertible, and it is

well known that Mࠩ1 is the matrix with ( )(ࠩ1)i j m j
i j

ࠩ ࠩ
ࠩ in the i j( , ) position (see, e.g., [6]).

To illustrate this fact, and the structure of M and Mࠩ1, consider Mࠩ1 in the case m = 4:c

e

ddddddddddddddddddddddddddddddddddddddddddddddddd

LNMMM \̂]]]LNMMM \̂]]] LNMMM \̂]]]LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]

f

h

ggggggggggggggggggggggggggggggggggggggggggggggggg

c
e
dddddddddddddddddddd

f
h
gggggggggggggggggggg

c
e
dddddddddddddddddddd

f
h
gggggggggggggggggggg

4
0

0 0 0 0

4
1

3
0

0 0 0

4
2

3
1

2
0

0 0

4
3

3
2

2
1

1
0

0

4
4

3
3

2
2

1
1

0
0

=

1 0 0 0 0
4 1 0 0 0
6 3 1 0 0
4 3 2 1 0
1 1 1 1 1

=

1 0 0 0 0
ࠩ4 1 0 0 0
6 ࠩ3 1 0 0
ࠩ4 3 ࠩ2 1 0
1 ࠩ1 1 ࠩ1 1

.

ࠩ1

ࠩ1

For completeness, we provide a proof that Mࠩ1 is as claimed. Consider the matrix MM ,

where M has ( )(ࠩ1)i j m j
i j

ࠩ ࠩ
ࠩ in the i j( , ) position. The k( , (࠾ entry of MM is clearly 0 for

k < ,࠾ and 1 for k = .࠾ For k࠾ < the k( , (࠾ entry is

½ ½
½½

LNMMM \̂]]]LNMMM \̂]]] LNMMM \̂]]]LNMMM \̂]]] LNMMM \̂]]]

m t
k t

m
t

m t
k t m k

m
t m t

m
m k

k
k t t

m
m k

k
k t

(ࠩ1) ࠩ
ࠩ

ࠩ ࠾
ࠩ ࠾

= (ࠩ1) (ࠩ1) ( ࠩ )!
( ࠩ ) ! ( ࠩ )!

( ࠩ !(࠾
( ࠩ (࠾ ! ( ࠩ )!

= (ࠩ1) ࠩ ࠾
ࠩ

(ࠩ1) ( ࠩ !(࠾
( ࠩ ) ! ( ࠩ !(࠾

= (ࠩ1) ࠩ ࠾
ࠩ

(ࠩ1) ࠩ ࠾
ࠩ

= 0,

t

k
t k

t
k k t

k
t
k k t

k
t
k k t

࠾=

࠾ࠩ ࠩ࠾
࠾=

ࠩ

ࠩ࠾
࠾=

ࠩ

ࠩ࠾
࠾=

ࠩ

the last equality following from the standard fact that the alternating sum of binomial
coefficients is 0. This shows that MM is the identity, and so the inverse of M is as
claimed.
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Since a M m=m( ) ר1ࠩ ר we have

LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]a m m m k m m k m
k

= ࠩ ࠩ ( ࠩ 1)
1

+ ࠩ ( ࠩ 2)
2

ࠩ + (ࠩ1) .k
m k k k k( ) ࠩ1 ࠩ2 ߄ (11)

For m 3. and k 2. , it is easily checked that the sequence

LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]m m m k m m k m
k

, ࠩ ( ࠩ 1)
1

, ࠩ ( ࠩ 2)
2

,…,k k kࠩ1 ࠩ2

is strictly decreasing. Lower bounding ak
m( ) by the sum of the first two terms of the

decreasing alternating sum on the right‐hand side of (11) we get

LNMMM \̂]]]a m m m k k m m> ࠩ ࠩ ( ࠩ 1)
1

= ( ࠩ 1) ,k
m k k k k( ) ࠩ1 ࠩ1 ࠩ1.

as claimed. ࣕ

Another tool we will need in the construction of the Hk is the following easy observation.

Lemma 2.4. If n࠾ - (with n࠾, natural numbers), then the sequence

LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]n n n n, ࠾
1

, ࠾
2

,…, ࠾
࠾ ࠩ 1

, ࠾1 1ࠩ࠾ 2ࠩ࠾

is nonincreasing. In fact it is strictly decreasing, except that when n࠾ = the first two terms
are equal.

Lemma 2.4 gives an alternate justification that the procedure described in the proof of
Theorem 1.3 (the construction ofGm) is valid, which we now briefly describe, as it is relevant to

the construction of the Hk. Recall that G G=m k
m

k=0
ݝ1ࠩ where G m k K= ( ࠩ )k j

a
m=1

k
m( )

ݝ (the mutual

join of ak
m( ) copies of m k K( ࠩ ) m), where ak

m( ) is as given by (8). The sequence

i G i G i G( ( ), ( ),…, ( ))m m0 ࠩ1 0 1 (which we will denote compactly by i G( ( ))k k m0 =
1 ) is ( )( )mm

m k
k

k mࠩ =

1

(recall a = 1m
0
( ) ). This starts m( ,…)m , is decreasing (by Lemma 2.4, with n m m( , (࠾ = ( , )), and its

successive terms are integer multiples of m m m, , ,…m m mࠩ1 ࠩ2 .

Now consider the sequence m i G( ࠩ ( ))m
k k m0 = ࠩ1

1 , which represents the shortfall of the se-
quence i G( ( ))k k m0 =

1 from the goal sequence m( )m k m=
1 (in the shortfall, we have omitted the

leading 0, corresponding to k m= ). This sequence is increasing, and its successive terms are

integer multiples of m m, ,…m mࠩ1 ࠩ2 . Its first term is ( )m mࠩm m m
1

ࠩ1, which by Lemma 2.4 is a

nonnegative multiple of mmࠩ1 (and in fact by (8) is a mm m
1
( ) ࠩ1). So, to G0 we join the graph G1,

the mutual join of a m
1
( ) copies of m K( ࠩ 1) m. (It happens that a = 0m

1
( ) , but for the purposes of

this discussion, all that matters is that it is nonnegative).
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The sequence i G( ( ))k k m1 = ࠩ1
1 is ( )( )a mm m

m k
k

k m
1
( ) ࠩ 1

( ࠩ 1) ࠩ = ࠩ1

1
. By Lemma 2.4, with

n m m( , (࠾ = ( , ࠩ 1), this is decreasing, and its successive terms are integer multiples of
m m, ,…m mࠩ1 ࠩ2 . It follows that the sequence m i G G( ࠩ ( ))m

k k m0 1 = ࠩ2
ݝ1 —representing the

shortfall of the sequence i G G( ( ))k k m0 1 =
ݝ1 from the goal sequence m( )m k m=

1 (in the shortfall, we
have now omitted the two leading 0's, corresponding to k m= andm ࠩ 1)—is increasing, and
its successive terms are integer multiples of m m, ,…m mࠩ2 ࠩ3 . Its first term is

( ) ( )m m a mࠩ ࠩm m m m m m
2

ࠩ2
1
( ) ࠩ 1

1
ࠩ2, which by Lemma 2.4 is a nonnegative multiple of mmࠩ2

(and in fact by (8) is a mm m
2
( ) ࠩ2).

So, to G G0 ݝ1 we join the graph G2, the mutual join of a m
2
( ) copies of m K( ࠩ 2) m, which

brings the number of independent sets of sizem ࠩ 2 up to the desiredmm, and leaves a shortfall
sequence that is nonnegative and (by an appropriate application of Lemma 2.4) increasing, with
terms that are successively integer multiples of m m, ,…m mࠩ3 ࠩ4 . This construction can be
iteratively continued until Gm is reached.

We modify this process slightly to obtain Hk.
Case 1, k = 1: Set H G K= m m1 mࠩ1ݝ . Note that this requires neither Lemma 2.3 nor Lemma 2.4.
Case 2, k m, 1 : At the moment when the number of independent sets of size k has

reached mm, there are mm independent sets of all sizes at least k, while the sequence
i G i G( ( ),…, ( ))kࠩ1 1 (where G is the graph constructed so far) is strictly decreasing, with
i G m a m m m( ) = ࠩ ࠩk

m
m k

k m m
ࠩ1 ࠩ( ࠩ1)

ࠩ1 ࠩ1- (the equality coming from the proof of
Theorem 1.3, Part 1, and the inequality using Lemma 2.3), and with i G( )j a multiple of mj.

Successively joinmm kࠩ ࠩ1 copies of kKm toG. This brings the number of independent sets of
size k up to m m+m mࠩ1, and it adds

km m mk m k mࠩ1 ࠩ ࠩ1 ࠩ1-

independent sets of size k ࠩ 1. The result is a graph Gࠫ with i G i G m( ࠫ)= = ( ࠫ) =m k
m

߄1+ ,
i G m m( ࠫ) = +k

m mࠩ1, with i G i G( ( ࠫ),…, ( ࠫ))kࠩ1 1 strictly decreasing, with i G( ࠫ)kࠩ1
m m m m( ࠩ ) + =m m m mࠩ1 ࠩ1- , and with i G( )j a multiple of mj. The iterative procedure de-

scribed above (for the construction of Gm) can now be continued to obtain Hk.
Case 3, k m= : Instead of starting the construction with mKm, we start with

K m K( ࠩ 1)m m2 ڢ . This has m2 m independent sets of size m, and for k m1 ࠩ 1- - it has

LNMMMM \̂]]]] LNMMM \̂]]]m
m k

m m m
m k

mࠩ 1
( ࠩ 1) ࠩ

+ 2 ࠩ 1
ࠩ

k kࠩ1

independent sets of size k (first consider those without a vertex from the K m2 , and then those
with such a vertex).

Now consider the sequence ( )i K m K( ( ࠩ 1)k m m
k m

2
= ࠩ1

1
ڢ . The successive terms are integer

multiples of m m, ,…m mࠩ1 ࠩ2 , and the first term is

m m m m m m+ 2 ( ࠩ 1) = 2 ࠩ .m m m mࠩ1 ࠩ2 ࠩ1

By applying Lemma 2.4 (with n m m( , (࠾ = ( , ࠩ 1)) to the sequence ( )( )mm
m k

k

k m

ࠩ 1
( ࠩ 1) ࠩ = ࠩ1

1
, and

again (still with n m m( , (࠾ = ( , ࠩ 1)) to the sequence ( )( )mm
m k

k
k m

ࠩ 1
ࠩ

ࠩ1
= ࠩ1

1
, we get further that
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the sequence ( )i K m K( ( ࠩ 1)k m m
k m

2
= ࠩ1

1
ڢ is strictly decreasing. The iterative procedure de-

scribed above can now be implemented to obtain Hm.

3 | MATCHING PERMUTATIONS

We begin by observing quickly that not all 2nࠩ1 unimodal permutations of n{1,…, } are realizable
as the permutation associated to a graph with the largest matching n. Indeed, the following
lemma shows that m G( )1 cannot be the largest entry of a matching sequence of any graph
whose largest matching has size at least 4, so that for n 4. the permutation n n( ࠩ 1) ߄321 is
not realizable. (Recall that all graphs under consideration are simple.)

Lemma 3.1. If ؤ G( ) 4. then m G m G( ) > ( )2 1 .

Proof. We proceed by induction on e G( ), the number of edges of G. In the base case,
e G( ) = 4, G must consist of four vertex‐disjoint edges, and we have
m G m G( ) = 6 > 4 = ( )2 1 . For the induction step, let G be a graph on more than four
edges with ؤ G( ) 4. , and let uv be an edge in G (joining vertices u and v) chosen so that
G1, the graph obtained from G by deleting the edge uv, still has a matching with at least
four edges. Let G2 be obtained from G by deleting the vertices u and v. We have
m G m G m G( ) = ( ) + ( )2 2 1 1 2 (the set of matchings of size 2 in G partitions into those that
do not include uv—m G( )2 1 many—and those that do—m G( )1 2 many). Also,
m G m G( ) = ( ) + 11 1 1 . Now by induction m G m G( ) > ( )2 1 1 1 , and also m G( ) 2 > 11 2 . ,
because on deleting u and v from G at least two of the edges of any matching of size 4
remain. Combining we get m G m G m G m G m G( ) = ( ) + ( ) > ( ) + 1 = ( )2 2 1 1 2 1 1 1 . ࣕ

We make an incidental observation at this point. The matching polynomial of a graph with
maximum matching size n can be expressed in the form r x r x r x(1 + )(1 + ) (1 + )n1 2 ߄ where
the ri's are real and nonnegative; this is a consequence of a theorem of Heilmann and Lieb [13].
To a sequence that arises as the coefficient sequence of a polynomial of the form

r x r x r x(1 + )(1 + ) (1 + )n1 2 ߄ with ri real and nonnegative, we can associate permutations via
(1). Because real‐rooted polynomials have unimodal coefficient sequences, at most only the
2nࠩ1 unimodal permutations of n[ ] can arise in this context. The permutation
n n n( ࠩ 1)( ࠩ 2) ߄321 can arise: let all ri be equal, say equal to r , so the polynomial becomes

LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]n rx n r x n
n

r x r x1 +
1

+
2

+ +
ࠩ 1

+ .n n n n2 2 ࠩ1 ߄1ࠩ

It is easy to check that if r is sufficiently small,

LNMMM \̂]]] LNMMM \̂]]] LNMMM \̂]]]r r n
n

n r n r<
ࠩ 1

< <
2

<
1

n nࠩ1 ߄2

so that this polynomial has associated with it the unique permutation n n n( ࠩ 1)( ࠩ 2) ߄321 .
This shows that our observations about restrictions on the matching sequence are not just
restrictions coming in disguise from the real‐rooted property of the matching polynomial.
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The proof of Lemma 3.1 generalizes considerably. We state and prove the generalization
first, and then consider the consequences for matching permutations, in particular giving the
proof of Theorem 1.7.

Theorem 3.2. For each n 4. , and for each G Wk n= 1,…, 2 ࠩ ٵ1 , if ؤ G n( ) . then
m G m G( ) < ( )k ࠾ for each ࠾ satisfying k n k< ࠾ < ࠩ .

Proof. We proceed by a double induction, with an outer induction on n, and an inner
induction on e G( ), the number of edges ofG. The base case of the outer induction, n = 4,
is the assertion that if ؤ G( ) 4. then m G m G( ) < ( )1 2 , which is exactly Lemma 3.1.

For n > 4, assume that we already have the result for all n n4 ࠫ <- . Fix k,G Wk n1 2 ࠩ 1- - ٵ . We will prove, by induction on e G( ), that if ؤ G n( ) . then
m G m G( ) < ( )k ࠾ for any ࠾ strictly between k and n kࠩ .

In the base case (e G n( ) = ) G must consist of n vertex‐disjoint edges, and we

have ( ) ( )m G m G( ) = > = ( )n n
k k࠾ ࠾ .

For the induction step in this inner induction, let G be a graph on more than n edges,
with ؤ G n( ) . , and let uv be an edge inG, joining vertices u and v, chosen so thatG1, the
graph obtained fromG by deleting the edge uv, has a matching of size at least n. As in the
proof of Lemma 3.1, let also G2 be obtained from G by deleting the vertices u and v.
We have

m G m G m G m G m G m G( ) = ( ) + ( ) and ( ) = ( ) + ( ).k k k࠾ ࠾ 1 1ࠩ࠾ 2 1 ࠩ1 2 (12)

Now by the induction hypothesis on e G( ), we have

m G m G( ) > ( ).k࠾ 1 1 (13)

But also, we claim that

m G m G( ) > ( ).k1ࠩ࠾ 2 ࠩ1 2 (14)

If n = 5 then k = 1 and either ࠾ = 2 or 3, and (14) becomes eitherm G( ) > 11 2 (in the case
࠾ = 1; note that m G( ) = 10 2 ) or m G( ) > 12 2 (in the case ࠾ = 2); both of these hold since
G2 has at least three vertex‐disjoint edges. For n > 5 (14) follows from the n ࠩ 2 case of
the outer induction. Indeed, ؤ G n( ) ࠩ 22 . (removing u v, can delete at most two of the
edges from any matching of size n). Set n nࠫ = ࠩ 2, k kࠫ = ࠩ 1, and ࠫ࠾ = ࠾ ࠩ 1. We haveG Wk n1 2 ࠩ 1- - ٵ and k n k< ࠾ < ࠩ , so G Wk n0 ࠩ 1 2 ࠩ 2- - ٵ and
k n kࠩ 1 < ࠾ ࠩ 1 < ࠩ ࠩ 1, or G Wk n0 ࠫ ࠫ 2 ࠩ 1- - ٵ and k n kࠫ < ࠫ࠾ < ࠫ ࠩ ࠫ, and so the
appeal to the earlier case of the outer induction is valid.

Combining (13) and (14) with (12) yields m G m G( ) > ( )k࠾ , as required. ࣕ

An immediate consequence of Theorem 3.2 is that for any graph G with ؤ G n( ) . we have

G W G Wm G m G( ) < ( )n n2 ࠩ1 ٵ2 ٵ , which says that the mode of the matching sequence must occur atG Wn ٵ2 or later. This means that Mn, the number of permutations of n[ ] that can arise as the
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permutation associated with a graph with the largest matching having size n, satisfies½ G W ( )Mn k n
n n

k= 2 ࠩ1
ࠩ1 ࠩ 1- ٵ . This is asymptotically 2nࠩ2 as n goes to infinity; a factor of 2 smaller

than the upper bound observed in [1].

A finer analysis of Theorem 3.2 yields the substantially smaller bound (5) on Mn. Let
(m m,…, n1 ) be a matching sequence, with mode mt (perhaps obtained after breaking a tie). Any
associated permutation (in one‐line notation) puts t{1,…, ࠩ 1} in increasing order and
t n{ + 1,…, } in decreasing order in the first n ࠩ 1 spots, and puts t at the end.

This permutation can be encoded by a U–D sequence of length n ࠩ 1—each time one sees a
U, one enters the first as‐yet‐unused number from t{1,…, ࠩ 1} (remembering that these num-
bers should be used in increasing order); each time one sees a D, one enters the first as‐yet‐
unused number from t n{ + 1,…, } (remembering that these numbers should be used in de-
creasing order). For example,

UUDDDUUDUDDUU

would correspond to n t= 14, = 8, and would yield the permutation

1{2{14{13{12{3{4{11{5{10{9{6{7{8.

Notice that this is a bijective encoding—a unique permutation can be read from a sequence.
Notice also that in theU–D sequence one is never allowed to have an initial substring that has
three more D's thanU 's, because the first time we see such an initial string, say after jU 's and
j( + 3)D's, we would have seen 1 through j, but not j + 1, and we would have seen n through
n jࠩ ( + 2), in particular including n jࠩ ( + 2), so we would have m m>j n j+1 ࠩ( +2), violating
Theorem 3.2. It follows that Mn is bounded above by the number of U–D sequences of length

n ࠩ 1 having no initial substring with three more D's thanU 's. We denote this number by Cn(3).

The sequence ( )Cn n
(3)

1.
begins (1, 2, 4, 7, 14, 25, 50,…), and is [17, A026010].

Rather than deriving an exact formula for Cn(3) (one appears at [17, A026010]), we take a

simpler approach. The quantity Cn(3) is bounded above by the number of U–D sequences of
length n + 1 that start with UU and have no initial substring with more D's than U 's. This in
turn is upper bounded by the number of U–D sequences of length n + 1 having no initial
substring with more D's thanU 's (with no restriction on how the strings start). These sequences
are also known as left factors of Dyck words, and it is well known (see, e.g., [17, A001405] or

[14, Proposition 1.6]) that there are G W( )n
n

+ 1
( + 1) ٵ2 such. By Stirling's approximation to the fac-

torial, this is asymptotically c n2nٵ (the constant c depending on the parity of n). This verifies
(5) and completes the proof of Theorem 1.7.

4 | QUESTIONS AND PROBLEMS

A number of interesting problems remain concerning the behavior of the independent set
sequence of a graph. We begin with the natural refinement of our determination of f m( ).
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Problem 4.1. For each permutation ا , determine g )ا ), the minimum order over all
graphs G for which ا is an independent set permutation of G.

We have shown that at most mm vertices is enough to induce the constant weak order on
m[ ] from an independent set sequence, but this is definitely not enough to realize all weak
orders; for example, the weak order m m m mࠩ 1 < < ࠩ 2 < ࠩ 3 < < 2 < ߄1 requires at
leastm m+ ࠩ 2m vertices. Indeed, ifG realizes this weak order, then i G i G( ) > ( )m mࠩ1 , and so,
by (the contrapositive of) Theorem 1.3 (Part 2), i G m( )m

m. . But we also must have
i G i G i G i G( ) > ( ) > ( ) > ( )m m1 2 ߄2ࠩ , so i G m m( ) + ࠩ 2m

1 . , so G must have at least
m m+ ࠩ 2m vertices. In the other direction, we have shown that fewer thanmm+2 vertices are
sufficient to induce any weak order on m.

Problem 4.2. Determine the smallest order large enough to realize every weak order
on m[ ] as the weak order induced by the independent set sequence of some graph.

Problem 4.3. Do the same for weak orders consisting of singleton blocks; equivalently,
answer Problem 1.2 with the additional constraint that the permutations associated with
independent set sequences are required to be unique.

As discussed in the introduction, it is quite likely that the authors of [1] were thinking of
Problem 4.3 when they formulated Problem 1.2.

A fascinating question is raised in [1], that has attracted some attention, but has remained
mostly open. Although the independent set sequence of a graph is unconstrained, if we restrict
to special classes of graphs, then it can become constrained. For example, the independent set
sequence of a claw‐free graph is unimodal [12], and so at most only the 2mࠩ1 unimodal
permutations of m[ ] can arise as the independent set permutation of a claw‐free graph with the
largest independent set sizem. Alavi et al. observed that the independent set sequences of stars
and paths are both unimodal, and asked:

Question 4.4 (Alavi et al. [1, Problem 3]). Is the independent set sequence of every tree
unimodal?

It is for all trees on 24 or fewer vertices [18, 20]. See, for example, [11] for recent work and
other references.

It had been conjectured by Levit and Mandrescu [15] that every bipartite graph has un-
imodal independent sequence, and they obtained a partial result: if G is a bipartite graph with
ؘ G m( ) = 1. , then the final third of the independent set sequence is weakly decreasing,
that is,

C Si G i G i G( ) ( ) ( ).m m m(2 ࠩ1) 3 ࠩ1. . ٵ߄.

The unimodality conjecture was, however, disproved by Bhattacharyya and Kahn [4].

Problem 4.5. Characterize the permutations that can occur as the independent set
permutations of a bipartite graph.
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There is an interesting parallel to the case of well‐covered graphs. A graph is well covered if
all its maximal independent sets have the same size. It had been conjectured by Brown, Dilcher,
and Nowakowski [5] that every well‐covered graph has unimodal independent sequence, but
this was disproved by Michael and Traves [16], who also showed that the first half of the
independent set sequence of a well‐covered graph is increasing, that is,

C Si G i G i G( ) < ( ) < < ( ).m1 2 ߄2 ٵ

They formulated the roller‐coaster conjecture, that for any m 1. and any permutation ا ofC Sm m[ 2 , ٵ[ there is a well‐covered graph G with ؘ G m( ) = and with

C S C Si G i G i G( ) < ( ) < < ( ا.( m ا m ا m([ 2 ) ([ 2 )+1 ( ٵ߄( ٵ

This was subsequently proved by Cutler and Pebody [7]. The analog of the roller‐coaster
conjecture does not hold for Problem 4.5; for example, it is easy to see that for n 7. , any
bipartite graph G on n vertices has i G i G( ) > ( )2 1 .

Turning to matching permutations, the incidental observation made after the proof of
Lemma 3.1 raises the following (perhaps easy) question.

Question 4.6. Which unimodal permutations of n[ ] can arise via (1) from the
coefficient sequence of a polynomial of the form r x r x r x(1 + )(1 + ) (1 + )n1 2 ߄ with ri
real and nonnegative?

Finally, the greater part of Problem 1.6 remains open.

Problem 4.7. Characterize the permutations that can occur as the matching
permutation of a graph, and determine the growth rate of Mn, the number of
permutations of n[ ] that are matching permutations of some graph.
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