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a b s t r a c t

A distance graph is an undirected graph on the integers where two integers are adjacent if
their difference is in a prescribed distance set. The independence ratio of a distance graph
G is the maximum density of an independent set in G. Lih et al. (1999) showed that the
independence ratio is equal to the inverse of the fractional chromatic number, thus relating
the concept to the well studied question of finding the chromatic number of distance
graphs.

We prove that the independence ratio of a distance graph is achieved by a periodic set,
and we present a framework for discharging arguments to demonstrate upper bounds on
the independence ratio. With these tools, we determine the exact independence ratio for
several infinite families of distance sets of size three and determine asymptotic values for
others.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a set S of positive integers, the distance graph G(S) is the infinite graph with vertex set Z where two integers i
and j are adjacent if and only if |i − j| ∈ S. Intense study of distance graphs began when Eggleton, Erdős, and Skilton
[15,16] defined them as a modified version of the Hadwiger–Nelson problem of coloring the unit-distance graph on R2. The
chromatic number of distance graphs has since been widely studied [2,5,8–11,13,14,19,15–18,22,24–27,29,31–37,40–42].

A particularly effective tool for finding lower bounds on the chromatic number is to determine the fractional chromatic
number, χf (S) = χf (G(S)). A fractional coloring of a graph G is a function c from the independent sets I of G to nonnegative
real numbers such that for every vertex v, the sum


I∋v c(I) ≥ 1, and the value of the coloring is the sum


I c(I) taken over

all independent sets I . The fractional chromatic number χf (G) is the minimum value of a fractional coloring, and provides a
lower bound on the chromatic number. In fact, ⌈χf (G)⌉ ≤ χ(G) and this inequality is frequently sharp in the case of distance
graphs [8–10,29,42].

For an independent set A in G(S) the density δ(A) is equal to lim supN→∞
|A∩[−N,N]|

2N+1 . The independence ratio α(S) is the
supremum of δ(A) over all independent sets A in G(S). Lih, Liu and Zhu showed that determining the fractional chromatic
number χf (S) of a distance graph G(S) is equivalent to determining its independence ratio.
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Theorem 1 (Lih, Liu, and Zhu [31]). Let S be a finite set of positive integers. Then χf (S) = α(S)−1.

Thus, the previous results computing the fractional chromatic number of distance graphs apply to the independence
ratio. We summarize these results in Section 3. The inequality χf (S) ≤ α(S)−1 is easy to determine if you have access to
a periodic independent set in G(S) of density α(S). While this was acknowledged by previous work, it is surprising that no
one proved that such an independent set exists. Thus, we demonstrate that such periodic extremal sets exist.

Theorem 2. Let S be a finite set of positive integers and let s = max S. There exists a periodic independent set A in G(S) with
period at most s2s where δ(A) = α(S).

Our proof of Theorem2 uses a lemma (Lemma 3) about extremalwalks in finite digraphs thatwe also apply to show there
exist periodic extremal sets for dominating sets and identifying codes in finitely-generated distance graphs. This lemmamay
be also applicable in other situations.

We also develop several fundamental techniques for determining the independence ratio, whichwe then apply to several
infinite families of distance sets of size three. To prove upper bounds on α(S), we develop a new discharging method. The
resulting Local Discharging Lemma (Lemma 21) is then used extensively to give exact values of α(S) for several infinite
families of distance sets. We witness several common themes among these proofs, and these themes may be evidence that
discharging arguments of this type could be used to determine almost all values of α(S).

For an integer n, the circulant graph G(n, S) is the graph whose vertices are the integers modulo n where two integers i
and j are adjacent if and only if |i− j| ≡ k (mod n), for some k ∈ S. The distance graph G(S) can be considered to be the limit
structure of the sequence of circulant graphs G(n, S). Thus, extremal questions over the circulant graphs lead to extremal
questions on the distance graph. For instance, the equality α(S) = lim supn→∞ α(G(n, S))/n is a consequence of Theorem 1.

Since the complement of a circulant graph is also a circulant graph, and the independence number of a graph is the
clique number of its complement, studying the independence ratio of distance graphs is strongly related to determining
the independence number and clique number of circulant graphs. In particular, simultaneously bounding the independence
number and clique number of circulant graphs has shown lower bounds on Ramsey numbers [30]. So far, these parameters
have been studied for circulant graphs G(n, S) when limited to special classes of sets S, whether algebraically defined
[1,4,6,12,20,28,39] or with S finite and n varying [3,7,23].

A recent development is the discovery that certain circulant graphs G(n, S) are uniquely Kr -saturated, including three
infinite families [21]. A graph H is uniquely Kr -saturated if H contains no copy of Kr and for every pair uv ∉ E(H) there is
a unique copy of Kr in H + uv. The first step in proving this property is showing that the clique number of G(n, S) is equal
to r − 1. In the three infinite families, the generating set S uses a growing number of elements, but the complement of the
graph uses a finite number of elements. The complement G(n, S) is another circulant graph G(n, S ′) where S ′ has a finite
number of elements. The independence number of G(n, S ′) is of particular interest. Our dischargingmethod is an adaptation
of the discharging method used in [21] to determine the independence number in circulant graphs.

We start in Section 2 by proving Theorem 2, that the independence ratio in a distance graph is achievable by a periodic
independent set. We take the opportunity there to show two quick applications of the proof technique to related density
problems for other types of subset of G(S). In Section 3 we summarize previous results on the independence ratio. The next
section collects some introductory results concerning α(S), and then in Section 5 we define our discharging process and its
connection to the independence ratio, proving the Local Discharging Lemma. We use the Local Discharging Lemma to prove
exact values of α(S) for several families of sets S in Section 6. We determine the independence ratio for a range of graphs
with generator sets of size 3. This extends work of Zhu [42], who considered the fractional chromatic number of G(S) in
distance graphs with generator sets of size 3. Finally in Section 7 we discuss the algorithm we used to compute values of
α(S) for specific finite sets S. The computed values of α({1, 1+ k, 1+ k+ i}) are given as a table in Appendix A, while more
values are given in data available online.1

Our notation is standard. Throughout the paper we consider S to be a finite, nonempty set of positive integers. For
a positive integer n, we write [n] = {1, . . . , n}, and similarly [a, b] = {a, a + 1, . . . , b − 1, b}. When d ≥ 1, we let
d · S = {d · s : s ∈ S} and S + d = {s+ d : s ∈ S}.

2. Periodic sets of extremal value

In this section, we prove Theorem 2. As a consequence, we give an alternative proof of Theorem 1. We start by proving
a lemma that implies that periodic extremal sets exist for several different extremal problems on distance graphs, such as
dominating sets and r-identifying codes.

Consider a finite directed graph Gwhere every vertex v is given a weight w(v). LetW = (vi)i∈Z be a doubly infinite walk

on G. Then the upper average weight w(W ) of W is defined as lim supN→∞

N
i=−N w(vi)

2N+1 , and the lower average weight w(W )

ofW is defined as lim infN→∞
N

i=−N w(vi)

2N+1 . Given a simple cycle C in G, define the infinite walkWC by infinitely repeating C .

Observe that w(WC ) = w(WC ) =


v∈V (C) w(v)

|C | .

1 See http://www.math.iastate.edu/dstolee/r/distance.htm for all data files.

http://www.math.iastate.edu/dstolee/r/distance.htm
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Lemma 3. Let G be a finite, vertex-weighted digraph. The supremum of upper average weights (or infimum of lower average
weights) of infinite walks on G is equal to the maximum upper average weight (or minimum lower average weight, respectively)
of some infinite walk WC where C is a simple cycle.

Proof. We prove that every infinite walk W has w(W ) bounded above by the maximum upper average weight of a simple
cycle. In the case of minimizing w(W ), we can simply negate the weights of the vertices and apply the maximization case.

FixW = (vi)i∈Z. Let n = |V (G)| and let N be large. Wewill approximate the fraction
N

i=−N w(vi)

2N+1 by a convex combination
of upper average weights of simple cycles of G. This approximation improves as N grows, so we find the limit definition of
w(W ) is bounded above by the maximum upper average weight of a simple cycle.

Let X = (xi)i∈[a,b] be any finite walk. If xi, xi+1, . . . , xi+ℓ are distinct vertices where xi+ℓ+1 = xi, then we say C =
(xi, xi+1, . . . , xi+ℓ) is a simple cycle within X (note that a simple cycle may have one or two vertices). Define X ′ to be the
contraction of C in X by removing the subwalk (xi, xi+1, . . . , xi+ℓ) from X .

Let WN = (vi)i∈[−N,N]. Starting with W (1)
= WN , we iteratively construct a list of walks W (1), . . . ,W (t+1) and a

list of simple cycles C1, . . . , Ct such that Ci is a simple cycle in W (i) and W (i+1) is the contraction of Ci in W (i). This
iterative construction stops when W (t+1) does not contain a simple cycle. Such a walk does not repeat any vertices, so
|W (t+1)

| ≤ n≪ N . Observe that

N
i=−N

w(vi) =

t
j=1


vi∈Cj

w(vi)

+ 
vi∈W (t+1)

w(vi)

=

t
j=1

|Cj|w(Cj)+


vi∈W (t+1)

w(vi).

Let C be a simple cycle of G that maximizes w(C) and u be a vertex of G that maximizes w(u), so
t

j=1 |Cj|w(Cj) +
vi∈W (t+1) w(vi) ≤ |WN |w(C)+ nw(u) and hence

w(W ) = lim sup

N
i=−N

w(vi)

2N + 1
≤ lim sup

(2N + 1)w(C)+ nw(u)
2N + 1

= w(C).

Therefore, ifWC is the infinite walk given by repeating the cycle C , then w(WC ) ≥ w(W ). �

We now proceed to use Lemma 3 to prove that there is a periodic independent set that attains the independence ratio.
Our technique is a general approach that shows, for any type of object that is a subset of vertices in distance graphs, the
extremal density is attained by periodic objects.

Let X ⊆ Z be an object satisfying a property P in a distance graph G(S). We consider the intersection of X with disjoint
consecutive intervals of fixed length ℓ:

. . . , X ∩ [−ℓ+ 1, 0], X ∩ [1, ℓ], X ∩ [ℓ+ 1, 2ℓ], . . . .

There are only a finite number of possibilities for X ∩ [kℓ + 1, (k + 1)ℓ], considered up to translation by multiples of ℓ.
We call such patterns ‘‘states’’, and encode in a ‘‘state graph’’ which states can follow a given state. Since there are a finite
number of states, we can apply Lemma 3 to the state graph to obtain an extremal periodic object.

More formally, a state is a set T ⊆ [ℓ]. An object X satisfying property P has state T on the interval [kℓ + 1, (k + 1)ℓ],
where k ∈ Z, if X ∩ [kℓ + 1, (k + 1)ℓ] = T + kℓ. An admissible state is a state T such that there exists an object X with
property P such that X has state T on some interval. A transition occurs between two admissible states T and T ′ if there
exists an object X with property P and an integer k such that X has state T on interval [kℓ + 1, (k + 1)ℓ] and state T ′ on
interval [(k+ 1)ℓ+ 1, (k+ 2)ℓ]. Let the state graph be the directed graph where the vertices are the admissible states, and
the directed edges are the transitions. The weight of a state is determined by the type of objects, but is usually the density
|T |/ℓ.

Given an object X with property P , the states Ti = X ∩ [iℓ+ 1, (i+ 1)ℓ] give rise to an infinite walk in the state graph.
Every doubly infinite walkW = (Ti)i∈Z in the state graph gives rise to a subset Y ofZ by Y =


i∈Z(Ti+ iℓ) for i ∈ Z. Suppose

that every subset Y created from an infinite walk in this way also has property P . For the properties that we are interested
in, this fact can usually be guaranteed by choosing ℓ large enough. By applying Lemma 3 to the state graph, there is a cycle
C whose weight is extremal. LetW be the walk formed by infinitely repeating C , and let Y be the corresponding object with
property P . Note that Y is periodic with period ℓ times the length of C . Since there are at most 2ℓ states, the period of Y is
at most ℓ2ℓ.

A type is admissible if T is an independent set in G(S). Recall that S is finite and s = max S, so there are at most 2s

admissible types. An ordered pair of admissible types (T , T ′) is compatible if T


(T ′ + s) is independent. Let the state graph
be the directed graph where the admissible types are vertices, and the compatible pairs are the edges.
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Proof of Theorem 2. We consider independent sets in G(S). Let s = max S, and choose interval lengths of ℓ = s. The states
are subsets of [s], the admissible states are subsets of [s] that are independent in G(S), and the weight of a state T is |T |/s.
State T can transition to state T ′ if T ∪ (T ′ + s) is an independent set. Given any independent set X in G(S), the states
Ti = X ∩ [is+ 1, (i+ 1)s] give rise to an infinite walkW in the state graph since the intersection of X with two consecutive
intervals remains independent. Note that the density δ(X) is equal to w(W ).

Next we show that every subset Y =


i∈Z(Ti + is) created from an infinite walk on the state graph is an independent
set in G(S). If not, there are j1, j2 ∈ Y such that |j1 − j2| ∈ S. Since ℓ = s both j1 and j2 either belong to the same Ti + is or
two consecutive states, Ti+ is and Ti+1+ (i+ 1)s. Both j1 and j2 cannot belong to the same Ti+ is, since Ti is admissible and
hence independent in G(S). If j1 ∈ Ti+ is and j2 ∈ Ti+1+ (i+ 1)s, then (Ti+ is)


(Ti+1+ (i+ 1)s) is not independent, which

contradicts that there is a transition between those states.
By Lemma 3, the weight of an infinite walk in the state graph is maximized by a simple cycle C . The independent set Y

created from the infinite walk repeating C has density α(S) and is periodic with a period of length s|C |, which is at most
s2s. �

To demonstrate the versatility of Lemma3,we also prove that other problems on distance graphs admit periodic extremal
sets.

A set of vertices D is dominating if every vertex in the graph is either in D or adjacent to a vertex in D.

Theorem 4. Let S be a finite set of positive integers and set s = max S. The minimum density of a dominating set in G(S) is
achieved by a periodic set with period at most (2s)22s.

Proof. We consider dominating sets in G(S). Let s = max S, and choose interval lengths of ℓ = 2s. The states are subsets
of [2s], and all states are admissible. The weight of a state T is |T |/(2s). State T can transition to state T ′ if every vertex in
[s + 1, 3s] either is in T ∪ (T ′ + 2s) or has a neighbor in T ∪ (T ′ + 2s). Given any dominating set X in G(S), the states
Ti = X ∩ [i(2s) + 1, (i + 1)2s] give rise to an infinite walk W in the state graph since every integer in the interval
[i(2s)+ s+ 1, i(2s)+ 3s] is either in, or has a neighbor in, the set (Ti + i(2s)) ∪ (Ti+1 + (i+ 1)(2s)). Note that the density
δ(X) is equal to w(W ).

Next we show that every subset Y =


i∈Z(Ti+ i(2s)) created from an infinite walk on the state graph is a dominating set
in G(S). If not, then there exists j ∉ Y that has no neighbor in Y . The integer j is in some interval [i(2s)+ 1, (i+ 1)2s]. If j ∈
[i(2s)+1, (i)2s+s], then since there is a transition from Ti−1 to Ti, jmust have a neighbor in Y∩[(i−1)(2s)+1, (i+1)(2s)]. If
j ∈ [i(2s)+s+1, (i+1)2s], then since there is a transition from Ti to Ti+1, jmust have a neighbor in Y∩[(i)(2s)+1, (i+2)(2s)].

By Lemma 3, the weight of an infinite walk in the state graph is minimized by a simple cycle C . The dominating set Y
created from the infinite walk repeating C hasminimum periodic with a period of length 2s|C |, which is at most (2s)22s. �

Define the ball Br(u) of radius r centered at u to be the set of all vertices in G(S) that are distance at most r from u. A set
A of vertices is an r-identifying code if for every pair of distinct vertices u and v in G(S), the sets A ∩ Br(u) and A ∩ Br(v) are
nonempty and distinct.

Theorem 5. Let S be a finite set of positive integers and set s = max S. The minimum density of a 1-identifying code in G(S) is
achieved by a periodic set with period at most (6s)26s.

Proof. Let s = max S, and choose intervals of length ℓ = 6s. The states are subsets of [6s]; hence there are at most 26s

admissible states. The weight of a state T is T/(6s). State T can transition to state T ′ if in T ∪ (T ′+ 6s) every distinct vertices
u ∈ [3s+ 1, 9s] and v ∈ [s+ 1, 11s] have the property N[u] ∩ (T ∩ T ′ + 6s) ≠ N[v] ∩ (T ∩ T ′ + 6s).

Next we show that every subset Y =


i∈Z(Ti + i(6s)) created from an infinite walk on the state graph is a 1-identifying
code in G(S). If not, then there exist distinct u, v ∈ Z where N[u] ∩ Y = N[v] ∩ Y . The integer u is in some interval
[i6s + 3s + 1, (i + 1)6s + 3s] for some i. Since N[u] ∩ N[v] ≠ ∅, then u and v must be within distance 2s, and hence
v ∈ [i6s+ s+ 1, (i+ 1)6s+ 5s]. Thus, u and v are both in (Ti + i6s)∪ (Ti+1 + (i+ 1)6s), where there is a transition from Ti
to Ti+1.

By Lemma 3, the weight of an infinite walk in the state graph is minimized by a simple cycle C . The 1-identifying code
Y created from the infinite walk repeating C has minimum density and is periodic with a period of length 6s|C |, which is at
most (6s)26s. �

Observe that an r-identifying code in a graph G corresponds to a 1-identifying code in Gr , where Gr is the graph with the
same vertex set as G but two vertices u, v are adjacent in Gr if they have distance at most r in G. Further, G(S)r is a distance
graph with distance set S ′ =

r
t=1

t
i=1 ai : |ai| ∈ S


, and max S ′ = r max S. Thus, we have the following corollary.

Corollary 6. Let S be a finite set of positive integers and set s = max S. The minimum density of an r-identifying code in G(S) is
achieved by a periodic set with period at most (6sr)26sr .

For completeness, we demonstrate a similar proof for chromatic number, using an unweighted statement analogous to
Lemma 3. This result was previously shown by Eggleton, Erdő, and Skilton [16].
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Theorem 7. Let S be a finite set of positive integers and set s = max S. For k = χ(G(S)), there exists a periodic proper k-coloring
c with minimum period at most sks.

Proof. A state is a coloring c : [s] → {1, . . . , k}. A state c is admissible if the partial coloring induced on G(S) is proper.
State c can transition to state c ′ if the partial coloring

c ′′(i) =

c(i) if i ∈ [s]
c ′(i− s) if i ∈ [s+ 1, 2s]

is proper in G(S). The state graph has admissible states as vertices and transitions as edges. As in the case of independent
sets, there is a correspondence between proper k-colorings of G(S) and infinite walks in the state graph. Since there is a
proper k-coloring of G(S), there is some infinite walk in the state graph, and hence the state graph contains at least one
cycle. Infinitely repeating this cycle corresponds to a periodic proper k-coloring with period at most sks. �

To finish this section, we present an alternate proof of one inequality of Theorem 1 using an extremal periodic
independent set. The original proof by Lih, Liu, and Zhu [31] first showed equality between χf (G(n, S)) and α(G(n, S))/n
and then took the limit.

Theorem 1 (Lih, Liu, and Zhu [31]). Let S be a finite set of positive integers. Then

χf (S) = α(S)−1.

Proof. First we show χf (S) ≤ α(S)−1. Let Ind(S) be the family of independent sets in G(S). By Theorem 2, there exists
a periodic independent set A with period p and δ(A) = α(S). Form the fractional chromatic coloring c by assigning
c(A+ i) = 1

pδ(A)
for all i ∈ {0, . . . , p−1} and c(I) = 0 for all other independent sets I . Since A is periodic and contains pδ(A)

elements within any interval of length [p], a vertex x appears in exactly pδ(A) sets A+ i. Thus,


Ind(S):v∈I c(I) = 1, so c is a
fractional coloring. The value of this fractional coloring is p · 1

pδ(A)
= α(S)−1.

Next we show χf (S) ≥ α(S)−1, which is the analogue for infinite graphs of the well known fact that χf (G) ≥ 1
α(G)

for a
finite graph G. Let G(S)[−n, n] be the finite subgraph of G(S) induced by the vertices [−n, n]. We know

2n+ 1
α(G(S)[−n, n])

≤ χf (G(S)[−n, n]) ≤ χf (S)

for all n ∈ Z. We show α(S) ≥ lim supn→∞
α(G(S)[−n,n])

2n+1 , which with the above inequality implies χf (S) ≥ α(S)−1.
Let L := lim supn→∞

α(G(S)[−n,n])
2n+1 , and let An be a maximum independent set in G(S)[−n, n]. For n ≥ s, Xn :=


z∈Z(An ∩

[−n, n − s] + 2nz) is an infinite independent set in G(S) of density at least α(G(S)[−n,n])−s
2n , which approaches L as n → ∞.

Thus there exists a sequence (Xn)n≥s of independent sets in G(S) with densities that approach L, and so α(S) ≥ L. �

3. Previous results

We outline here the known results concerning α(S). The results were all phrased in terms of χf (S), but by Theorem 1we
know the following versions are equivalent.

Theorem 8 (Gao and Zhu [19]). Let k and k′ be positive integers such that k ≤ k′.

1. α([1, k′]) = α([k′]) = 1
k′+1 .

2. If k′ ≥ (5/4)k, then α([k, k′]) = k
k+k′ . �

Theorem 9 (Chang, Liu, and Zhu [9]; Liu and Zhu [34]). For positive integers m, k, s such that sk ≤ m, let Dm,k,s = [m] \ k[s].

1. If 2k > m, then α(Dm,k,1) =
1
k .

2. If 2k ≤ m, then α(Dm,k,1) =
2

m+k+1 .
3. If m ≥ (s+ 1)k, then α(Dm,k,s) =

s+1
m+sk+1 . �

Theorem 10 (Lam and Lin [29]). For positive integers m ≥ k′ ≥ k ≥ 1, let Dm,[k,k′] = [m] \ [k, k′].

1. If m < 2k, then α(Dm,[k,k+i]) =
1
k .

2. If 2k ≤ m < 2k+ 2i, and 1 ≤ i ≤ k− 1, then α(Dm,[k,k+i]) =
2

m+1 .
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3. If m ≥ 2k+ 2i and 1 ≤ i ≤ k− 1, then α(Dm,[k,k+i]) =
2

m+k+1 .
4. If m < (s+ 1)k, then α(Dm,[k,sk+i]) =

1
k .

5. If 1 ≤ i ≤ k− 1 and (s+ 1)k ≤ m < (s+ 1)k+ i, then α(Dm,[k,sk+i]) =
s+1
m+1 . In particular, if k > 1 then

α([k,m]) =


1
k

if m ≢ 0 (mod k),

s+ 1
k+ 1

if m = (s+ 1)k. �

Theorem 11 (Liu, Zhu [35]). Let 0 < a < b, m ≥ 2, and gcd(a, b) = 1.

1. α({a, 2a, . . . , (m− 1)a, b}) =


k

km+ 1
if b = km for some k

1
m

otherwise
.

2. α({a, b, a+ b}) =


1
3

if b− a = 3k

a+ k
3a+ 3k+ 1

if b− a = 3k+ 1

a+ 2k+ 1
3a+ 6k+ 4

if b− a = 3k+ 2

.

3. if a ≢ b (mod 2), then α({a, b, b− a, a+ b}) = 1
4 .

4. α({1, 2m, 2m+ 1, 2m+ 2}) = m
4m+1 .

Chang, Huang, and Zhu [8] and Collins [13] determined the exact values of χf (S) for all sets S of size two.

Theorem 12 (Chang, Huang, and Zhu [8]; Collins [13]). Let S = {a, b} with 1 ≤ a < b and gcd(a, b) = 1.

1. If a and b are both odd, then α(S) = 1
2 .

2. If at least one of a and b is even, α(S) = a+b−1
2a+2b . In particular, α({1, 2k}) = k

2k+1 . �

Zhu [42] investigated the case where |S| = 3 and determined bounds on χf (S) and the circular chromatic number for
G(S). These bounds are sufficient to determine χ(S) exactly.

Theorem 13 (Zhu [42]). Let S = {a, b, c} where 1 ≤ a < b < c.

1. If a, b, and c are odd, then α(S) = 1
2 .

2. If S = {1, 2, 3k} where k ≥ 1, then α(S) = k
3k+1 .

3. If b = a+ 3k and c = 2a+ 3k for k ≥ 1, then α(S) = 1
3 .

4. If b = a+ 3k+ 1 and c = 2a+ 3k+ 1 for k ≥ 1, then a+k
3(a+k)+1 ≤ α(S) ≤ a+2k

3(a+2k)+1 .
5. If b = a+ 3k+ 2 and c = 2a+ 3k+ 2 for k ≥ 1, then a+2k+1

3(a+2k+2)+1 ≤ α(S) ≤ a+2k+2
3(a+2k+2)+1 .

6. If a, b, c, are not all odd, c ≠ a+ b, and (a, b, c) ≠ (1, 2, 3k) for any k ≥ 1, then 1
3 ≤ α(S) < 1

2 .
7. If a, b, c, are not all odd, c ≠ 2b, b ≠ 2a, c ≠ 2a and c ≠ a + b, then 3

8 ≤ α(S) < 1
2 with a finite number of exceptional

triples (a, b, c). �

While Theorem 13 determines the exact value of α(S) for several classes of sets of size three, it leaves many triples
undetermined.

4. Relations between generating sets

The following observations are very easy to prove.

Observation 14. If S is nonempty and contains only odd numbers, then α(S) = 1
2 .

Observation 15. If S ⊆ T , then α(S) ≥ α(T ).

Lemma 16. α({1, 2, . . . , ℓ}) = 1
ℓ+1

Proof. The set X = (ℓ + 1) · Z is independent in G({1, 2, . . . , ℓ}) with density 1
ℓ+1 . Let A be any independent set of G(S).

For each element a ∈ A the integers a + 1, . . . , a + ℓ cannot be in A. Therefore δ(A) ≤ 1
ℓ+1 for every independent set A of

G(S). �

Next we prove several lemmas that are useful in determining the independence density.
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Lemma 17. The density of an independent set A of G(S) equals lim supn→∞
|A∩[−nd,nd]|

2nd+1 for any fixed positive integer d.

Proof. Recall δ(A) = lim supm→∞
|A∩[−m,m]|

2m+1 , where we can write m = nd + ℓ for ℓ ∈ [0, d − 1]. Taking the limsup as
m→∞ (which implies n→∞) of the following bounds

2nd+ 1
2m+ 1


|A ∩ [−nd, nd]|

2nd+ 1
≤
|A ∩ [−m,m]|

2m+ 1
≤


2(n+ 1)d+ 1

2m+ 1


|A ∩ [−(n+ 1)d, (n+ 1)d]|

2(n+ 1)d+ 1

gives δ(A) = lim supn→∞
|A∩[−nd,nd]|

2nd+1 . �

Lemma 18. Let A be a periodic independent set in G(S) with period p, and set q = |A ∩ [0, p− 1]|. Then δ(A) = q/p.

Proof. Note that for every integer z ∈ Z, |A ∩ [z, z + p− 1]| = q. We have the following bounds

2nq
2np+ 1

≤
|A ∩ [−np, np]|

2np+ 1
≤

2nq+ 1
2np+ 1

.

Taking the limsup as n→∞, we obtain q
p ≤ δ(A) ≤

q
p by Lemma 17. �

Lemma 19. For d ≥ 1, α(S) = α(d · S).

Proof. Let A be an independent set in G(d · S) with maximum density. Define Aℓ := A∩ (d · Z + ℓ), where ℓ ∈ [0, d−1], and
note that the disjoint union of the Aℓ sets is A. Since Aℓ is independent in G(d · S), the set Xℓ := (Aℓ − ℓ)/d is independent
in G(S).

If dz + ℓ ∈ Aℓ ∩ [−nd, nd], where z ∈ Z, then z ∈ [−n, n]. Hence, |Aℓ ∩ [−nd, nd]| ≤ |Xℓ ∩ [−n, n]| and we have the
following

|A ∩ [−nd, nd]|
2nd+ 1

=

d−1
ℓ=0
|Aℓ ∩ [−nd, nd]|

2nd+ 1

≤

d−1
ℓ=0
|Xℓ ∩ [−n, n]|

2nd+ 1
(2nd+ 1)+ (d− 1)

2nd+ d

=


1+

d− 1
2nd+ 1


1
d

d−1
ℓ=0


|Xℓ ∩ [−n, n]|

2n+ 1


.

Taking the limsup as n→∞, we have α(d · S) = δ(A) ≤ 1
d

d−1
ℓ=0 δ(Xℓ) ≤ α(S).

Next we show that α(d · S) ≥ α(S). Let X be an independent set in G(S) with maximum density; by Theorem 2, we can
assume that X is periodic with period p. We claim that the set A =

d−1
ℓ=0(d · X + ℓ) is independent in G(d · S). If not, then

there exist integers i, j such that i − j = ds for some s ∈ S and i = dk1 + ℓ1 and j = dk2 + ℓ2, where k1, k2 ∈ X and
ℓ1, ℓ2 ∈ [0, d − 1]. Therefore, d(k1 − k2) + (ℓ1 − ℓ2) = ds which implies ℓ1 = ℓ2 and k1 − k2 = s, which contradicts the
assumption that X is independent.

Note that A is periodic with period dp and |A ∩ [1, dp]| = d|X ∩ [1, p]|. Therefore, α(d · S) ≥ δ(A) = δ(X) = α(S). �

By Lemma 19, if the greatest common divisor of S is not 1, we can factor out the greatest common divisor. The following
corollary is similar to, but not implied by Theorem 11 [35].

Corollary 20. Let k ≥ 2 and ℓ ≥ 2. Then α({1, k, 2k, . . . , ℓk}) = 1
ℓ+1 .

Proof. By Lemmas 16 and 19 we know that

α({1, k, 2k, . . . , ℓk}) ≤ α({k, 2k, . . . , ℓk}) = α({1, 2, . . . , ℓ}) =
1

ℓ+ 1
.

Let X = (ℓ+ 1) · Z, and for 0 ≤ j ≤ k− 1 let Xj denote k · X + 2j. If k is odd, let X ′ =
k−1

j=0 Xj. Note that Xj1 and Xj2 are
disjoint for j1 ≠ j2. Let a = k(ℓ + 1)x1 + 2j1 and b = k(ℓ + 1)x2 + 2j2 be distinct elements of X ′. If |a − b| ≡ 0 (mod k),
then 2|j1 − j2| ≡ 0 (mod k). Since k is odd, 2 is invertible modulo k, and so j1 = j2. Since a and b are both in Xj for some j,
|a − b| ≥ k(ℓ + 1). Thus |a − b| ∉ {k, 2k, . . . , ℓk}. Moreover, since each element from X is translated by at most 2(k − 1)
positions, and 2(k − 1) < k(ℓ + 1) − 1 we have that no two elements of X ′ have distance 1. Therefore, X ′ is independent
and has density 1

ℓ+1 .
If k is even, let h = k/2. Let X ′ =

h−1
j=0 Xj ∪

k−1
j=h (Xj + 1). Note that Xj contains only even numbers for 0 ≤ j ≤ h − 1

and Xj+ 1 contains only odd numbers for h ≤ j ≤ k− 1. So Xj1 and Xj2 are disjoints for j1 ≠ j2. Let a = k(ℓ+ 1)x1+ 2j1+ e1
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and b = k(ℓ + 1)x2 + 2j2 + e2 be distinct elements of X ′, where e1, e2 ∈ {0, 1}. If |a − b| ≡ 0 (mod k), then e1 = e2 and
2|j1 − j2| ≡ 0 (mod k). Thus either j1, j2 < h and so j1 = j2, or h ≤ j1, j2 ≤ k− 1 and so j1 = j2. Thus a and b are both in Xj
for some j, and hence |a− b| ≥ k(ℓ+ 1). Thus |a− b| ∉ {k, 2k, . . . , ℓk}. Moreover, since each element from X is translated
by at most 2(k − 1) + 1 positions, and 2(k − 1) + 1 < k(ℓ + 1) − 1 we have that no two elements of X ′ have distance 1.
Therefore, X ′ is independent and has density 1

ℓ+1 . �

5. The Local Discharging Lemma

In this section, we define our process of using discharging to show upper bounds on α(S). We begin by defining objects,
called blocks and frames, that are crucial to our process.

Fix a distance set S and an independent set X ⊆ Z. Index the elements of X by Z, so X = {. . . , x−2, x−1, x0, x1, x2, . . .}.
The ith block Bi is the set Bi = {xi, xi+ 1, . . . , xi+1− 1}. Hence, each block contains exactly one element of X , and the blocks
partition Z. Observe that |Bi| = xi+1 − xi, and since X is independent, |Bi| ∉ S.

Let t be a positive integer. A frame of length t is a set of t consecutive blocks. For j ∈ Z, let Fj = {Bj, . . . , Bj+t−1} be the
jth frame of length t . For a set F of consecutive blocks, let σ(F) =


B∈F |B|. Observe that σ(F) is the distance from the first

element of X in F to the first element of X following F . Since X is an independent set, σ(F) ∉ S. Throughout the rest of the
paper we refer to blocks of length i as i-blocks and frames of length t as t-frames.

We can describe the structure of a frame F by listing the sizes of its blocks in order. We denote such a list of sizes using
block notation, which is defined recursively. First, any list of integers b1 b2 · · · bk corresponds to k consecutive blocks with
sizes b1, . . . , bk. For block structure π , the block structure π e corresponds to e consecutive sets of blocks matching block
structure π . Finally, for two block structures π1 and π2, the block structure π1 π2 corresponds to consecutive sets of blocks
first matching block structure π1 then matching the block structure π2. For example, the block structure (2 3)5 7 (3 4)2
corresponds to 15 consecutive blocks, first with ten blocks alternating between 2- and 3-blocks, then a 7-block, then four
blocks alternating between 3- and 4-blocks. Every block structure also defines an infinite, periodic set given by repeating
the block structure infinitely in both directions.

We are now prepared to discuss our discharging method. Generally, discharging is a technique that interfaces between
local structure and global averages. We use our knowledge of local structure (the distance set) to demonstrate an upper
bound on the global average (the density of an independent set).

Let B be the set of blocks and F be the set of frames. Fix a charge function µ : B → Z, which is any assignment of
integers to the blocks of X .2 A discharging rule is a function d : B × B → Z such that d(Bi, Bj) = −d(Bj, Bi). We say that a
discharging rule d is m-local when if |xi − xj| > m, then d(Bi, Bj) = 0, if |xi − xj| ≤ m, then d(Bi, Bj) depends only on the
block structure of the blocks Bi−m, . . . , Bi+m. The discharging rule d defines a new charge function µ∗ : B → Z given by

µ∗(Bi) = µ(Bi)+

Bj∈B

d(Bj, Bi).

That is, positive values of d(Bj, Bi) are considered to be charge sent from Bj to Bi and negative values of d(Bj, Bi) are considered
to be charge received by Bj from Bi. In the second stage, we discharge on frames. Define ν∗(Fj) =

j+t−1
i=j µ∗(Bi). A second-

stage discharging rule is a function d′ : F × F → Z such that d(Fi, Fj) = −d(Fj, Fi). We similarly define d′ to be m-local
when if |i − j| > m, then d′(Fi, Fj) = 0, and if |i − j| ≤ m, then d′(Fi, Fj) depends only on the block structure of the frames
Fi−m, . . . , Fi+m. Finally, perform the second-stage discharging rule by defining the charge function ν ′ on the frames as

ν ′(Fi) = ν∗(Fi)+

Fj∈F

d′(Fj, Fi).

The following lemma allows us to relate discharging functions and densities of independent sets.

Lemma 21 (Local Discharging Lemma). Let S be a finite, nonempty set of positive integers. Fix integers a, b, t ≥ 1 and c ≥ 0.
Let X be a periodic independent set of G(S). Initialize the charge function µ to be µ(Bi) = a|Bi| − b. Let there be an m-local
discharging rule d : B ×B → Z that defines µ∗(Bi). On the family F of all t-frames, define ν∗(Fj) =


Bi∈Fj

µ∗(Bj), where Fj is
a t-frame, and let d′ be an m-local discharging rule d′ : F ×F → Z that defines ν ′(Fj). If ν ′(Fj) ≥ c for all j, then δ(X) ≤ at

bt+c .

We present two proofs of the Local Discharging Lemma, and both require the set X to be periodic. In the first proof, we
reduce to a finite circulant graph where the discharging rules are equivalent to the periodic set. In the second proof, we use
the limit definition to observe that the local nature causes only a finite amount of perturbation about the boundary during
the density calculation.

2 Note that we could relax the definition of a charge function to be fractional as in other contexts, such as coloring of planar graphs. However, we only
use integral charges in our proofs as the parameters a, b, and t of the Local Discharging Lemma allow us to avoid fractional values.
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Proof 1. Let p be a period of the independent set X . Set q = 2mpt and observe that q is a period for X . Thus, Xq = X∩[q] is an
independent set in the circulant graph G(q, S). Let r = |Xq| and let x1 < · · · < xr be the elements of Xq. Observe that for all
i, i′ ∈ Z, we have xi ≡ xi′ (mod q) if and only if i ≡ i′ (mod r). Thus when i ≡ i′ (mod r) the block structure surrounding Bi
is equivalent to the block structure surrounding Bi′ . Further, when i ≡ i′ (mod r) and j ≡ j′ (mod r), the discharging rules d
and d′ satisfy d(Bi, Bj) = d(Bi′ , Bj′) and d′(Fi, Fj) = d′(Fi′ , Fj′). Therefore, when i ≡ i′ (mod r), the charge functions all satisfy

µ(Bi) = µ(Bi′), µ∗(Bi) = µ∗(Bi′), ν∗(Fi) = ν∗(Fi′), and ν ′(Fi) = ν ′(Fi′).

Observe also that

t(aq− br) = t
r

j=1

µ(Bj) = t
r

j=1

µ∗(Bj) =

r
j=1

ν∗(Fj) =
r

j=1

ν ′(Fj) ≥ cr.

From this, we have the inequality taq ≥ (tb+ c)r and hence ta
tb+c ≥

r
q =

|Xq|
q = δ(X). �

Proof 2. We assume that X is a maximal independent set, which implies that the maximum length of a block is at most
2max S. By the locality of the first stage discharging rule d, there are a finite number of combinations of 2m+ 1 consecutive
blocks and thus a finite number of values to d(Bi, Bj). Thus, there exists a number v such that |d(Bi, Bj)| ≤ v for all pairs of
blocks Bi, Bj.

Since both discharging rules d and d′ arem-local, the absolute differences N
i=1−N

µ(Bi)−

N
i=1−N

µ∗(Bi)

 and

 N
i=1−N

ν∗(Fi)−
N

i=1−N

ν ′(Fi)


are bounded by a constant C1. Also, since t is a fixed constant, the absolute difference N

i=1−N

ν∗(Fi)−
N

i=1−N

tµ∗(Bi)


is bounded by a constant C2. Let C = max{C1, C2}.

c ≤

N
i=1−N

ν ′(Fi)

2N
≤

N
i=1−N

ν∗(Fi)

2N
+

C
2N
≤

t
N

i=1−N
µ∗(Bi)

2N
+

2C
2N

≤

t
N

i=1−N
µ(Bi)

2N
+

3C
2N

=

ta
N

i=1−N
|Bi| − 2Ntb

2N
+

3C
2N

.

Recall that X is a periodic independent set with maximum density. Let p be the period of X . Let q = |X ∩ [0, p− 1]| and
let N = kq+ r , where r ∈ [0, q− 1]. Note that

a+q−1
i=a |Bi| = p for any integer a ∈ Z. Therefore, we have the inequalities

c + tb
ta
≤

N
i=1−N

|Bi|

2N
+

3C
2Nta

≤

kq−1
i=−kq
|Bi|

2kq
+

2q
2N
+

3C
2Nta

=
2kp
2kq
+

2q
2N
+

3C
2Nta

= δ(X)−1 +
2q
2N
+

3C
2Nta

.

Taking the limit as N →∞, we have c+tb
ta ≤ δ(X)−1. �

We use the Local Discharging as part of our method for determining independence ratios. Suppose that we want to
determine the independence ratio for some family of generator sets parameterized by k. We compute values for α(S) for
some explicit values of k using the computational techniques outlined in Section 7. This leads us to a conjectured value, τ
say, for α(S). (Obviously τ will usually also depend on k, though we do not make it explicit in our notation here.) To prove
that α(S) = τ for each set S in the family, we use the approach outlined below.

1. Construct a periodic independent set with density τ . This proves that α(S) ≥ τ .
2. Determine parameters a, b, c , and t such that at

bt+c = τ .
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3. Let X be an independent set in G(S) with maximum density. By Theorem 2 we may assume that X is periodic.
4. Construct Stage 1 discharging rules on such that µ∗(B) ≥ 0 for all blocks B. Requiring that all blocks have nonnegative

µ∗ charge makes creation of Stage 2 discharging rules easier.
5. Construct Stage 2 discharging rules such that ν ′(F) ≥ c for every t-frame F .
6. Deduce from the Local Discharging Lemma that δ(X) ≤ at

bt+c , i.e., that α(S) ≤ τ .

The following theorem is a short example using the Local Discharging Lemma. It provides an alternative proof of (a
generalization of) part 2 of Theorem 13.

Theorem 22. Let ℓ ≥ 2 and k > ℓ. Then

α({1, . . . , ℓ− 1, k}) =


1
ℓ

k ≢ 0 (mod ℓ)

k
ℓ(k+ 1)

k ≡ 0 (mod ℓ).

Proof. Since {1, . . . , ℓ − 1} is a subset of the generators, every block has size at least ℓ. So, α({1, . . . , ℓ − 1, k}) ≤ 1
ℓ
. If

k ≢ 0 (mod ℓ), then the periodic set of all ℓ-blocks is independent and equality holds.
Otherwise, k = ℓt for some integer t . The periodic set (given in block notation) ℓt−1 (ℓ + 1) is independent with

density k/ℓ
ℓt+1 =

k
ℓ(k+1) . To prove the upper bound we use Lemma 21, where a = 1, b = ℓ, t = k/ℓ, and c = 1. Thus,

at
bt+c =

k/ℓ
k+1 =

k
ℓ(k+1) .

There are no discharging rules in this case. So µ(Bi) = µ∗(Bi), and ν∗(Fj) =


Bi∈Fj
µ(Bi) = ν ′(Fj). Since every block is at

least an ℓ-block, and receives initial charge a|Bi|− b, all blocks have non-negative charge. Any block of size at least ℓ+1 has
charge at least 1. Since no frame has σ(F) = ℓt = k, every frame contains a block of size at least ℓ + 1. Hence each frame
has at least c = 1 unit of charge. �

6. Discharging arguments

In this section we use the Local Discharging Lemma to prove exact values of α(S) for several families of sets S of size 3
where 1 ∈ S. Recall that if k, ℓ are both odd integers, then α({1, k, ℓ}) = 1

2 .
We begin by determining the asymptotic behavior of α({1, k, k + i}) and α({1, i, k}) for constants i and growing k. We

then determine the exact values for these infinite families when i is a small constant. Finally, we list some conjectures for
values of the next few values of i.

6.1. Asymptotic results

Consider sets S = S(k) determined by S(k) = {1, f (k), g(k)}. We determine the limit of α(S(k)) for certain functions
f (k) and g(k).

Theorem 23. For i ≥ 1, limk→∞ α({1, 2i+ 1, 2k}) = 1
2 .

Proof. Since α({1, 2i+ 1, 2k}) ≤ α({1}) = 1
2 , we have the upper bound immediately.

Observe that the periodic set with block structure 2k−1 (2i + 3) is independent in G({1, 2i + 1, 2k}) and has density
k

2k+2i+1 , which tends to 1
2 as k grows. �

Theorem 24. For i ≥ 1, limk→∞ α({1, 2i, k}) = i
2i+1 .

Proof. By Theorem 12 and Observation 15 we know α({1, 2i, k}) ≤ α({1, 2i}) = i
2i+1 .

Let k = (2i + 1)q + r , where 1 ≤ r < 2i + 1 and q ≥ 1. Observe that the periodic set with block structure
(2i−1 3)q−1 (2i+2+r) is independent in G({1, 2i, k}), with density iq−i+1

(2i+1)q+r+1 , which tends to i
2i+1 as k grows (q grows). �

Theorem 25. For i ≥ 0, we have limk→∞ α({1, k, k+ 2i+ 1}) = i+1
2i+3 .

Proof. Let k + 2i + 2 = (2i + 3)q + r , where 0 ≤ r < 2i + 3. The lower bound is given by the periodic set with block
structure (2i 3)q−1(2i + 3 + r). The density is given by (i+1)(q−1)+1

(2i+3)q+r ≥
(i+1)(q−1)
(2i+3)(q+1) =

i+1
2i+3

q−1
q+1 . Note that as k goes to infinity

the lower bound density approaches the value i+1
2i+3 .

For the upper bound, let X be a periodic independent set in G(S) with maximum density, and let a = 1, b = 2, t = i+ 1,
and c = 1. Every block Bj has nonnegative charge µ(Bj), so no Stage 1 discharging is required. For a t-frame Fj, if ν∗(Fj) = 0,
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then Fj consists entirely of 2-blocks and σ(Fj) = 2i + 2. Then, the elements xj, xj+1, . . . , xj+i, xj+i+1 have consecutive pair
distances of 2, and hence the generators k and k+ 2i+ 1 have

xj + k+ 2i+ 1 = (xj+i + k)+ 1, xj+1 + k+ 2i+ 1 = (xj+i+1 + k)+ 1.

Thus, the consecutive elements xj+i + k, xj + (k+ 2i+ 1), xj+i+1 + k, xj+1 + (k+ 2i+ 1) are not in X and so are contained
in a single block Bj′ . The block Bj′ has size at least five, and hence µ∗(Bj′) ≥ 3. Let ϕ2 be the function from frames Fj with
σ(Fj) = 2i+ 2 to the block Bj′ that contains xj + k+ 2i+ 1. Observe that if ϕ−12 (Bj′) ≠ ∅, then |Bj′ | ≥ 2|ϕ−12 (Bj′)| + 3. Thus,
our Stage 2 discharging rule is as follows:

Stage 2: Every frame Fj with σ(Fj) = 2i+ 2 pulls 1 unit of charge from the frame Fj′ where Bj′ = ϕ2(Fj).

If a frame Fj has σ(Fj) = 2i+2, then ν ′(Fj) = 1. Otherwise, σ(Fj) > 2i+2 and Fj contains at least one block of size at least
three, so ν∗(Fj) ≥ 1. If Fj loses charge in Stage 2, then ϕ−12 (Bj) ≠ ∅ and |Bj| ≥ 2|ϕ−12 (Bj)|+3, and soµ∗(Bj) ≥ 2|ϕ−12 (Bj)|+1.
Since Fj loses at most one unit of charge for each frame in ϕ−12 (Bj), Fj retains at least |ϕ−12 (Bj)| + 1 units of charge, giving
ν ′(Fj) ≥ 1. By the Local Discharging Lemma, α({1, k, k+ 2i+ 1}) ≤ at

bt+c =
i+1
2i+3 . �

6.2. S = {1, b, 2i}

Theorem 12 states that for an odd number b, α({1, b}) = 1
2 and the maximum independent set consists entirely of 2-

blocks. For i ≥ 1, α({1, 2i}) = i
2i+1 and the maximum independent set has block structure 2i−1 3. We consider the union of

these generators.

Conjecture 26. Fix ℓ ≥ 3 where ℓ is odd and let 2i ≥ 3ℓ. Then α({1, ℓ, 2i}) = i
2i+ℓ

.

This conjecture is sharp, since the periodic set with block structure 2i−1 (ℓ+ 2) matches this density and is independent
in G({1, ℓ, 2i}). The bound 2i ≥ 3ℓ may not be sharp in all cases, but it is required for this set to be extremal, since there are
independent sets of higher density even for the case ℓ = 5 when i is small.

We prove the first few cases of this conjecture. We do not perform any discharging, so our technique is really a charging
method. Essentially the proofs boil down to determining that σ(F) ≥ 2i+ ℓ for all frames of length i, but it is helpful to use
the discharging perspective to instead show that ν∗(F) ≥ ℓ.

Theorem 27. Let i ≥ 2. Then α({1, 3, 2i}) = i
2i+3 .

Proof. The lower bound is achieved by the periodic set with block structure 2i−1 5.
Let X be a periodic independent set in G(S) with maximum density. Observe that since 3 ∈ S there are no 3-blocks in X .

Let a = 1, b = 2, t = i, and c = 3 and perform no discharging. Consider a frame F of length t . Since σ(F) ≠ 2i, not all blocks
in F are 2-blocks. Thus, there is a block in F of size at least 4. If there is a block of size at least 5 in F , then ν∗(F) ≥ 3. If there
are two 4-blocks in F , then ν∗(F) ≥ 4. Thus, if ν∗(F) < 3 there must be i− 1 2-blocks in F and exactly one 4-block. In this
case, either the first block in F or the last block in F is a 2-block. Removing this 2-block results in a set of i− 1 consecutive
blocks spanning 2i elements, a contradiction.

Thus ν ′(F) ≥ 3 for all frames, and by the Local Discharging Lemma α({1, 3, 2i}) ≤ i
2i+3 . �

Theorem 28. Let i ≥ 5. Then α({1, 5, 2i}) = i
2i+5 .

Proof. The lower bound is achieved by the periodic set with block structure 2i−1 7.
Let X be a periodic independent set in G(S) with maximum density. Observe that since 5 ∈ S there are no 5-blocks in X .

Also, if there is a 3-block B in X , then the blocks preceding and following B are not 2-blocks.
Let a = 1, b = 2, t = i, and c = 5 and perform no discharging. Consider a frame F of length t . Since σ(F) ≠ 2i, not all

blocks in F are 2-blocks. Thus, there is a block in F of size at least 3. If there is a block of size at least 7 in F , then ν∗(F) ≥ 5.
We now assume there are no blocks of size at least 7 in F .

Suppose there is no 3-block in F . If there are two 6-blocks in F or three 4-blocks in F , then ν∗(F) ≥ 6. If there is a 4-
block and a 6-block in F , then ν∗(F) ≥ 5. If there are exactly two 4-blocks and i − 2 2-blocks in F , then ν∗(F) = 4 and
σ(F) = 2i + 4. However, if either the first or the last block B of F is a 4-block, then σ(F − B) = 2i, a contradiction. Thus
the first and last blocks of F are 2-blocks, but removing these two blocks leaves a set of i− 2 consecutive blocks covering 2i
elements, a contradiction.

Therefore, there is a 3-block in F . If there are at least 5 3-blocks in F , then ν∗(F) ≥ 5. If there is at least one 3-block and
one 6-block in F , then ν∗(F) ≥ 5. If there are at least one 3-block and two 4-blocks in F , then ν∗(F) ≥ 5.

Hence if ν∗(F) < 5, then F consists of 2-blocks, at most four 3-blocks, and at most one 4-block. Note that a 3-block and
2-block cannot be consecutive, so a 4-block must be between the 3-blocks and the 2-blocks. Thus, there exists exactly one
4-block in F that separates the 2-blocks from the 3-blocks. The cases are symmetric whether the 2-blocks or 3-blocks come
before the 4-block, so we assume that F has block structure 3q 4 2i−q−1, where 1 ≤ q ≤ i − 2. If q ≥ 3, then ν∗(F) ≥ 5. If
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q = 1, then the i− 1 blocks starting at the 4-block cover exactly 2i elements, a contradiction. If q = 2, then there are i− 3
2-blocks and σ(F) = 2i + 4. Since i − 3 ≥ 2, removing the last two 2-blocks from F results in i − 2 consecutive blocks
covering exactly 2i elements, a contradiction.

Therefore, we have ν∗(F) ≥ 5 for all frames F . �

It is not difficult to also prove that α({1, 7, 2i}) = i
2i+7 using similar techniques to the proofs above. However, the case

analysis becomes long and tedious, and so we do not include the proof.

6.3. S = {1, 2k, 2k+ 2ℓ}

Let S be a set of three generators including 1 where the difference between the other two generators is even. Since
α(S) = 1

2 when S contains no even numbers, we assume the generators other than 1 are even. For a fixed even difference
between these generators, we form the following conjecture.

Conjecture 29. Let k ≥ 1 and ℓ ≥ 1. Then, α({1, 2k, 2k+ 2ℓ}) = 2k
4k+2ℓ .

The following lemma shows that this conjecture is sharp for all possible values of k ≥ 2 and ℓ ≥ 1.

Lemma 30. Let 1 ≤ ℓ ≤ k. Then α({1, 2k, 2k+ 2ℓ}) ≥ 2k
4k+2ℓ .

Proof. When k = ℓ = 1, α({1, 2, 4}) = 2
4+2 =

1
3 by Corollary 20.

For k ≥ 2, consider the periodic set X with block structure 2k−1 3 2k−1 (2ℓ+ 1). Clearly there are no two elements in X
distance 1 apart. Let X1 denote the elements in X described by the first k blocks in the description, i.e. arising from 2k−1 3,
and let X2 denote X \X2, the elements in X arising from 2k−1 (2ℓ+1). Notice that all the integers in X1 have the same parity,
and all the integers in X2 have the opposite parity to those in X1. Thus the distance between an element of X1 and element
of X2 is odd.

Thus if the set X is not independent, then there must be two elements from X1, or two from X2 that are distance 2k or
2k+ 2ℓ apart. No pair of elements in 2k−1 3 are distance 2k or 2k+ 2ℓ apart, and 2k−1(2ℓ+ 1) has length 2k+ 2ℓ+ 1. No
pair of elements in 2k−1 (2ℓ+ 1) are distance 2k or 2k+ 2ℓ apart, and (2ℓ+ 1) 2k−1 3 has length 2k+ 2ℓ+ 2. �

7. Computational methods

We obtained the values of α(S) given in the theorems and conjectures of Section 6 by computing the independence ratio
and looking for patterns. For a given family of sets of generators parameterized by k, we computed α(S) for enough fixed
sets S in the family until we had enough data to conjecture a formula for α(S) in terms of k. As G(S) is an infinite graph and
computing the independence number of a graph is in general difficult, we describe here our approach.

To compute α(S) for a fixed set S, we recall that for integers n and m, we have the inequalities

α(G(n, S))
n

≤ α(S) ≤
α(G(S)[m])

m
,

where G(S)[m] is the subgraph of G(S) induced on the interval [m]. Thus, we will findmaximum independent sets in G(n, S)
and G(S)[m] for n andm growing until the largest lower bound matches the smallest upper bound.

Finding independent sets in a graph G is equivalent to finding cliques in the complement of G. Bašić and Ilić
[3,25] previously computed some clique numbers and chromatic numbers for certain classes of circulant graphs using a
backtracking search. In [25], they used Niskanen and Östergård’s cliquer [38] as part of their implementation, but gave no
other details. We use a slight modification of the cliquer algorithm to compute lower and upper bounds on α(S).

The cliquer algorithm greatly depends on the ordering of the vertices of the input graph. For G(n, S) and for G(S)[n], we
will use the ordering 1, 2, . . . , n in order to exploit the vertex-transitivity of G(n, S) and G(S), respectively. We will focus
first on the distance subgraphs G(S)[n]; a similar algorithm can be applied to the circulant graphs G(n, S). Define α(n) to be
the largest size of an independent set in G(S)[n]. Observe that for each i ∈ [n], the subgraph G(S)[i] is a subgraph of G(S)[n].
Thus, we will compute the values of α(i) in increasing order of i, and use previous values in our later computation. Also
observe that α(i) ≤ α(i+ 1) ≤ α(i)+ 1. Thus, in order to compute α(i+ 1), we must only search for an independent set of
size α(i)+ 1. We can terminate the search once one is found.

We use a recursive, backtracking searchwhere we attempt to construct a large independent set A in G(S)[n] in decreasing
order. Initialize A = ∅ and B = [n]. At every step, we are given sets A and B, where A is an independent set and B consists
of the vertices b such that b < min A and b is not adjacent to any vertex in A. Thus, the vertices in B are possible next
choices for growing the independent set A. If |A| > α(n − 1), then we have determined α(n), we report the set A, and we
terminate the algorithm. If |B| + |A| ≤ α(n − 1), then there is no independent set A′ ⊃ A with size at least α(n − 1) + 1,
and we can backtrack. If these simple termination conditions fail, we attempt to add a new element to A from B, but use our
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previous calculations of α(i) to assist. The standard use of α(i) given by the cliquer algorithm is to check if α(b) + |A| is at
least the size of our goal independent set size. We also use the structure of G(S) to our advantage for an additional pruning
mechanism.

Let A be an independent set in G(S)[n], and let B be a set of vertices that are not adjacent to any vertices in A with
max B < min A. Represent B as disjoint intervals [xi, yi] where B =

t
i=1[xi, yi] and define β(B) =

t
i=1 α(yi − xi + 1). If

there is an independent set A′ with A ⊆ A′ ⊆ A∪ B, then A′ ∩ [xi, yi] is also an independent set. Further, (A′ ∩ [xi, yi])− xi is
an independent set in G(S)[yi− xi+1] by the vertex transitivity of G(S). Thus, |A′| ≤ |A|+

t
i=1 α(yi− xi+1) = |A|+β(B).

Therefore, if |A| + β(B) is below our target size of an independent set, we can backtrack.
Algorithm 1 defines the recursive algorithm FindIndependentSet(α, n, S, A, B) to find the largest size of an independent

set A′ in G(S)[n]with A ⊆ A′ ⊆ A ∪ B ⊆ [n] and |A′| > α(n− 1). To compute α(n), call FindIndependentSet(α, n, S, ∅, [n])
to initialize the recursive algorithm.

Algorithm 1 FindIndependentSet(α, n, S, A, B)
if |A| > α(n− 1) then

α(n)← |A|
return A

else if |A| + β(B) ≤ α(n− 1) then
return Null

end if
for all b ∈ B in decreasing order do

if |A| + α(b) ≤ α(n− 1) then
return Null

end if
A′ ← A ∪ {b}
B′ ← (B ∩ [b− 1])− N(b)
A′′ ← FindIndependentSet(α, n, S, A′, B′)
if A′′ ≠ Null then

return A′′
end if

end for
return Null

Defineα(n, i) to be the largest size of an independent set in the circulant graphG(n, S)using only vertices in {1, . . . , i}.We
can define a similar algorithm, FindIndependentSet(α, n, i, S, A, B), that computes α(n, i) for i ∈ [n]. In order to determine
α(G(n, S)), we compute all values α(n, i) for i ∈ [n] in increasing order.

Note that for a fixed set S, it may be less work to compute α(n) than to compute α(n, n) as n increases, since α(n′) for
n′ < nmaybe used in the computation ofα(n), butα(n′, i) is not helpful for computingα(n, i). However, early computations
suggested that the value of n such that α(n, n)/n = α(S) is much smaller than the valuem such that α(S) = α(m)/m. Thus,
we organized our computation as follows: for every n ≥ 1, compute α(2n − 1) and α(2n) and if n > max S then compute
α(n, n). We terminated our computation when the lower and upper bounds matched.

Our implementation and all computation data are available online.3 The computed values of α({1, 1+ k, 1+ k+ i}) are
given as a table in Appendix A.
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Appendix. Table of computed values α({1, 1 + k, 1 + k + i})

See Table A.1.

3 Code and data are available at http://www.math.iastate.edu/dstolee/r/distance.htm and http://www.github.com/derrickstolee/DistanceGraphs.
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