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Abstract: For graphs G and H, a homomorphism from G to H, or H-
coloring of G, is an adjacency preserving map from the vertex set of G to
the vertex set of H. Our concern in this article is the maximum number of
H-colorings admitted by an n-vertex, d -regular graph, for each H. Specifi-
cally, writing hom(G, H ) for the number of H-colorings admitted by G, we
conjecture that for any simple finite graph H (perhaps with loops) and any
simple finite n-vertex, d -regular, loopless graph G, we have

hom(G, H ) ≤ max
{
hom(Kd ,d , H )

n
2d , hom(Kd+1, H )

n
d+1

}
,

where Kd ,d is the complete bipartite graph with d vertices in each partition
class, and Kd+1 is the complete graph on d + 1 vertices.

Results of Zhao confirm this conjecture for some choices of H for which
the maximum is achieved by hom(Kd ,d , H )n/2d . Here, we exhibit for the
first time infinitely many nontrivial triples (n, d , H ) for which the conjecture
is true and for which the maximum is achieved by hom(Kd+1, H )n/(d+1).

We also give sharp estimates for hom(Kd ,d , H ) and hom(Kd+1, H ) in
terms of some structural parameters of H. This allows us to characterize
those H for which hom(Kd ,d , H )1/2d is eventually (for all sufficiently large d )
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larger than hom(Kd+1, H )1/(d+1) and those for which it is eventually smaller,
and to show that this dichotomy covers all nontrivial H. Our estimates also
allow us to obtain asymptotic evidence for the conjecture in the following
form. For fixed H, for all d -regular G, we have

hom(G, H )
1

|V (G)| ≤ (1 + o(1)) max
{
hom(Kd ,d , H )

1
2d , hom(Kd+1, H )

1
d+1

}
,

where o(1) → 0 as d → ∞. More precise results are obtained in some
special cases. C© 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 66–84, 2013

Keywords: graph homomorphisms; graph coloring

1. INTRODUCTION

A homomorphism from a simple loopless finite graph G = (V (G), E(G)) to a simple
finite graph H = (V (H), E(H)) (perhaps with loops) is an adjacency preserving function
from the vertices of G to the vertices of H. We write

Hom(G, H) = { f : V (G) → V (H)|uv ∈ E(G) ⇒ f (u) f (v) ∈ E(H)}
for the set of all homomorphisms from G to H, and hom(G, H) for |Hom(G, H)|. (All
graphs in this article will be simple and finite. Those denoted by G will always be loopless,
but loops will be allowed in those denoted by H.)

Graph homomorphisms generalize some important notions in graph theory. When
H = Hind consists of a single edge with a loop at one vertex, Hom(G, H) can be identified
with the set of independent sets of G (sets of vertices no two of which are adjacent), via the
inverse image of the unlooped vertex. When H = Kq (the complete graph on q vertices),
Hom(G, H) can be identified with the set of proper q-colorings of G (assignments of
labels to the vertices of G, from a palette of q possible labels, with the property that
adjacent vertices receive different labels). Motivated by the latter example, an element of
Hom(G, H) is often referred to as an H-coloring of G, and this is the terminology that
we will use throughout this article.

In statistical physics, H-colorings arise as configurations in hard-constraint spin sys-
tems. Here, we think of the vertices of G as locations, each one occupied by a particle
having one of a set of spins or colors indexed by vertices of the constraint graph H.
The edges of G encode pairs of spins that are bonded (e.g., by spatial proximity) and
the occupation rule is that the spins appearing at a pair of bonded locations must be
adjacent in H. A valid configuration of spins on G is thus exactly an H-coloring of G.
In the language of statistical physics, independent sets are configurations in the hard-
core gas model (a model of the occupation of space by a gas with massive particles;
the unlooped vertex in Hind represents the presence of a particle and the looped vertex
represents the absence of a particle), while proper q-colorings are configurations in the
zero-temperature q-state antiferromagnetic Potts model. Another constraint graph that
appears frequently in statistical physics and will play a role in the present article is the
Widom–Rowlinson graph HWR. This is the completely looped path on three vertices. If
the end vertices of the path are considered to be two different types of particles, with the
middle vertex representing empty space, then the Widom–Rowlinson constraint graph
models the occupation of space by two mutually repulsive particles.
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A natural question to ask concerning H-colorings is, which graphs G in a given
family maximize (or minimize) hom(G, H)? For the family of graphs with a fixed
number of vertices and edges, this question for H = Kq was first asked independently
by Wilf and Linial around 1986, and although it has not yet been answered completely,
significant progress has been made (see [8] and the references therein). For the same
family (fixed number of vertices and edges), the question was raised and essentially
completely answered for H = Hind and H = HWR by Cutler and Radcliffe in [3].

For H = Hind and the family of regular graphs, the question was first raised by Granville
in the context of combinatorial group theory (see [1]) and an approximate answer was
given by Alon [1]. A more complete answer was given by Kahn [6], who used entropy
methods to show that if G is an n-vertex, d-regular bipartite graph then hom(G, Hind) ≤
hom(Kd,d, Hind)

n/2d , where Kd,d is the complete bipartite graph with d vertices in each
class. Note that this bound is tight, being achieved in the case 2d|n by the graph consisting
of the disjoint union of n/2d copies of Kd,d . Also using entropy, Galvin and Tetali [5]
generalized Kahn’s result to arbitrary H, showing that for all n-vertex, d-regular, bipartite
G, we have

hom(G, H) ≤ hom(Kd,d, H)
n

2d . (1)

Both Alon and Kahn conjectured that in the case H = Hind, (1) remains true if G is
allowed to vary over all d-regular graphs (not necessarily bipartite); in other words, the
number of independent sets admitted by an n-vertex, d-regular graph is never more than
the number admitted by Kd,d raised to the power n/2d. This conjecture was resolved by
Zhao [13], who used an elegant argument to deduce the general result from the bipartite
case.

Galvin and Tetali proposed that (1) should hold for all H even if G is not assumed
to be bipartite. As we will presently discuss, Zhao [13, 14] and Lazebnik (personal
communication) showed that this stronger conjecture is true for H in various classes, but
it is false in general: Cutler, Radcliffe (personal communications), and Zhao [14] have
all provided counter-examples, the simplest being the disjoint union of two loops.

A common feature of all the counter-examples is that they are graphs H for which

hom(Kd,d, H)
1

2d < hom(Kd+1, H)
1

d+1

for some suitably large d, where Kd+1 is the complete graph on d + 1 vertices. So for
these H and for an n which is a multiple of both 2d and d + 1, there are more H-colorings
of the graph consisting of n/(d + 1) copies of Kd+1 than there are of the graph consisting
of n/2d copies of Kd,d . No example is known of an H and an n-vertex, d-regular G for
which

hom(G, H) > max
{
hom(Kd,d, H)

n
2d , hom(Kd+1, H)

n
d+1

}
,

and is tempting to propose the following conjecture.

Conjecture 1. Fix n, d, and H. For all n-vertex d-regular graphs G, we have

hom(G, H) ≤ max
{
hom(Kd,d, H)

n
2d , hom(Kd+1, H)

n
d+1

}
.

Note that because hom(G1 ∪ G2, H) = hom(G1, H)hom(G2, H) (where G1 ∪ G2 is
the union of disjoint copies of G1 and G2), Conjecture 1 for arbitrary G follows from the
special case of connected G.
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To avoid trivialities we assume throughout that d ≥ 1. Given this assumption, we may
(and will) also assume that H has no isolated vertices, since if G is any graph with
minimum degree at least one, H is any graph, and H ′ is obtained from H by adding some
isolated vertices, then we have hom(G, H ′) = hom(G, H) (and if H is itself an isolated
vertex, then hom(G, H) = 0 for all G).

If H is a complete looped graph on k vertices then for all n-vertex G we have

hom(G, H) = hom(Kd,d, H)
n

2d = hom(Kd+1, H)
n

d+1 = kn

and so for these H, Conjecture 1 is trivially true for all n and d. We will see in Section 4 that
this is the only circumstance under which there is equality between hom(Kd,d, H)1/2d and
hom(Kd+1, H)1/(d+1) for all d; in fact, for each H that is not a completely looped graph,
we have either hom(Kd+1, H)1/(d+1) < hom(Kd,d, H)1/2d for all large d (we say that these
H are of complete bipartite type) or we have hom(Kd,d, H)1/2d < hom(Kd+1, H)1/(d+1)

for all large d (complete type). Moreover, there is a simple procedure that allows us
determine the type of a given H; see Theorem 6.

There are two other trivial instances of Conjecture 1. First, if H is bipartite then for
nonbipartite G we have hom(G, H) = 0 and so in this case the conjecture follows for all
n and d from (1) (and H is of complete bipartite type). Second, if H is the disjoint union of
k > 2 loops then hom(G, H) = kcomp(G) (where comp(G) is the number of components
of G). This is in turn at most kn/(d+1) = hom(Kd+1, H)n/(d+1) (since each component of
a d-regular G must have at least d + 1 vertices). So for these H (which are of complete
type), the conjecture is also true for all n and d.

There are also some nontrivial examples of H for which the conjecture is known to be
true. Given a graph H, construct Hbst on vertex set V (H) × V (H) as follows: join (u, v)

and (u′, v′) if and only if (i) u and u′ are joined in H, (ii) v and v′ are joined in H, and (iii)
either u and v′ or u′ and v are not joined in H. Zhao [14] showed that if Hbst is bipartite
then for each nonbipartite d-regular G, we have hom(G, H) < hom(Kd,d, H)n/2d , and so
for these H (which are of complete bipartite type), we have Conjecture 1 for all n and d
by (1). An example of an H for which Hbst is bipartite is Hind; Zhao had earlier [13] dealt
with this special case.

Zhao observed that all threshold-type graphs H have the property that Hbst is bipartite,
where a threshold-type graph is one for which there exists some assignment α : V (H) →
R and some t ∈ R such that uv ∈ E(H) if and only if α(u) + α(v) ≤ t for every (not
necessarily distinct) u, v ∈ V (H). Examples of threshold-type graphs include Hind and
more generally H(k), the k-state hard-core constraint graph (which will be discussed
after the proof of Theorem 6).

Zhao [14] also looked at the case H = Kq (proper q-coloring), and showed that if G is
an n-vertex, d-regular graph and q is sufficiently large (specifically, q > (2n)2n+2) then
hom(G, Kq) ≤ hom(Kd,d, Kq)

n/2d . Applying this result for G = Kd+1, we see that this
verifies Conjecture 1 for all triples (n, d, Kq) with q > (2n)2n+2.

A method used by Lazebnik on a related problem can be used to significantly improve
the bound on q in the case when 2d|n.

Theorem 1. Fix n and d with 2d|n. Let G be an n-vertex, d-regular graph. For q > 2(nd/2
4 )

we have

hom(G, Kq) ≤ hom(Kd,d, Kq)
n

2d ,

with equality if and only if G is the disjoint union of n/2d copies of Kd,d.
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Lazebnik’s approach uses Whitney’s broken circuit theorem [12], which provides a
combinatorial interpretation of the coefficients of the chromatic polynomial (we give the
details in Section 2). A related but more elementary approach allows us to tackle a more
general class of graphs H. The idea is based on the following lemma, whose proof is a
direct application of the principle of inclusion–exclusion.

Lemma 1. For any simple, finite H and any simple, finite, loopless G, we have

hom(G, H) =
∑

S⊆E(G)

(−1)|S|hom(G(S), Hc)|V (H)|n−v(S)

where v(S) is the number of vertices spanned by the edge set S, G(S) is the subgraph of
G spanned by S, and Hc is the complement of H (with all isolated vertices removed).

If Hc is fairly simple, then it may be possible to understand the terms hom(G(S), Hc)

and so to understand the behavior of hom(G, H) for large |V (H)| well enough to obtain
a precise result. In Section 2, we give an example of this approach to prove the following
theorem.

Theorem 2. Fix n and d with 2d|n. Let G be an n-vertex, d-regular graph. Let H�
q be the

complete looped graph on q vertices with � ≥ 1 loops deleted. Then for q > exp2 {nd/2},
we have

hom(G, H�
q ) ≤ hom(Kd,d, H�

q )
n

2d ,

with equality if and only if G is the disjoint union of n/2d copies of Kd,d.

This verifies Conjecture 1 for triples (n, d, H�
q ) with q > exp2 {nd/2} and 2d(d + 1)|n.

As a special case of Theorem 2 (the case � = q), we recover Theorem 1 (on proper
q-colorings), with a bound on q that is worse than that of Theorem 1 but better than Zhao’s
bound from [14]. Another interesting special case is � = 1. The number of elements of
hom(G, H1

q ) in which k vertices of G get mapped to the unlooped vertex of H1
q is easily

seen to be (q − 1)n−k times the number of independent sets in G of size k. So for fixed n
and d with 2d|n and for q > exp2 {nd/2} we have that for all n-vertex, d-regular G,

n∑
k=0

ik(G)(q − 1)n−k = hom(G, H1
q )

≤ hom
( n

2d
Kd,d, H1

q

)

=
n∑

k=0

ik
( n

2d
Kd,d

)
(q − 1)n−k

where n
2d Kd,d is the disjoint union of n/2d copies of Kd,d and ik(G) is the number of

independent sets in G of size k. Scaling by (q − 1)n, we get

n∑
k=0

ik(G)

(
1

q − 1

)k

≤
n∑

k=0

ik
( n

2d
Kd,d

)(
1

q − 1

)k

,

with equality if and only if G = n
2d Kd,d . This is a special case of a result Zhao [13],

building on results of Kahn [6, 7] and Galvin and Tetali [5], that states that for all λ > 0
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we have
n∑

k=0

ik(G)λk ≤
n∑

k=0

ik
( n

2d
Kd,d

)
λk.

The proof of Zhao’s result relies on the entropy method. To the best of our knowledge
this is the first proof of any special case that avoids the use of entropy.

There are no nontrivial examples of triples (n, d, H) for which Conjecture 1 has been
proven and for which the maximum is achieved by hom(Kd+1, H)n/(d+1). Using the
inclusion–exclusion approach outlined above, we provide the first such examples here.
Let Hq be the complete looped graph on q vertices with one edge (not a loop) removed.
We may think of this as a “q-state Widom–Rowlinson” constraint graph (in the case
q = 3, it is exactly HWR introduced earlier). In Section 3, we prove that if n, d, and q
satisfy (d + 1)|n and q > exp2 {nd/2 + n/2 − 1} then for any n-vertex, d-regular graph
G, we have

hom(G, Hq) ≤ hom(Kd+1, Hq)
n

d+1 ,

with equality if and only if G is the disjoint union of n/(d + 1) copies of Kd+1. More
generally, we have the following.

Theorem 3. Let � ≥ 1, n and d be given, with (d + 1)|n. There is q0 = q0(n, d, �) such
that if q ≥ q0 and H is obtained from the complete looped graph on q vertices by the
deletion of a collection of no more than � edges spanning a disjoint union of complete
bipartite subgraphs, then for any n-vertex, d-regular graph G we have

hom(G, H) ≤ hom(Kd+1, H)
n

d+1 ,

with equality if and only if G is the disjoint union of n/(d + 1) copies of Kd+1.

This verifies Conjecture 1 for all triples (n, d, H) with 2d(d + 1)|n and H as described
above.

In Section 4, we obtain sharp estimates on both hom(Kd,d, H) and hom(Kd+1, H) in
terms of some structural parameters of H. We use these estimates in Section 5 to examine
the asymptotics (in d) of the quantities in Conjecture 1, and give the following asymptotic
verification.

Theorem 4. Fix H. For all d-regular G,

hom(G, H)
1

|V (G)| ≤ (1 + o(1)) max
{

hom(Kd,d, H)
1

2d , hom(Kd+1, H)
1

d+1

}
,

where o(1) → 0 as d → ∞.

For some H we can obtain more precise statements; the details are in Section 5.
The estimates of Section 5 also allow us to obtain some exact results. For example

we can prove that if hom(G, HWR) exceeds its conjectured upper bound, then G must be
close to being a disjoint union of n/(d + 1) copies of Kd+1.

Theorem 5. There is a constant C > 0 such that for all sufficiently large d, we have the
following. If G is an n-vertex, d-regular graph with an independent set of size at least
Cn/d, then

hom(G, HWR) < hom(Kd+1, HWR)
n

d+1 .
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To justify the assertion that those G not covered by Theorem 5 are close to being a
disjoint union of n/(d + 1) copies of Kd+1, we use two metrics—the size of the maximal
independent set in G, and the average local density.

All n vertex, d-regular graphs with (d + 1)|n have maximum independent set size
at least n/(d + 1), with n/(d + 1) being achieved uniquely by the disjoint union of
n/(d + 1) copies of Kd+1 (this is Turán’s theorem). Moreover, for 3 ≤ d ≤ n1−�(1), the
largest independent set in a uniformly chosen d-regular graph on n vertices has size
concentrated close to 2n log d/d (see [2]). So for d in this range, Theorem 5 says that
Conjecture 1 is almost surely true for H = HWR; and to prove the conjecture for all G it
(just) requires bringing the constant C down to around 1.

A result of Shearer [11] shows that if an n-vertex, d-regular graph G has at most m
triangles then it has an independent set of size at least (4n/78d) log(d2n/m). It follows
that there is a constant c (depending on the C from Theorem 5) such that for all sufficiently
large d, if n-vertex, d-regular G has fewer than d2n/c triangles then Conjecture 1 (in the
case H = HWR) is true for G. This means that the graphs for which the conjecture remains
open must be on average locally dense: a pair of adjacent vertices must have on average
�(d) common neighbors. Note that a pair of adjacent vertices in the disjoint union of
n/(d + 1) copies of Kd+1 always has d − 1 common neighbors, and this is the maximum
possible average local density.

We can extend Theorem 5 to an infinite family of graphs; we postpone the details to
Section 5, as the statement requires notation from Section 4.

The remainder of this article is laid out as follows. In Section 2, we use the inclusion–
exclusion approach to prove Theorems 1 and 2. In Section 3, we use the same approach
to prove Theorem 3. In Section 4, we obtain sharp estimates on hom(Kd,d, H) and
hom(Kd+1, H), and use these to characterize those H for which hom(Kd,d, H)1/2d is
eventually larger (or smaller) than hom(Kd+1, H)1/(d+1) (Theorem 6). In Section 5, we
use our estimates from Section 4 to prove Theorem 4, along with other more precise
estimates, including Theorem 8 (a generalization of Theorem 5).

2. PROOFS OF THEOREMS 1 AND 2

In what follows we denote by n
2d Kd,d the graph consisting of the disjoint union of n/2d

copies of Kd,d . We need the following lemma. Here, we denote by c4(G) the number of
(not necessarily induced) cycles on four vertices contained in G.

Lemma 2. Let G be a d-regular triangle-free graph on n vertices with 2d|n. We have

c4(G) ≤ c4

( n

2d
Kd,d

)
with equality if and only if G = n

2d Kd,d.

Proof. The number of four-cycles passing through a particular edge xy is at most
(d − 1)2. This bound is achieved if all d − 1 neighbors of x (other than y) are joined to all
d − 1 neighbors of y (other than x), that is, if the component of the edge xy is Kd,d . Since
c4(G) is one quarter the sum over all edges of the number of four-cycles passing through
that edge, it follows that the total number of four-cycles in G is at most c4(

n
2d Kd,d ), and

that n
2d Kd,d is the unique graph that achieves the maximum. �
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Proof of Theorem 2. Specifying Lemma 1 to H�
q , we get

hom(G, H�
q ) =

∑
S⊆E(G)

(−1)|S|�c(S)qn−v(S), (2)

where c(S) and v(S) are the number of components and vertices of the subgraph spanned
by S.

We examine (2) first in the case where G has at least one triangle. The contribution
to (2) from |S| = 0, 1, and 2 is independent of G (depending only on n and d). For
example, the contribution from those S with |S| = 2 that span a path on three vertices is
n(d

2)�qn−3 (for each vertex v there are (d
2) choices of such a path with v as the center vertex),

while the contribution from those S with |S| = 2 that do not span a path is ((nd/2
2 )−n(d

2))�2qn−4

(note that nd/2 is the number of edges in G). We lower bound hom( n
2d Kd,d, H�

q ) by taking
the terms on the right-hand side of (2) corresponding to |S| = 0, 1, and 2, and the terms
corresponding to |S| ≥ 3 and odd. We upper bound hom(G, H�

q ) by taking the terms on
the right-hand side of (2) corresponding to |S| = 0, 1, and 2, the terms corresponding to
|S| ≥ 3 and even, and the contribution from a single S that spans a triangle. This yields

hom
( n

2d
Kd,d, H�

q

)
− hom

(
G, H�

q

) ≥ �qn−3 −
∑
S⊆Ẽ

�c(S)qn−v(S)

≥ �qn−3 − 2nd/2 max
{
�c(S)qn−v(S)

}
,

where Ẽ is taken to be the edge set of n
2d Kd,d if |S| is odd, and of G if |S| is even, and the

sum and maximum are both over those S with |S| ≥ 3. To understand the maximum, first
note that c(S) ≤ �v(S)/2
 (since each component must have at least two vertices). For
v(S) ≥ 5, we have v(S) − �v(S)/2
 ≥ 3 and so

�c(S)qn−v(S) ≤ ��v(S)/2
qn−v(S) ≤ �qn−v(S)+�v(S)/2
−1 ≤ �qn−4.

Also, every S with v(S) = 4 and |S| ≥ 3 has c(S) = 1 and so �c(S)qn−v(S) = �qn−4. This
covers all possible S (note that we do not consider |S| = 3 spanning a triangle here, since
n

2d Kd,d is triangle free). It follows that

hom
( n

2d
Kd,d, H�

q

)
− hom

(
G, H�

q

) ≥ �qn−3 − 2nd/2�qn−4,

which is strictly positive for all q > 2nd/2.
Thus, we may assume that G is triangle-free, and different from n

2d Kd,d . Within the
class of triangle-free graphs, the contribution to (2) from |S| = 3 is independent of G
(the number of subsets of three edges that span a star on four vertices, a path on four
vertices, and the two-component graph consisting of a path on three vertices together
with a edge, are all easily seen to be independent of G; the count for the one remaining
subgraph, three disconnected edges, must therefore also be independent of G). As before,
the contributions from |S| = 0, 1, and 2 are also independent of G. By Lemma 2 G has
fewer four-cycles than n

2d Kd,d and so by the same process as in the case where G has a
triangle, we have

hom
( n

2d
Kd,d, H�

q

)
− hom(G, H�

q ) ≥ �qn−4 − 2nd/2 max
{
�c(S)qn−v(S)

}
,

where now the maximum is over those S with |S| ≥ 4 and S not spanning a four-cycle. For
v(S) ≥ 7, we have v(S) − �v(S)/2
 ≥ 4, so reasoning as before we get that for these S

Journal of Graph Theory DOI 10.1002/jgt



74 JOURNAL OF GRAPH THEORY

the quantity being maximized is at most �qn−5. Those S with v(S) = 6 and c(S) = 3 must
span three edges, and so have |S| = 3 and are not being considered. For all remaining S
with v(S) = 6, we have v(S) − c(S) ≥ 4 and so again the quantity being maximized is
at most �qn−5. For those S with v(S) = 5 and c(S) = 1, we have v(S) − c(S) = 4 and so
again the quantity being maximized is at most �qn−5. In a triangle-free G, there are no S’s
with |S| ≥ 4, v(S) = 5 and c(S) > 1, and no S’s with v(S) = 4 and |S| ≥ 4 except those
S spanning a four-cycle. It follows that we have

hom
( n

2d
Kd,d, H�

q

)
− hom

(
G, H�

q

) ≥ �qn−4 − 2nd/2�qn−5,

which is strictly positive for all q > 2nd/2; the theorem is now proved. ��

Proof of Theorem 1. For d = 1, the result is trivial, as it is for d = 2 and n = 4. So
we may assume that nd ≥ 16.

We begin by recalling that for all graphs G, the quantity hom(G, Kq), viewed as a
function of q, turns out to be a polynomial in q, the chromatic polynomial, which may be
expressed as

hom(G, Kq) = qn +
n−1∑
i=1

(−1)iai(G)qn−i, (3)

where n is the number of vertices in G, and the ai’s are nonnegative integers. Whitney
[12] gave a combinatorial interpretation of the ai’s, in terms of broken circuits. A broken
circuit in a graph is obtained from the edge set of a cycle by removing the maximum edge
of the cycle (with respect to some fixed linear ordering of the edges); Whitney showed
that ai is the number of subsets of size i of the edge set of G that do not contain a broken
circuit as a subset.

Using (3), we can easily compute the first few coefficients of hom(G, Kq). Since a
broken circuit must have size at least 2, we have a1(G) = nd/2 (the size of the edge set
of G). Each triangle in G gives rise to a pair of edges that may not be counted in the
calculation of a2(G) and so a2(G) =(nd/2

2 )−c3(G), where c3(G) is the number of triangles
of G. In general a3(G) is a little harder to compute, except in the special case where
c3(G) = 0. In this case, each four-cycle in G gives rise to a triple of edges that may
not be counted in the calculation of a2(G) and so a3(G) =(nd/2

3 )−c4(G) where c4(G) is the
number of four-cycles of G. Directly from the definition, we also have the general bound
0 ≤ ai(G) ≤(nd/2

i ) valid for all 1 ≤ i ≤ n − 1.
For G with c3(G) > 0, all this together gives

hom
( n

2d
Kd,d, Kq

)
− hom(G, Kq) ≥ qn−2 −

n−1∑
i=3

(
nd/2

i

)
qn−i.

Now for all i = 3, . . . , n − 2, we have(
nd/2

i

)
qn−i ≥ 2

(
nd/2

i + 1

)
qn−(i+1)

as long as q ≥ (nd/2 − 3)/2, so in this range, we have
n−1∑
i=3

(
nd/2

i

)
qn−i ≤ 2

(
nd/2

3

)
qn−3.

It follows that hom( n
2d Kd,d, Kq) − hom(G, Kq) > 0 as long as q > 2(nd/2

3 ).
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For those G with c3(G) = 0, we may assume that c4(G) < c4(
n

2d Kd,d ), since otherwise
by Lemma 2, we have G = n

2d Kd,d and the result is trivial. Now, we have

hom
( n

2d
Kd,d, Kq

)
− hom(G, Kq) ≥ qn−3 −

n−1∑
i=4

(
nd/2

i

)
qn−i,

which by the same reasoning as before is strictly positive as long as q > 2(nd/2
4 )≥2(nd/2

3 )
(the second inequality valid since nd ≥ 16).

We conclude that for q > 2(nd/2
4 ), we have hom(G, Kq) ≤ hom( n

2d Kd,d, Kq) for all n-
vertex, d-regular G. ��

3. PROOF OF THEOREM 3

In what follows we denote by n
d+1 Kd+1 the graph consisting of the disjoint union of

n/(d + 1) copies of Kd+1. We need the following lemma. Here, we denote by p4(G) the
number of (not necessarily induced) paths on four vertices in G, and as in Section 2,
c4(G) is the number of cycles on four vertices in G.

Lemma 3. Fix n and d with (d + 1)|n. For all n-vertex, d-regular graphs G, we have

p4(G) − c4(G) ≥ p4

(
n

d + 1
Kd+1

)
− c4

(
n

d + 1
Kd+1

)
,

with equality if and only if G = n
d+1 Kd+1.

Proof. Put an arbitrary ordering < on the vertices of G. For each edge e = uv of G
with u < v, denote by A(e) those neighbors of u that are not neighbors of v, by B(e)

those neighbors of u that are also neighbors of v, and by C(e) those neighbors of v that
are not neighbors of u. Set k(e) = |B(e)| (so 0 ≤ k(e) ≤ d − 1 and |A(e)| = |C(e)| =
d − 1 − k(e)). For each x ∈ A(e) and y ∈ C(e), there is a unique path on four vertices in
G that has x and y as end vertices and e as middle edge, and the same is true for each
x ∈ A(e) and y ∈ B(e), and for each x ∈ C(e) and y ∈ B(e). For each x �= y ∈ B(e), there
are two such paths. In this way all paths on four vertices in G with middle edge e are
counted. It follows that

p4(G) =
∑

e∈E(G)

(
|A(e)||C(e)| + |A(e)||B(e)| + |C(e)||B(e)| + 2

(|B(e)|
2

))

=
∑

e∈E(G)

(
(d − 1)2 − k(e)

)
. (4)

Let �(e) be the number of edges that go from A(e) to B(e), or from B(e) to C(e), or from
C(e) to A(e), and let m(e) be the number of edges that are inside B(e). For each edge e′

counted by �(e), there is a unique cycle on four vertices in G passing through e and e′.
For each edge counted by m(e), there are two such cycles. As we run over all edges of
G, each cycle appears four times in this count, and so

c4(G) = 1

4

∑
e∈E(G)

(�(e) + 2m(e)) .
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Combining with (4), we see that

p4(G) − c4(G) = 1

4

∑
e∈E(G)

(
4(d − 1)2 − (4k(e) + �(e) + 2m(e))

)
.

For a fixed value of k(e), the quantity 4k(e) + �(e) + 2m(e) is maximized when all edges
are present between A(e) and C(e), A(e) and B(e), and C(e) and B(e), and so �(e) =
(d − 1 − k(e))2 + 2k(e)(d − 1 − k(e)), and all edges inside B(e) are present, and so
m(e) = (k(e)

2

)
, and the maximum value is (d − 1)2 + 3k(e). This in turn is maximized

when k(e) = d − 1. This maximum can be achieved for each e only if for each edge in
G, the end vertices of the edge share the same neighborhood, with that neighborhood
inducing a complete graph. This occurs uniquely when G = n

d+1 Kd+1. �

Proof of Theorem 3. We begin by examining the term hom(G(S), Hc) in Lemma 1.
Since Hc is the disjoint union of complete bipartite subgraphs spanning no more than
� edges, we have Hc = Kr1,s1∪, . . . ,∪Krm,sm for some strictly positive integers m and
ri, si (1 ≤ i ≤ m) with

∑m
i=1 risi ≤ �. If C is a bipartite component of G(S) with partition

classes having sizes a and b then

hom(C, Hc) =
m∑

i=1

(
ra

i sb
i + rb

i sa
i

)
.

If C is not bipartite then hom(C, Hc) = 0. It follows that the contribution from S to the
sum in Lemma 1 will be nonzero only if G(S) is bipartite.

From Lemma 1 and the calculation above, we see that hom(G, H) is a polynomial in q
of degree n. The contribution to the polynomial from all S that span at most four vertices
and do not span a path or a cycle on four vertices is independent of G. The contribution
from each S that spans a cycle on four vertices is

m∑
i=1

(
2r2

i s2
i

)
qn−4

and the contribution from each S that spans a path on four vertices is the negative of this.
Using Lemma 3 and reasoning in the same way as in the proof of Theorem 2, we get that
if G �= n

d+1 Kd+1 then

hom

(
n

d + 1
Kd+1, Hq

)
− hom(G, Hq) ≥ Cqn−4 − Dqn−5,

where C = ∑m
i=1(2r2

i s2
i ) and D is bounded above by the maximum value of∑

S⊆E(G)

hom(G(S), Hc)

over all n-vertex, d-regular graphs G, where the sum runs over all S with v(S) ≥ 5 that
span a bipartite subgraph. Letting C′ be the minimum value of C and D′ the maximum
value of D over all choices of m and ri, si (1 ≤ i ≤ m), we see that as long as q > D′/C′

we have hom( n
d+1 Kd+1, H) > hom(G, H), proving the theorem.

In the specific case of H = Hq, we have m = r1 = s1 = 1 and so C = 2, and since
a bipartite subgraph of G can have at most n/2 components (we are dealing with sub-
graphs without isolated vertices), we also have D ≤ exp2{nd/2 + n/2}. It follows that
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hom( n
d+1 Kd+1, Hq) > hom(G, Hq) as long as q > exp2{nd/2 + n/2 − 1}, as claimed just

before the statement of Theorem 3. ��

4. COMPARING hom(Kd,d , H ) AND hom(Kd+1, H )

In this section, we determine which of hom(Kd,d, H)1/2d, hom(Kd+1, H)1/(d+1) is larger
for all sufficiently large d, for each H. The determination will be in terms of some
parameters that are fairly simply calculated from H (given the ability to examine
all subgraphs of H). Say that H (without isolated vertices) is of complete bipartite
type (respectively, of complete type, of neutral type) if there is some d(H) > 0 such
that for all d ≥ d(H), we have hom(Kd+1, H)1/(d+1) < hom(Kd,d, H)1/2d (respectively,
hom(Kd,d, H)1/2d < hom(Kd+1, H)1/(d+1), hom(Kd+1, H)1/(d+1) = hom(Kd,d, H)1/2d).

We begin by considering loopless H. For such H, we have hom(Kd+1, H) = 0 unless
H contains Kd+1 as a subgraph, which will not be the case for all sufficiently large d. On
the other hand, since H has at least one edge, we will always have hom(Kd,d, H) ≥ 1. So
all loopless H are of complete bipartite type, and from now on we assume that H has at
least one loop.

Our goal now is to obtain sharp estimates on hom(Kd,d, H) and hom(Kd+1, H). We
begin with hom(Kd,d, H). Say that a pair (A, B) ⊆ V (H)2 with A, B �= ∅ is a complete
bipartite image if for all a ∈ A and b ∈ B we have ab ∈ E(H); the size of the pair is
|A||B|. Define

η(H) = the maximal size of a complete bipartite image in H, and

m(H) = the number of complete bipartite images of maximal size in H.

We have

hom(Kd,d, H) =
∑

{S(d, A)S(d, B) : (A, B) a complete bipartite image} ,

where S(d, A) is the number of ways of coloring the set {1, . . . , d} with colors from A in
such a way that all of the colors of A are used at least once. By inclusion–exclusion,

S(d, A) =
|A|∑
i=0

(−1)i

(|A|
i

)
(|A| − i)d

and so

hom(Kd,d, H) = m(H)η(H)d +
η(H)−1∑

i=0

cii
d, (5)

where the ci’s are (not necessarily nonzero) constants.
Now we look at hom(Kd+1, H). Say that a pair (A, B) ⊆ V (H)2 is a complete image if

A and B are disjoint, A induces a complete looped graph, B induces a complete unlooped
graph, A has at least one vertex, and (A, B) is a complete bipartite image; the primary
size of the pair is |A| and the secondary size is |B|. Define

a(H) = the maximal primary size of a complete image in H,

b(H) = the maximal secondary size of a complete

image of maximal primary size, and
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n(H) = the number of complete images in H with

primary size a(H), secondary size b(H).

Note that if (A, B) is a complete image then (A, A ∪ B) is a complete bipartite image and
so we always have

a2(H) + a(H)b(H) ≤ η(H). (6)

This in particular means that a2(H) ≤ η(H) always and that if a2(H) = η(H) then
b(H) = 0.

To obtain an analog of (5) for hom(Kd+1, H), we begin by observing that for all large
d

hom(Kd+1, H) =
∑ {

(d + 1)|B|S(d + 1 − |B|, A) : (A, B)a complete image
}
,

where (x)m = x(x − 1), . . . , (x − (m − 1)). Indeed, if C is a subset of V (H) that can
be realized as { f (v) : v ∈ V (Kd+1)} for some f ∈ Hom(Kd+1, H), then C must induce a
complete graph (which for all large d must have at least one loop). Writing A(C) for the
set of vertices of C that have a loop and B(C) for those that do not, each element of B(C)

must occur as f (v) for exactly one v ∈ V (Kd+1). The factor (d + 1)|B| above counts the
number of ways of assigning unique preimages from V (Kd+1) to the vertices of B, and
the factor S(d + 1 − |B|, A) counts the number of ways of assigning preimages to the
vertices of A. We therefore have

hom(Kd+1, H) = n(H)pa(H)(H)

a(H)b(H)−1
a(H)d +

a(H)−1∑
i=0

pii
d, (7)

where the pi’s are (not necessarily nonzero) polynomials in d whose degrees and coeffi-
cients are constants, with in particular pa(H)(H) a monic polynomial of degree b(H).

Comparing (5) and (7), we see immediately that if a2(H) < η(H) then H is of complete
bipartite type. If not then by (6), we have a2(H) = η(H) and b(H) = 0 and so (5), (7)
yield

hom(Kd,d, H)d+1 = m(H)d+1(1 + o(cd
1 ))a(H)2d2+2d

and

hom(Kd+1, H)2d = n(H)2d(1 + o(cd
2 ))a(H)2d2+2d,

where the ci’s (here and later) are positive constants (depending on H) strictly smaller
than 1. From this, it immediately follows that if m(H) > 1 and m(H) ≥ n(H)2 then H is
of complete bipartite type, while if m(H) < n(H)2 then H is of complete type.

It remains to study the case a2(H) = η(H) and n(H) = m(H) = 1. In this case, there
is A0 ⊆ V (H) with |A0| = a(H) such that (A0, ∅) is the unique complete image of size
a(H) and (A0, A0) is the unique complete bipartite image of size η(H). Define

a′(H) = the largest primary size of a complete image (A′, B′) with A′ ∪ B′ �⊂ A0,

b′(H) = the largest secondary size of a such a complete image

of largest primary size, and

n′(H) = the number of such complete images with primary size a′(H),

secondary size b′(H).
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If there are no such complete images then set a′(H) = 0. Note that this is equivalent to
H being the disjoint union of a complete looped graph and a (perhaps empty) loopless
graph. Similarly, define

η′(H) = the maximum size of a complete bipartite image (A′, B′) with

at least one of A′, B′ �⊆ A0, and

m′(H) = the number of such complete bipartite images having size η′(H).

If there are no such complete bipartite images then set η′(H) = 0. Note that this is
equivalent to H being a complete looped graph.

If η′(H) = 0 (which implies a′(H) = 0) then trivially H is of neutral type. If η′(H) > 0
and a′(H) = 0 then hom(Kd+1, H)1/(d+1) = a(H) and hom(Kd,d, H)1/2d > η(H)1/2 =
a(H) (because there is some contribution to hom(Kd,d, H) from that part of H that
witnesses η′(H) > 0 that is not counted among those colorings that take values only
inside A0), so H is of complete bipartite type. So from now on we may assume that
η′(H), m′(H), a′(H), and n′(H) are all strictly positive.

The dominant term of hom(Kd+1, H) is now a(H)d+1, which counts the number of
homomorphisms which have as their image any subset of A0, the unique complete looped
subgraph of H of size a(H), and the sum of the remaining terms is

n′(H)p′(H)

a′(H)b′(H)
(1 + o(cd

3 ))a′(H)d+1,

where p′(H) is a monic polynomial in d of degree b′(H) whose coefficients are constants.
From this, it follows that

hom(Kd+1, H)2d

a(H)2d2+2d
= 1 + (1 + o(cd

4 ))
2dn′(H)p′(H)

a(H)a′(H)b′(H)−1

(
a′(H)

a(H)

)d

. (8)

Similarly, the dominant term of hom(Kd,d, H) is η(H)d = a(H)2d , which counts the
number of homomorphisms which have as their image any subset of A0, and the sum of
the remaining terms is m′(H)(1 + o(cd

5 ))η′(H)d . From this, it follows that

hom(Kd,d, H)d+1

a(H)2d2+2d
= 1 + (1 + o(cd

6 ))(d + 1)m′(H)

(
η′(H)

a2(H)

)d

. (9)

Comparing (8) and (9), we immediately get that if a(H)a′(H) < η′(H) then H is of
complete bipartite type (note that this inequality can be interpreted as covering the case
η′(H) > 0 = a′(H)), while if either a(H)a′(H) > η′(H) or a(H)a′(H) = η′(H) and
b′(H) > 0 then H is of complete type. If a(H)a′(H) = η′(H) and b′(H) = 0 then the
right-hand side of (8) reduces to

1 + (1 + o(cd
4 ))

2dn′(H)a′(H)

a(H)
Cd

while the right-hand side of (9) becomes 1 + (1 + o(cd
6 ))(d + 1)m′(H)Cd (for some

positive constant C, the same in both cases). We see from this that if 2n′(H)a′(H) >

a(H)m′(H) then H is of complete type, while if 2n′(H)a′(H) ≤ a(H)m′(H) then H is
of complete bipartite type.

We summarize all of this in the following theorem. Here (as always), H ranges over
all simple, finite graphs, perhaps with loops, but without isolated vertices.
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Theorem 6. If H is not a complete looped graph, then it is either of complete bipartite
type or of complete type. The following are the conditions under which H is of complete
bipartite type:

(1) H is loopless.
(2) a2(H) < η(H).
(3) a2(H) = η(H), m(H) > 1, and m(H) ≥ n(H)2.
(4) a2(H) = η(H), m(H) = n(H) = 1, and a(H)a′(H) < η′(H).
(5) a2(H) = η(H), m(H) = n(H) = 1, a(H)a′(H) = η′(H),

b′(H) = 0, 2n′(H)a′(H) ≤ a(H)m′(H), and m′(H) > 0.

The following are the conditions under which H is of complete type:

(1) a2(H) = η(H) and m(H) < n(H)2.
(2) a2(H) = η(H), m(H) = n(H) = 1, and a(H)a′(H) > η′(H).
(3) a2(H) = η(H), m(H) = n(H) = 1, a(H)a′(H) = η′(H), and b′(H) > 0.
(4) a2(H) = η(H), m(H) = n(H) = 1, a(H)a′(H) = η′(H),

b′(H) = 0, and 2n′(H)a′(H) > a(H)m′(H).

We illustrate Theorem 6 with some specific examples, including all of the graphs
considered so far in this article.

The complete graph Kq (which encodes proper q-colorings) has no loops and so
is of complete bipartite type. More generally, the graph H�

q with � > 0 (the subject of
Theorem 2) is of complete bipartite type since it has η(H) = q(q − �) and a(H) = q − �,
so a2(H) < η(H).

The k-state hard-core constraint graph H(k) (k ≥ 1) is the graph on vertex set
{0, . . . , k} with i j ∈ E(Hk) if i + j ≤ k. This graph occurs naturally in the study of
multicast communication networks, and has been considered in [10] and [4]. Note that
for k = 1 this is the same as Hind, the graph that encodes independent sets. When
k is odd, say k = 2� + 1, we have η(H(k)) = (� + 1)(� + 2) and a(H(k)) = � + 1
and so H(2� + 1) is of complete bipartite type. If k is even, say k = 2�, we have
η(H(k)) = (� + 1)2, m(H(k)) = 1, a(H(k)) = � + 1 and n(H(k)) = 1 and so we have
to look at the primed parameters. We have a′(H(k)) = � and η′(H(k)) = (� + 1)2 − 1
and so a(H)a′(H) < η′(H) and H(2�) is also of complete bipartite type.

The completely disconnected fully looped graph Eo
k (k ≥ 1) is the graph consisting of

k loops and no other edges. For k = 1, Eo
k is trivially of neutral type. For k > 1, we have

η(H) = 1, a(H) = 1, m(H) = k, and n(H) = k, so that for all k > 1, it is of complete
type. This was the example that was first pointed out by Cutler and Radcliffe (personal
communications), showing that Galvin and Tetali’s original conjecture [5] (concerning
the validity of (1) for nonbipartite G) was false.

The complete looped path Po
k (k ≥ 1) is the path on k vertices with all vertices looped.

For k = 1 and 2, this coincides with the complete looped graph on k vertices, and Po
k

in these cases is trivially of neutral type. For k ≥ 3, we have η(H) = 4, a(H) = 2, and
m(H) = n(H) = k − 1, so Po

k in these cases is of complete type. Thus, one of the simplest
nontrivial examples of a graph of complete type is the fully looped path on three vertices,
also known as the Widom–Rowlinson graph HWR. Similarly, the graph Hq (q ≥ 3) (the
subject of Theorem 3) has η(H) = (q − 1)2, a(H) = q − 1, and m(H) = n(H) = 2, so
Hq is also of complete type.
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5. PROOFS OF THEOREMS 4 AND 5

We make use of the following result, a special case of a theorem of Madiman and Tetali
[9, Theorem III]. The result was originally obtained for H = Hind by Kahn (unpublished),
and the present author first observed the generalization to all H.

Theorem 7. Let G be a d-regular graph and H an arbitrary graph. Let < be an arbitrary
ordering of the vertices of G, and let p(v) denote the number of neighbors u of v with
u < v. We have

hom(G, H) ≤
∏

v∈V (G):p(v)>0

hom(Kp(v),p(v), H)
1
d .

(The exclusion of those v with p(v) = 0 does not appear in [9], but the result stated
above follows immediately since hom(K0,0, H) = 1 for all H.)

By (5), we have that for i > 0,

hom(Ki,i, H) ≤ m(H)η(H)i
(
1 + C(H)(1 − 1/η(H))i

)
for some constant C(H) > 0 and so, using

∑
v∈V:p(v)>0 p(v) = |E(G)| = nd/2 and

log(1 + x) ≤ x, we get from Theorem 7 that

hom(G, H) ≤ η(H)
n
2 m(H)

n−p0n
d exp

{
C(H)n

d

d∑
i=1

pi f (i)

}
, (10)

where pi is the proportion of v ∈ V (G) with p(v) = i, n = |V (G)|, and f (i) = (1 −
1/η(H))i.

Our approach now is to choose an ordering of the vertices of G that makes the right-
hand side of (10) small. We begin by fixing an independent set I of maximal size, say αn,
and putting the vertices of I at the beginning of the ordering (in some arbitrary order). We
then extend to a total ordering by choosing a (uniform) random ordering of the vertices
outside I. Since I is maximal, every v �∈ I has a neighbor in I and so p0 = α.

Let Ai (i = 1, . . . , d) be the set of vertices outside of I that have exactly i neighbors
in I, and let ain = |Ai|. For each v ∈ Ai, we have (by a simple symmetry argument) that
Pr(p(v) = j) = 1/(d − (i − 1)) for j = i, . . . , d (and Pr(p(v) = j) = 0 otherwise). It
follows that the expected value of pi is

∑i
j=1 a j/(d − ( j − 1)), and so by linearity of

expectation, the expected value of
∑d

i=1 pi f (i) is

d∑
i=1

i∑
j=1

a j f (i)

d − ( j − 1)
=

d∑
j=1

a j

d − ( j − 1)

d∑
i= j

f (i).

Choose an ordering for which
∑d

i=1 pi f (i) is at most this much. Since f (i) = (1 −
1/η(H))i, we have

∑d
i= j f (i) ≤ O((1 − 1/η(H)) j). For sufficiently large d, the max-

imum of (1 − 1/η(H)) j/(d − ( j − 1)) as j ranges from 1 to d is achieved at j = 1.
Using this in (10) together with the fact that

∑d
i=1 ai ≤ 1 leads to

hom(G, H)
1
n ≤ η(H)

1
2 m(H)

1−α
d exp

{
C′(H)

d2

}
= (1 + o(1))η(H)

1
2 (11)

for some constant C′(H) > 0.
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We now compare the bound in (11) to asymptotic bounds on hom(Kd,d, H)1/2d (or
hom(Kd+1, H)1/(d+1), as appropriate), derived from identities in Section 5. We exclude
two trivial cases that have been dealt with completely earlier, namely H bipartite and H
completely looped.

If H is of complete bipartite type with m(H) > 1, then by (5), we have

hom(Kd,d, H)1/2d = η(H)
1
2 m(H)

1+o(1)

2d , (12)

so the upper bound in (11) is correct up to the exponent of m(H) in the second term.
At this point, we draw attention to perhaps the simplest instance of a graph of complete

bipartite type for which Conjecture 1 remains open, namely H = K3 (the case of proper
3-coloring). The conjecture is trivially true for those G without an independent set of size
at least n/3 (for which hom(G, K3) = 0). For the remaining G, the upper bound in (11)
becomes

hom(G, K3)
1
n ≤ 2

1
2 6

2+o(1)

3d ,

whereas

hom(Kd,d, K3)
1/2d = 2

1
2 6

1+o(1)

2d .

It would be very nice to be able to close the gap between the 62/3 and 61/2 here.
If H is of complete bipartite type with m(H) = 1, then by (5), we have

hom(Kd,d, H)1/2d = η(H)
1
2 exp

{
o
(
cd

7

)}
, (13)

so the upper bound in (11) is correct only in the first term.
We now examine those H of complete type. First, we look at the case a2(H) = η(H)

and m(H) < n(H)2. Here, m(H) ≥ n(H) (since every complete looped graph A of size
a(H) gives rise to a pair (A, A) that gets counted in m(H)), and so m(H) > 1. Also in
this case b(H) = 0 and a(H) = η(H)1/2 and so from (7), we get

hom(Kd+1, H)1/(d+1) = η(H)
1
2 n(H)

1+o(1)

d . (14)

If m(H) > n(H), then the upper bound in (11) is correct up to the exponent of m(H) in
the second term. If, however m(H) = n(H), then the upper bound in (11) has the correct
exponent of m(H), and it is in later terms that we first see disagreement. In this case,
a more precise comparison between (11) and hom(Kd+1, H) is in order. From (7) (and
using b(H) = 0), we have

hom(Kd+1, H)1/(d+1) = η(H)
1
2 n(H)

1
d+1 exp

{
o
(
cd

8

)}
(15)

for large d. Defining γ by α = 1/(d + 1) + γ , (11) becomes

hom(G, H)
1
n ≤ η(H)

1
2 m(H)

1
d+1 exp

{
−C′′(H)γ

d
+ C′(H)

d2

}
, (16)

where C′′(H) > 0 is a constant. Comparing (16) and (15), we see that for γ > �(1/d)

(with the constant depending on H), we have the exact bound

hom(G, H) ≤ hom(Kd+1, H)
n

d+1 .

We have proven the following generalization of Theorem 5.

Theorem 8. Let H be of complete type with m(H) = n(H) > 1. There is a constant
C > 0 such that for all sufficiently large d, we have the following. If G is an n-vertex,
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d-regular graph with an independent set of size at least Cn/d, then

hom(G, H) < hom(Kd+1, H)
n

d+1 .

Note that HWR, and more generally Hq of Theorem 3 for all q ≥ 3, satisfies the
conditions of Theorem 8, as does for example the complete looped path on k ≥ 3 vertices.

There remains the case of H of complete type with m(H) = n(H) = 1. In this case,
we have

hom(Kd+1, H)1/(d+1) = η(H)
1
2 exp

{
o
(
cd

9

)}
, (17)

so the upper bound in (11) is correct only in the first term.
From (12), (13), (14), and (17), we see that in all cases

max
{

hom(Kd,d, H)
1

2d , hom(Kd+1, H)
1

d+1

}
= (1 + o(1))η(H)

1
2 ,

which together with (11) gives Theorem 4.
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