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Abstract: Galvin showed that for all fixed δ and sufficiently large n, the
n-vertex graph with minimum degree δ that admits the most independent
sets is the complete bipartite graph Kδ,n−δ. He conjectured that except per-
haps for some small values of t , the same graph yields the maximum count
of independent sets of size t for each possible t . Evidence for this conjec-
ture was recently provided by Alexander, Cutler, and Mink, who showed
that for all triples (n, δ, t ) with t ≥ 3, no n-vertex bipartite graph with min-
imum degree δ admits more independent sets of size t than Kδ,n−δ. Here,
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we make further progress. We show that for all triples (n, δ, t ) with δ ≤ 3
and t ≥ 3, no n-vertex graph with minimum degree δ admits more indepen-
dent sets of size t than Kδ,n−δ, and we obtain the same conclusion for δ > 3
and t ≥ 2δ + 1. Our proofs lead us naturally to the study of an interesting
family of critical graphs, namely those of minimum degree δ whose mini-
mum degree drops on deletion of an edge or a vertex. C© 2013 Wiley Periodicals,

Inc. J. Graph Theory 76: 149–168, 2014
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1. INTRODUCTION AND STATEMENT OF RESULTS

An independent set (a.k.a. stable set) in a graph is a set of vertices spanning no edges.
For a graph G = (V, E ) (always assumed to be simple and finite in this article), denote
by i(G) the number of independent sets in G. In [15] this quantity is referred to as the
Fibonacci number of G, motivated by the fact that for the path graph Pn its value is a
Fibonacci number. It has also been studied in the field of molecular chemistry, where it
is referred to as the Merrifield–Simmons index of G [13].

A natural extremal enumerative question is the following: as G ranges over some
family G, what is the maximum value attained by i(G), and which graphs achieve this
maximum? This question has been addressed for numerous families. Prodinger and Tichy
[15] considered the family of n-vertex trees, and showed that the maximum is uniquely
attained by the star K1,n−1. Granville, motivated by a question in combinatorial group
theory, raised the question for the family of n-vertex, d-regular graphs (see [2] for more
details). An approximate answer – i(G) ≤ 2n/2(1+o(1)) for all such G, where o(1) → 0
as d → ∞ – was given by Alon in [2], and he speculated a more exact result, that the
maximizing graph, at least in the case 2d|n, is the disjoint union of n/2d copies of Kd,d .
This speculation was confirmed for bipartite G by Kahn [10], and for general regular
G by Zhao [18]. The family of n-vertex, m-edge graphs was considered by Cutler and
Radcliffe in [5], and they observed that it is a corollary of the Kruskal–Katona theorem
that the lex graph L(n, m) (on vertex set {1, . . . , n}, with edges being the first m pairs
in lexicographic order) maximizes i(G) in this class. Zykov [19] considered the family
of graphs with a fixed number of vertices and fixed independence number, and showed
that the maximum is attained by the complement of a certain Turán graph. (Zykov was
actually considering cliques in a graph with given clique number, but by complementation
this is equivalent to considering independent sets in a graph with given independence
number.) Other articles addressing questions of this kind include [9], [11], [14] and [16].

Having resolved the question of maximizing i(G) for G in a particular family, it is
natural to ask which graph maximizes it (G), the number of independent sets of size t in
G, for each possible t. For many families, it turns out that the graph which maximizes
i(G) also maximizes it (G) for all t. Wingard [17] showed this for trees, Zykov [19]
showed this for graphs with a given independence number (see [4] for a short proof), and
Cutler and Radcliffe [4] showed this for graphs on a fixed number of edges (again, as a
corollary of Kruskal–Katona). In [10], Kahn conjectured that for all 2d|n and all t, no
n-vertex, d-regular graph admits more independent sets of size t than the disjoint union of
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n/2d copies of Kd,d ; this conjecture remains open, although asymptotic evidence appears
in [3].

The focus of this article is the family G(n, δ) of n-vertex graphs with minimum degree
δ. One might imagine that, since removing edges increases the count of independent sets,
the graph in G(n, δ) that maximizes the count of independent sets would be δ-regular (or
close to), but this turns out not to be the case, even for δ = 1. The following result is
from [7].

Theorem 1.1. For n ≥ 2 and G ∈ G(n, 1), we have i(G) ≤ i(K1,n−1). For δ ≥ 2, n ≥ 4δ2

and G ∈ G(n, δ), we have i(G) ≤ i(Kδ,n−δ ).

What about maximizing it (G) for each t? The family G(n, δ) is an example of a family
for which the maximizer of the total count is not the maximizer for each individual t.
Indeed, consider the case t = 2. Maximizing the number of independent sets of size two
is the same as minimizing the number of edges, and it is easy to see that for all fixed δ

and sufficiently large n, there are n-vertex graphs with minimum degree at least δ that
have fewer edges than Kδ,n−δ (consider for example a δ-regular graph, or one that has one
vertex of degree δ + 1 and the rest of degree δ). However, we expect that anomalies like
this occur for very few values of t. Indeed, the following conjecture is made in [7].

Conjecture 1.2. For each δ ≥ 1 there is a C(δ) such that for all t ≥ C(δ), n ≥ 2δ and
G ∈ G(n, δ), we have

it (G) ≤ it (Kδ,n−δ ) =
(

n − δ

t

)
+

(
δ

t

)
.

The case δ = 1 of Conjecture 1.2 is proved in [7], with C(1) as small as it possibly
can be, namely C(1) = 3. In [1], Alexander, Cutler, and Mink looked at the subfamily
Gbip(n, δ) of bipartite graphs in G(n, δ), and resolved the conjecture in the strongest
possible way for this family.

Theorem 1.3. For δ ≥ 1, n ≥ 2δ, t ≥ 3 and G ∈ Gbip(n, δ), we have it (G) ≤ it (Kδ,n−δ ).

This provides good evidence for the truth of the strongest possible form of Conjecture
1.2, namely that we may take C(δ) = 3.

The purpose of this article is to make significant progress toward this strongest possible
conjecture. We completely resolve the cases δ = 2 and 3, and for larger δ we deal with
all but a small fraction of cases. In what follows, Ek is the graph on k vertices with no
edges, and G1 ∨ G2 indicates the join of graphs G1 and G2.

Theorem 1.4.

1. For δ = 2, t ≥ 3 and G ∈ G(n, 2), we have it (G) ≤ it (K2,n−2). For n ≥ 5 and
3 ≤ t ≤ n − 2 we have equality iff G = H ∨ En−2, where H is any graph on two
vertices.

2. For δ = 3, t ≥ 3 and G ∈ G(n, 3), we have it (G) ≤ it (K3,n−3). For n ≥ 6 and t = 3
we have equality iff G = K3,n−3; for n ≥ 7 and 4 ≤ t ≤ n − 3 we have equality iff
G = H ∨ En−3, where H is any graph on three vertices.

3. For δ ≥ 3, t ≥ 2δ + 1 and G ∈ G(n, δ), we have it (G) ≤ it (Kδ,n−δ ). For n ≥ 3δ +
1 and 2δ + 1 ≤ t ≤ n − δ we have equality iff G = H ∨ En−δ , where H is any
graph on δ vertices.
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(Note that there is some overlap between parts 2 and 3 above.) Part 1 above provides an
alternate proof of the δ = 2 case of the total count of independent sets, originally proved
in [7].

Corollary 1.5. For n ≥ 4 and G ∈ G(n, 2), we have i(G) ≤ i(K2,n−2). For n = 4 and
n ≥ 6 there is equality iff G = K2,n−2.

Proof. The result is trivial for n = 4. For n = 5, it is easily verified by inspection,
and we find that both C5 and K2,3 have the same total number of independent sets. So we
may assume n ≥ 6.

We clearly have i(K′
2,n−2) < i(K2,n−2), where K′

2,n−2 is the graph obtained from K2,n−2

by joining the two vertices in the partition class of size 2. For all G ∈ G(n, 2) different
from both K2,n−2 and K′

2,n−2, Theorem 1.4 part 1 tells us that it (G) ≤ it (K2,n−2) − 1 for
3 ≤ t ≤ n − 2. For t = 0, 1, n − 1 and n we have it (G) = it (K2,n−2) (with the values
being 1, n, 0, and 0, respectively). We have i2(G) ≤ (n

2

) − n (this is the number of
nonedges in a 2-regular graph), and so

i2(G) ≤ i2(K2,n−2) +
(

n

2

)
− n −

(
n − 2

2

)
− 1 = i2(K2,n−2) + n − 4. (1)

Putting all this together we get i(G) ≤ i(K2,n−2).
If G is not 2-regular then we have strict inequality in (1) and so i(G) < i(K2,n−2).

If G is 2-regular, then (as we will show presently) we have i3(G) < i3(K2,n−2) − 1 and
so again i(G) < i(K2,n−2). To see the inequality concerning independent sets of size 3
note that in any 2-regular graph the number of independent sets of size 3 that include
a fixed vertex v is the number of non-edges in the graph induced by the n − 3 vertices
V \ {v, x, y} (where x and y are the neighbors of v), which is at most

(n−3
2

) − (n − 4). It
follows that

i3(G) ≤ 1

3

(
n

((
n − 3

2

)
− (n − 4)

))
<

(
n − 2

3

)
− 1.

�

The article is laid out as follows. In Section 2, we make some easy preliminary
observations that will be used throughout the rest of the article, and we introduce the
ideas of ordered independent sets and min-critical graphs. In Section 3, we deal with
the case δ = 2 (part 1 of Theorem 1.4). We begin Section 4 with the proof of part 3 of
Theorem 1.4, and then explain how the argument can be improved (within the class of
min-critical graphs). This improvement will be an important ingredient in the δ = 3 case
(part 2 of Theorem 1.4) whose proof we present in Section 5. Finally, we present some
concluding remarks and conjectures in Section 6.

Notation: Throughout the article we use N(v) for the set of vertices adjacent to v,
and d(v) for |N(v)|. We write u ∼ v to indicate that u and v are adjacent (and u � v to
indicate that they are not). We use G[Y ] to denote the subgraph induced by a subset Y of
the vertices, and E(Y ) for the edge set of this subgraph. Finally, for t ∈ N we use xt to
indicate the falling power x(x − 1) . . . (x − (t − 1)).
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2. PRELIMINARY REMARKS

For integers n, δ, and t, let P(n, δ, t) denote the statement that for every G ∈ G(n, δ),
we have it (G) ≤ it (Kδ,n−δ ). A key observation (Lemma 2.1 and Corollary 2.2 below) is
that if we prove P(n, δ, t) for some triple (n, δ, t) with t ≥ δ + 1, we automatically have
P(n, δ, t + 1). The proof introduces the idea of considering ordered independent sets,
that is, independent sets in which an order is placed on the vertices.

Lemma 2.1. For δ ≥ 2 and t ≥ δ + 1, if G ∈ G(n, δ) satisfies it (G) ≤ it (Kδ,n−δ ) then
it+1(G) ≤ it+1(Kδ,n−δ ). Moreover, if t < n − δ and it (G) < it (Kδ,n−δ ) then it+1(G) <

it+1(Kδ,n−δ ).

Corollary 2.2. For δ ≥ 2 and t ≥ δ + 1, P(n, δ, t) ⇒ P(n, δ, t + 1).

Proof. Fix G ∈ G(n, δ). By hypothesis, the number of ordered independent sets in G
of size t is at most (n − δ)t . For each ordered independent set of size t in G there are at
most n − (t + δ) vertices that can be added to it to form an ordered independent set of
size t + 1 (no vertex of the independent set can be chosen, nor can any neighbor of any
particular vertex in the independent set). This leads to a bound on the number of ordered
independent sets in G of size t + 1 of (n − δ)t (n − (t + δ)) = (n − δ)t+1. Dividing by
(t + 1)!, we find that it+1(G) ≤ (n−δ

t+1

) = it+1(Kδ,n−δ ).

If we have it (G) <
(n−δ

t

)
then we have strict inequality in the count of ordered inde-

pendent sets of size t, and so also as long as n − (δ + t) > 0 we have strict inequality in
the count for t + 1, and so it+1(G) <

(n−δ

t+1

)
. �

Given Corollary 2.2, in order to prove P(n, δ, t) for n ≥ n(δ) and t ≥ t(δ) it will be
enough to prove P(n, δ, t(δ)). Many of our proofs will be by induction on n, and will be
considerably aided by the following simple observation.

Lemma 2.3. Fix t ≥ 3. Suppose we know P(m, δ, t) for all m < n. Let G ∈ G(n, δ) be
such that there is v ∈ V (G) with G − v ∈ G(n − 1, δ) (that is, G − v has minimum degree
δ). Then it (G) ≤ it (Kδ,n−δ ). Equality can only occur if all of 1) it (G − v) = it (Kδ,n−1−δ ),
2) G − v − N(v) is empty (has no edges), and 3) d(v) = δ hold.

Proof. Counting first the independent sets of size t in G that do not include v and then
those that do, and bounding the former by our hypothesis on P(m, δ, t) and the latter by
the number of subsets of size t − 1 in G − v − N(v), we have

it (G) = it (G − v) + it−1(G − v − N(v))

≤ it (Kδ,n−1−δ ) + it−1(En−1−d(v))

≤
(

n − 1 − δ

t

)
+

(
δ

t

)
+

(
n − 1 − δ

t − 1

)

=
(

n − δ

t

)
+

(
δ

t

)

= it (Kδ,n−δ ).

The statement concerning equality is evident. �

Journal of Graph Theory DOI 10.1002/jgt



154 JOURNAL OF GRAPH THEORY

Lemma 2.3 allows us to focus on graphs with the property that each vertex has a
neighbor of degree δ. Another simple lemma further restricts the graphs that must be
considered.

Lemma 2.4. If G′ is obtained from G by deleting edges, then for each t we have
it (G) ≤ it (G′).

This leads to the following definition.

Definition 2.5. Fix δ ≥ 1. A graph G with minimum degree δ is edge-min-critical if for
any edge e in G, the minimum degree of G − e is δ − 1. It is vertex-min-critical if for any
vertex v in G, the minimum degree of G − v is δ − 1. If it is both edge-min-critical and
vertex-min-critical, we say that G is min-critical.

Lemmas 2.3 and 2.4 allow us to concentrate mostly on min-critical graphs. In Section
3 (specifically Lemma 3.2), we obtain structural information about min-critical graphs in
the case δ = 2, while much of Section 5 is concerned with the same problem for δ = 3.

An easy upper bound on the number of independent sets of size t ≥ 1 in a graph with
minimum degree δ is

it (G) ≤ n(n − (δ + 1))(n − (δ + 2)) · · · (n − (δ + (t − 1)))

t!
. (2)

This bound is tight only when it simultaneously happens that all vertices have degree δ

and every pair of nonadjacent vertices share the same δ neighbors. These two conditions
do not tend to occur simultaneously, and we will improve the upper bound in (2) by
considering carefully what happens when one or both of them fail. To begin this process,
it will be helpful to distinguish between vertices with degree δ and those with degree
larger than δ. Set

V=δ = {v ∈ V (G) : d(v) = δ}
and

V>δ = {v ∈ V (G) : d(v) > δ}.
The main thrust of most of our proofs is that a min-critical graph must have at least one
of a small list of different structures in it, and we exploit the presence of a structure to
significantly improve the easy upper bound.

3. PROOF OF THEOREM 1.4, PART 1 (δ = 2)

Recall that we want to show that for δ = 2, t ≥ 3, and G ∈ G(n, 2), we have it (G) ≤
it (K2,n−2), and that for n ≥ 5 and 3 ≤ t ≤ n − 2 we have equality iff G = K2,n−2 or K′

2,n−2
(obtained from G by joining the two vertices in the partition class of size 2). We concern
ourselves initially with the inequality, and discuss the cases of equality at the end. By
Corollary 2.2, it is enough to consider t = 3, and we will prove this case by induction
on n, the base cases n ≤ 5 being trivial. So from here on we assume that n > 5 and that
P(m, 2, 3) has been established for all m < n, and let G ∈ G(n, 2) be given. By Lemmas
2.3 and 2.4 we may assume that G is min-critical.

We begin with two lemmas, the first of which is well known (see e.g. [8]), and the
second of which gives structural information about min-critical graphs (in the case δ = 2).
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Y2

Y1

FIGURE 1. An example of a partition of V (G) from Lemma 3.2.

Lemma 3.1. Let k ≥ 1 and 0 ≤ t ≤ k + 1. In the k-path Pk we have

it (Pk) =
(

k + 1 − t

t

)
.

Let k ≥ 3 and 0 ≤ t ≤ k − 1. In the k-cycle Ck we have

it (Ck) =
(

k − t

t

)
+

(
k − t − 1

t − 1

)
.

Lemma 3.2. Fix δ = 2. Let G be a connected n-vertex min-critical graph. Either

1. G is a cycle or
2. V (G) can be partitioned as Y1 ∪ Y2 with 2 ≤ |Y1| ≤ n − 3 in such a way that Y1

induces a path, Y2 induces a graph with minimum degree 2, each endvertex of the
path induced by Y1 has exactly one edge to Y2, the endpoints of these two edges in
Y2 are either the same or nonadjacent, and there are no other edges from Y1 to Y2

(see Fig. 1).

Proof. If G is not a cycle, then it has some vertices of degree greater than 2. If there
is exactly one such vertex, say v, then by parity considerations d(v) is even and at least
4. Since all degrees are even, the edge set may be partitioned into cycles. Take any cycle
through v and remove v from it to get a path whose vertex set can be taken to be Y1.

There remains the case when G has at least two vertices with degree larger than 2.
Since G is edge-min-critical, V>δ forms an independent set and so there is a path on at
least three vertices joining distinct vertices v1, v2 ∈ V>δ , all of whose internal vertices
u1, . . . , uk have degree 2 (the shortest path joining two vertices in V>δ would work).
Since G is vertex-min-critical we must in fact have k ≥ 2, since otherwise u1 would
be a vertex whose deletion leaves a graph with minimum degree 2. We may now take
Y1 = {u1, . . . , uk}. Note that the Y2 endpoints (v1 and v2) of the edges from u1 and uk to
Y2 are both in V>δ and so are nonadjacent. �

Armed with Lemmas 3.1 and 3.2 we now show that for min-critical G we have

i3(G) < i3(K2,n−2) =
(

n − 2

3

)
.

If G is the n-cycle, then we are done by Lemma 3.1. If G is a disjoint union of cycles,
then choose one such, of length k, and call its vertex set Y1, and set Y2 = V \ Y1. We will
count the number of independent sets of size 3 in G by considering how the independent
set splits across Y1 and Y2.

For k ≥ 4 Lemma 3.1 gives a count of
(k−3

3

) + (k−4
2

)
for the number of independent sets

of size 3 in Y1, and this is still a valid upper bound when k = 3. By induction there are at
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most
(n−k−2

3

)
independent sets of size 3 in Y2. There are (

(k−1
2

) − 1)(n − k) independent
sets with two vertices in Y1 and one in Y2 (the first factor here simply counting the number

of nonedges in a k-cycle). Finally, there are k
((n−k−1

2

) − 1
)

independent sets with one

vertex in Y1 and two in Y2 (the second factor counting the number of non-edges in a 2-
regular graph on n − k vertices). The sum of these bounds is easily seen to be

(n−2
3

) − k,

so strictly smaller than
(n−2

3

)
.

We may now assume that G has a component that is not 2-regular. Choose one such
component. Let Y1 be as constructed in Lemma 3.2 and let Y2 be augmented by including
the vertex sets of all other components. Denote by v1, v2 the neighbors in Y2 of the
endpoints of the path. Note that it is possible that v1 = v2, but if not then by Lemma 3.2
we have v1 � v2. We will bound i3(G) from above by considering the possible splitting
of independent sets across Y1 and Y2.

By Lemma 3.1, there are
(k−2

3

)
independent sets of size 3 in Y1, and by induction there

are at most
(n−k−2

3

)
independent sets of size 3 in Y2.

The number of independent sets of size 3 in G that have two vertices in Y1 and one in
Y2 is at most (

k − 3

2

)
(n − k) +

((
k − 1

2

)
−

(
k − 3

2

))
(n − k − 1).

The first term above counts those independent sets in which neither endpoint of the k-path
is among the two vertices from Y1, and uses Lemma 3.1. The second term bounds from
above the number of independent sets in which at least one endpoint of the k-path is
among the two vertices from Y1, and again uses Lemma 3.1. (Note that when k = 2 the
application of Lemma 3.1 is not valid, since when we remove the endvertices we are
dealing with a path of length 0, outside the range of validity of the lemma; however, the
above bound is valid for k = 2, since it equals 1 in this case.) Finally, the number of
independent sets of size 3 in G that have one vertex in Y1 and two in Y2 is at most

(k − 2)

((
n − k

2

)
− |E(Y2)|

)
+

2∑
i=1

((
n − k − 1

2

)
− |E(Y2)| + dY2 (vi)

)
.

The first term here counts the number of independent sets in which the one vertex from
Y1 is not an endvertex, the second factor being simply the number of non-edges in G[Y2].
The second term counts those with the vertex from Y1 being the neighbor of vi, the second
factor being the number of nonedges in G[Y2] − vi.

The sum of all of these bounds, when subtracted from
(n−2

3

)
, simplifies to

− (k − 1)n + k2 + k − 3 + k|E(Y2)| − dY2 (v1) − dY2 (v2), (3)

a quantity which we wish to show is strictly positive.
Suppose first that Y1 can be chosen so that v1 
= v2. Recall that in this case v1 � v2, so

dY2 (v1) + dY2 (v2) ≤ |E(Y2)|. Combining this with |E(Y2)| ≥ n − k we get that (3) is at
least 2k − 3, which is indeed strictly positive for k ≥ 2.

If v1 = v2 = v, then we first note that

|E(Y2)| = 1

2

∑
w∈Y2

dY2 (w) ≥ dY2 (v)

2
+ (n − k − 1)
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··
·

FIGURE 2. The windmill graph.

(since G[Y2] has minimum degree 2). Inserting into (3) we find that (3) is at least

n − 3 +
(

k

2
− 2

)
dY2 (v). (4)

This is clearly strictly positive for k ≥ 4, and for k = 3 strict positivity follows from
dY2 (v) < 2(n − 3), which is true since in fact dY2 (v) < n − 3 in this case.

If k = 2, then (4) is strictly positive unless dY2 (v) = n − 3 (the largest possible value
it can take in this case). There is just one min-critical graph G with the property that
for all possible choices of Y1 satisfying the conclusions of Lemma 3.2 we have |Y1| = 2,
v1 = v2 = v and dY2 (v) = n − 3; this is the windmill graph (see Fig. 2) consisting of
(n − 1)/2 triangles with a single vertex in common to all the triangles, and otherwise
no overlap between the vertex sets (note that the degree condition on v forces G to be
connected). A direct count gives (n − 1)(n − 3)(n − 5)/6 <

(n−2
3

)
independent sets of

size 3 in this particular graph.
This completes the proof that it (G) ≤ it (K2,n−2) for all t ≥ 3 and G ∈ G(n, 2). We now

turn to considering the cases where equality holds in the range n ≥ 5 and 3 ≤ t ≤ n − 2.
For t = 3 and n = 5, by inspection we see that we have equality iff G = K2,3 or K′

2,3
(obtained from K2,3 by adding an edge inside the partition class of size 2). For larger n,
we prove by induction that equality can be achieved only for these two graphs. If a graph
G is not edge-min-critical, we delete edges until we obtain a graph G′ that is edge-min-
critical, using Lemma 2.4 to get it (G) ≤ it (G′). If G′ is min-critical, then the discussion
in this section shows that we cannot achieve equality. If G′ is not vertex-min-critical,
Lemma 2.3 and our induction hypothesis shows that we only achieve equality for G′ if
there is v ∈ V (G′) with G′ − v = K2,n−3 or K′

2,n−3, G′ − v − N(v) empty, and d(v) = 2.
First, notice that G′ − v = K′

2,n−3 implies that G′ is not edge-min-critical, so equality can
only occur when G′ − v = K2,n−3. If G′ − v = K2,n−3, the second and third conditions
tell us that N(v) is exactly the partition class of size 2 in K2,n−3, that is, that G′ = K2,n−2.
From here it is evident that equality can only occur for G = K2,n−2 or K′

2,n−2.
Now for each fixed n ≥ 5, we conclude from Lemma 2.1 that for 3 ≤ t ≤ n − 2 we

cannot have equality unless G = K2,n−2 or K′
2,n−2; and since the equality is trivial for

these two cases, the proof is complete.
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4. PROOF OF THEOREM 1.4, PART 3 (δ ≥ 3)

Throughout this section we set h = |V>δ| and � = |V=δ|; note that h + � = n. We begin
this section with the proof of Theorem 1.4 part 3; we then show how the method used may
be improved to obtain a stronger result within the class of min-critical graphs (Lemma
4.1 below), a result that will play a role in the proof of Theorem 1.4, part 2 (δ = 3) that
will be given in Section 5.

Recall that we are trying to show that for δ ≥ 3, t ≥ 2δ + 1 and G ∈ G(n, δ), we have
it (G) ≤ it (Kδ,n−δ ), and that for n ≥ 3δ + 1 and 2δ + 1 ≤ t ≤ n − δ there is equality iff
G is obtained from Kδ,n−δ by adding some edges inside the partition class of size δ. As
with Theorem 1.4 part 1 we begin with the inequality and discuss cases of equality at the
end.

By Corollary 2.2 it is enough to consider t = 2δ + 1. We prove P(n, δ, 2δ + 1) by
induction on n. For n < 3δ + 1 the result is trivial, since in this range all G ∈ G(n, δ)

have it (G) = 0. It is also trivial for n = 3δ + 1, since the only graphs G in G(n, δ) with
it (G) > 0 in this case are those that are obtained from Kδ,n−δ by the addition of some
edges inside the partition class of size δ, and all such G have it (G) = 1 = it (Kδ,n−δ ). So
from now on we assume n ≥ 3δ + 2 and that P(m, δ, 2δ + 1) is true for all m < n, and
we seek to establish P(n, δ, 2δ + 1).

By Lemmas 2.3 and 2.4 we may restrict attention to G that are min-critical. To allow
the induction to proceed, we need to show that the number of ordered independent sets
of size 2δ + 1 in G is at most (n − δ)2δ+1.

We do so by constructing an ordered independent set (v1, . . . , v2δ+1) sequentially, at
each step keeping track of how many choices there are for the next vertex. We break
the count into cases, according to whether v1 comes from V>δ or V=δ . In the first case
(v1 ∈ V>δ) there are at most

h(n − (δ + 2))(n − (δ + 3)) · · · (n − (3δ + 1)) = h

n

(
n(n − (δ + 2))2δ

)

<
h

n
(n − δ)2δ+1 (5)

ordered independent sets of size 2δ + 1 (recall |V>δ| = h), since once v1 has been chosen
there are at most n − (δ + 2) choices for v2, then at most n − (δ + 3) choices for v3, and
so on.

In the second case (v1 ∈ V=δ) there are, by the same reasoning, at most

�(n − (δ + 1))(n − (δ + 2)) · · · (n − 2δ)

choices for the ordered independent set (v1, . . . , vδ+1) (recall |V=δ| = �). The key ob-
servation now is that since G is vertex-min-critical there can be at most δ − 1 vertices
distinct from v1 with the same neighborhood as v1. It follows that one of v2 through vδ+1

has a neighbor w outside of N(v1). Since w cannot be included in the independent set,
there are at most

(n − (2δ + 2))(n − (2δ + 3)) · · · (n − (3δ + 1))

choices for (vδ+2, . . . , v2δ+1). Combining these bounds, there are at most

�

n

(
n
(n − (δ + 1))2δ+1

n − (2δ + 1)

)
<

�

n
(n − δ)2δ+1
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ordered independent sets of size 2δ + 1 that begin with a vertex from V=δ . Combining
with (5) we get i2δ+1(G) < (n − δ)2δ+1/(2δ + 1)!, as required.

This completes the proof that it (G) ≤ it (Kδ,n−δ ) for all t ≥ 2δ + 1 and G ∈ G(n, δ).
We now turn to considering the cases where equality holds in the range n ≥ 3δ + 1 and
2δ + 1 ≤ t ≤ n − δ. For t = 2δ + 1 and n = 3δ + 1, we clearly have equality iff G is
obtained from Kδ,2δ+1 by adding some edges inside the partition class of size δ. For
larger n, we prove by induction that equality can be achieved only for a graph of this
form. If a graph G is not edge-min-critical, we delete edges until we obtain a graph G′

that is edge-min-critical, using Lemma 2.4 to get it (G) ≤ it (G′). If G′ is min-critical,
then the discussion in this section shows that we cannot achieve equality. If G′ is not
vertex-min-critical, Lemma 2.3 and our induction hypothesis shows that we only achieve
equality for G′ if there is v ∈ V (G′) with G′ − v obtained from Kδ,n−δ−1 by adding some
edges inside the partition class of size δ, G′ − v − N(v) empty, and d(v) = δ. First, notice
that the cases where G′ − v 
= Kδ,n−δ−1 imply that G′ is not edge-min-critical, so in fact
equality can only occur when G′ − v = Kδ,n−δ−1. Since d(v) = δ the neighborhood of v
cannot include all of the partition class of size n − 1 − δ. If it fails to include a vertex of
the partition class of size δ, there must be an edge in G − v − N(v); so in fact, N(v) is
exactly the partition class of size δ and G′ = Kδ,n−δ . From here it is evident that equality
can only occur for G obtained from Kδ,n−δ by adding some edges inside the partition
class of size δ.

Now for each fixed n ≥ 3δ + 1, we conclude from Lemma 2.1 that for 2δ + 1 ≤ t ≤
n − δ we cannot have equality unless G is obtained from Kδ,n−δ by adding some edges
inside the partition class of size δ; and since the equality is trivial in these cases, the proof
is complete.

The ideas introduced here to bound the number of ordered independent sets in a min-
critical graph can be modified to give a result that covers a slightly larger range of t, at
the expense of requiring n to be a little larger. Specifically we have the following:

Lemma 4.1. For all δ ≥ 3, t ≥ δ + 1, n ≥ 3.2δ and vertex-min-critical G ∈ G(n, δ),
we have it (G) < it (Kδ,n−δ ). For δ = 3 and t = 4 we get the same conclusion for vertex-
min-critical G ∈ G(n, 3) with n ≥ 8.

Remark. The constant 3.2 has not been optimized here, but rather chosen for conve-
nience.

Proof. By Lemma 2.1 it is enough to consider t = δ + 1. The argument breaks into
two cases, depending on whether G has at most δ − 2 vertices with degree larger than m (a
parameter to be specified later), or at least δ − 1. The intuition is that in the former case,
after an initial vertex v has been chosen for an ordered independent set, many choices
for the second vertex should have at least two neighbors outside of N(v), which reduces
subsequent options, whereas in the latter case, an initial choice of one of the at least δ − 1
vertices with large degree should lead to few ordered independent sets.

First suppose that G has at most δ − 2 vertices with degree larger than m. Just as in
(5), a simple upper bound on the number of ordered independent sets of size t whose first
vertex is in V>δ is

h

n
(n(n − (δ + 2))(n − (δ + 3)) · · · (n − (2δ + 1))) <

h

n
(n − δ)δ+1. (6)
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There are � choices for the first vertex v of an ordered independent set that begins with
a vertex from V=δ . For each such v, we consider the number of extensions to an ordered
independent set of size δ + 1. This is at most

x(n − (δ + 2))δ−1 + y(n − (δ + 3))δ−1 + z(n − (δ + 4))δ−1 (7)

where x is the number of vertices in V (G) \ ({v} ∪ N(v)) that have no neighbors outside
N(v), y is the number with one neighbor outside N(v), and z is the number with at
least 2 neighbors outside N(v). Note that x + y + z = n − δ − 1, and that by vertex-min-
criticality x ≤ δ − 1.

Let u1 and u2 be the two lowest degree neighbors of v. By vertex-min-criticality and
our assumption on the number of vertices with degree greater than m, the sum of the
degrees of u1 and u2 is at most δ + m. Each vertex counted by y is adjacent to either u1

or u2, so counting edges incident to u1 and u2 there are at most m + δ − 2x − 2 such
vertices.

For fixed x we obtain an upper bound on (7) by taking y as large as possible, so we
should take y = m + δ − 2x − 2 and z = n − m − 2δ + x + 1. With these choices of y
and z, a little calculus shows that we obtain an upper bound by taking x as large as
possible, that is, x = δ − 1. This leads to an upper bound on the number of ordered
independent sets of size t whose first vertex is in V=δ of

�
(
(δ − 1)(n − (δ + 2))δ−1 + (m − δ)(n − (δ + 3))δ−1

+(n − m − δ)(n − (δ + 4))δ−1
)
. (8)

Combining with (6) we see that we are done (for the case G has at most δ − 2 vertices with
degree larger than m) as long as we can show that (8) is strictly less than �(n − δ)δ+1/n,
or equivalently that

n(δ − 1)(n − (δ + 2))(n − (δ + 3))+
n(m − δ)(n − (δ + 3))(n − (2δ + 1))+
n(n − m − δ)(n − (2δ + 1))(n − (2δ + 2))

< (n − δ)4 . (9)

We will return to this presently; but first we consider the case where G has at least δ − 1
vertices with degree larger than m. An ordered independent set of size δ + 1 in this case
either begins with one of δ − 1 vertices of largest degree, in which case there are strictly
fewer than (n − m − 1)δ extensions, or it begins with one of the remaining n − δ + 1
vertices. For each such vertex v in this second case, the second vertex chosen is either
one of the k = k(v) ≤ δ − 1 vertices that have the same neighborhood as v, in which
case there are at most (n − (δ + 2))δ−1 extensions, or it is one of the n − d(v) − 1 − k
vertices that have a neighbor that is not a neighbor of v, in which case there are at most
(n − (δ + 3))δ−1 extensions. We get an upper bound on the total number of extensions in
this second case (starting with a vertex not among the δ − 1 of largest degree) by taking
k as large as possible and d(v) as small as possible; this leads to a strict upper bound
on the number of ordered independent sets of size δ + 1 in the case G has at least δ − 1
vertices with degree larger than m of

(δ − 1) (n − m − 1)δ + (n − δ + 1)
(
(δ − 1)(n − (δ + 2))δ−1

+ (n − 2δ)(n − (δ + 3))δ−1) .
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We wish to show that this is at most (n − δ)δ+1. As long as m ≥ δ we have n − m − i ≤
n − δ − i, and so what we want is implied by

(δ − 1)(n − m − 1)(n − m − 2)+
(n − δ + 1)(δ − 1)(n − (δ + 2))+
(n − δ + 1)(n − 2δ)(n − (2δ + 1))

≤ (n − δ)3. (10)

Setting m = n/2, we find that for δ ≥ 3, both (9) and (10) hold for all n ≥ 3.2δ. Indeed,
in both cases at n = 3.2δ the right-hand side minus the left-hand side is a polynomial in
δ (a quartic in the first case and a cubic in the second) that is easily seen to be positive
for all δ ≥ 3; and in both cases we can check that for each fixed δ ≥ 3, when viewed as
a function of n the right-hand side minus the left-hand side has positive derivative for all
n ≥ 3.2δ. This completes the proof of the first statement. It is an easy check that both (9)
and (10) hold for all n ≥ 8 in the case δ = 3, completing the proof of the lemma. �

5. PROOF OF THEOREM 1.4, PART 2 (δ = 3)

Recall that we are trying to show that for δ = 3, t ≥ 3 and G ∈ G(n, 3), we have it (G) ≤
it (K3,n−3), and that for n ≥ 6 and t = 3 we have equality iff G = K3,n−3, while for n ≥ 7
and 4 ≤ t ≤ n − 3 we have equality iff G is obtained from K3,n−3 by adding some edges
inside the partition class of size 3.

For t = 4 and n ≥ 7 we prove the result (including the characterization of uniqueness)
by induction on n, with the base case n = 7 trivial. For n ≥ 8, Lemma 4.1 gives strict
inequality for all vertex-min-critical G, so we may assume that we are working with a G
that is not vertex-min-critical. Lemma 2.3 now gives the inequality i4(G) ≤ i4(K3,n−3),
and the characterization of cases of equality goes through exactly as it did for Theorem
1.4 parts 1 and 3. The result for larger t (including the characterization of uniqueness)
now follows from Lemma 2.1.

For t = 3, we also argue by induction on n, with the base case n = 6 trivial. For
n ≥ 7, if G is not vertex-min-critical then the inequality i3(G) ≤ i3(K3,n−3) follows from
Lemma 2.3, and the fact that there is equality in this case only for G = K3,n−3 follows
exactly as it did in the proofs of Theorem 1.4 parts 1 and 3. So we may assume that G
is vertex-min-critical. We will also assume that G is edge-min-critical (this assumption
is justified because in what follows we will show i3(G) < i3(K3,n−3), and restoring the
edges removed to achieve edge-min-criticality maintains the strictness of the inequality).
Our study of min-critical 3-regular graphs will be based on a case analysis that adds
ever more structure to the G under consideration. A useful preliminary observation is the
following.

Lemma 5.1. Fix δ = 3. If a min-critical graph G has a vertex w of degree n − 3 or
greater, then i3(G) < i3(K3,n−3).

Proof. If d(w) > n − 3 then there are no independent sets of size 3 containing
w, and by Theorem 1.4 part 1 the number of independent sets of size 3 in G − w
(a graph of minimum degree 2) is at most

(n−3
3

)
< i3(K3,n−3). If d(w) = n − 3 and the

two nonneighbors of w are adjacent, then we get the same bound. If they are not adjacent
(so there is one independent set of size 3 containing w) and G − w is not extremal among
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v

w1 with degree d > 3

w2 with degree 3 ≤ x ≤ d

w3 with degree 3

FIGURE 3. The generic situation from the end of Section 5.1 on.

minimum degree 2 graphs for the count of independent sets of size 3, then we also get the
same bound, since now i3(G − w) ≤ (n−3

3

) − 1. If G − w is extremal it is either K2,n−3 or
K′

2,n−3, and in either case w must be adjacent to everything in the partition class of size
n − 3 (to ensure that G has minimum degree 3), and then, since the nonneighbors of w
are nonadjacent, it must be that G = K3,n−3, a contradiction since we are assuming that
G is min-critical (recall that n ≥ 7 so n − 3 ≥ 4). �

5.1 Regular G

If G is 3-regular then we have i3(G) <
(n−3

3

) + 1. We see this by considering ordered
independent sets of size 3. Given an initial vertex v, we extend to an ordered independent
set of size 3 by adding ordered nonedges from V \ (N(v) ∪ {v}). Since G is 3-regular
there are 3n ordered edges in total, with at most 18 of them adjacent either to v or to
something in N(v). This means that the number of ordered independent sets of size 3 in
G is at most

n((n − 4)(n − 5) − (3n − 18)) < (n − 3)(n − 4)(n − 5) + 6

with the inequality valid as long as n ≥ 7. So from here on we may assume that G is not
3-regular, or equivalently that V>3 
= ∅.

Remark. The argument above generalizes to show that δ-regular graphs have at most(n−δ

3

) + (
δ

3

)
independent sets of size 3, with equality only possible when n = 2δ.

Let v ∈ V (G) have a neighbor in V>δ . By min-criticality d(v) = 3. Let w1, w2, and w3

be the neighbors of v, listed in decreasing order of degree, so d(w1) = d, d(w2) = x and
d(w3) = 3 satisfy 3 ≤ x ≤ d ≤ n − 4, the last inequality by Lemma 5.1 as well as d > 3
(see Fig. 3).

5.2 No edge between w3 and w2

We now proceed by a case analysis that depends on the value of x as well as on the set
of edges present among the wi’s. The first case we consider is w3 � w2. In this case, we
give upper bounds on the number of independent sets of size 3 that contain v and the
number that do not. There are

(n−4
2

) − |E(Y )| independent sets of size 3 that include v,
where Y = V \ (N(v) ∪ {v}). We bound |E(Y )| from below by putting a lower bound
on the sum of the degrees in Y and then subtracting off the number of edges from Y to
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{v} ∪ N(v). This gives

|E(Y )| ≥ 3(n − 4) − 2 − (d − 1) − (x − 1)

2
= 3(n − 4) − x − d

2
. (11)

To bound the number of independent sets of size 3 that do not include v, we begin by
forming G′ from G by deleting v and (to restore minimum degree 3) adding an edge
between w3 and w2 (we will later account for independent sets in G that contain both
w2 and w3). The number of independent sets of size 3 in G′ is, by induction, at most
i3(K3,n−4). But in fact, we may assume that the count is strictly smaller than this. To see
this, note that if we get exactly i3(K3,n−4), then by induction G′ = K3,n−4. For n = 7 this
forces G to have a vertex of degree 4 and so i3(G) < i3(K3,4) by Lemma 5.1. For n > 7,
w3 must be in the partition class of size n − 4 in G′ (to have degree 3) so since w2 ∼ w3

(in G′), w2 must be in the partition class of size 3. To avoid creating a vertex of degree
n − 3 in G, w1 must be in the partition class of size n − 4. But then all other vertices in
the partition class of size n − 4 only have neighbors of degree n − 4 (in G), contradicting
min-criticality.

So we may now assume that the number of independent sets of size 3 in G that do not
include v is at most (

n − 4

3

)
+ (n − x − 2), (12)

the extra n − x − 2 being an upper bound on the number of independent sets of size 3 in
G that include both w3 and w2. Combining (11) and (12) we find that in this case

i3(G) ≤
(

n − 4

2

)
− 3(n − 4) − x − d

2
+

(
n − 4

3

)
+ (n − x − 2). (13)

As long as d < n + x − 6 this is strictly smaller than i3(K3,n−3). Since x ≥ 3 and d <

n − 3, this completes the case w3 � w2.

5.3 Edge between w3 and w2, no edge between w3 and w1, degree

of w2 large

The next case we consider is w3 ∼ w2, w3 � w1, and x > 3. In this case, we can run an
almost identical argument to that of Section 5.2, this time adding the edge from w1 to w3

when counting the number of independent sets of size 3 that do not include v. We add 1
to the right-hand side of (11) (to account for the fact that there is now only one edge from
w3 to Y instead of 2, and only x − 2 edges from w2 to Y instead of x − 1) and replace (12)
with

(n−4
3

) + 1 + (n − d − 2) (the 1 since in this case we do not need strict inequality
in the induction step). Using x ≤ d in this latter expression, we get the same inequality
as (13).

5.4 Edge between w3 and w2, edge between w3 and w1, degree of

w2 large

Next, we consider the case w3 ∼ w2, w3 ∼ w1, and x > 3. Here, we must have w1 � w2,
since otherwise G would not be edge-min-critical. The situation is illustrated in Figure 4.
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w3 w2

v w1

FIGURE 4. The situation in Section 5.4.

To bound i3(G), we consider v and w3. Arguing as in Section 5.2 (around (11)), the
number of independent sets including one of v, w3 is at most

2

((
n − 4

2

)
− 3(n − 4) − (d − 2) − (x − 2)

2

)
.

To obtain an upper bound on the number of independent sets including neither v nor w3,
we delete both vertices, add an edge from w1 to w2 (to restore minimum degree 3) and
use induction to get a bound of(

n − 5

3

)
+ 1 + (n − d − 2)

(where n − d − 2 bounds from above the number of independent sets containing both w1

and w2). Since x ≤ n − 2 the sum of these two bounds is strictly smaller than i3(K3,n−3).

5.5 None of the above

If there is no v of degree 3 that puts us into one of the previous cases, then every v of
degree 3 that has a neighbor w1 of degree strictly greater than 3 may be assumed to have
two others of degree 3, w2 and w3 say, with vw2w3 a triangle (see Fig. 5).

Since every neighbor of a vertex of degree greater than 3 has degree exactly 3 (by
min-criticality) it follows that for every w1 of degree greater than 3, every neighbor of w1

is a vertex of a triangle all of whose vertices have degree 3. We claim that two of these

v

w1

w2

w3

FIGURE 5. The situation in Section 5.5.
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v

w1

w2

w3

x
y2

y3

FIGURE 6. The forced structure in Section 5.5, before modification.

triangles must be vertex disjoint. Indeed, if w1 has two neighbors a and b with a ∼ b then
the triangles associated with a and b must be the same, and by considering degrees we see
that the triangle associated with any other neighbor of w1 must be vertex disjoint from it.
If a and b are not adjacent and their associated triangles have no vertex in common, then
we are done; but if they have a vertex in common then (again by considering degrees) they
must have two vertices in common, and the triangle associated with any other neighbor
of w1 must be vertex disjoint from both.

By suitable relabeling, we may therefore assume that G has distinct vertices w1 (of
degree greater than 3) and x, y2, y3, v, w2, and w3 (all of degree 3), with x and v adjacent
to w1, and with xy2y3 and vw2w3 forming triangles (see Fig. 6). By considering degrees,
we may also assume that the wi’s and yi’s are ordered so that wi � yi for i = 2, 3.

From G we create G′ by removing the edges w2w3 and y2y3, and adding the edges w2y2

and w3y3 (see Fig. 7). We will argue that i3(G) ≤ i3(G′); but then by the argument of
Section 5.2 we have i3(G′) < i3(K3,n−3), and the proof will be complete.

Independent sets of size 3 in G partition into Iw2y2 (those containing both w2 and y2,
and so neither of y3, w3), Iw3y3 (containing both w3 and y3), and Irest, the rest. Independent
sets of size 3 in G′ partition into I′

w2w3
, I′

y2y3
, and I′

rest. We have |Irest| = |I′
rest| (in fact

Irest = I′
rest). We will show i3(G) ≤ i3(G′) by exhibiting an injection from Iw2y2 into I′

w2w3

and one from Iw3y3 into I′
y2y3

.
If it happens that for every independent set {w2, y2, a} in G, the set {w2, w3, a} is also

an independent set in G′, then we have a simple injection from Iw2y2 into I′
w2w3

. There is
only one way it can happen that {w2, y2, a′} is an independent set in G but {w2, w3, a′}
is not one in G′; this is when a′ is the neighbor of w3 that is not v or w2. If {w2, y2, a′}
is indeed an independent set in G in this case, then letting b′ be the neighbor of y2 that
is not x or y3, we find that {w2, w3, b′} is an independent set in G′, but {w2, y2, b′} is not
one in G. So in this case, we get an injection from Iw2y2 into I′

w2w3
by sending {w2, y2, a}

to {w2, w3, a} for all a 
= a′, and sending {w2, y2, a′} to {w2, w3, b′}. The injection from
Iw3y3 into I′

y2y3
is almost identical and we omit the details.
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FIGURE 7. The forced structure in Section 5.5, after modification (i.e. in G′).

6. CONCLUDING REMARKS

There now seems to be ample evidence to extend Conjecture 1.2 as follows.

Conjecture 6.1. For each δ ≥ 1, n ≥ 2δ, t ≥ 3 and G ∈ G(n, δ), we have it (G) ≤
it (Kδ,n−δ ).

Throughout we have considered n ≥ 2δ, that is, δ small compared to n. It is natural to
ask what happens in the complementary range δ > n/2. In the range n ≥ 2δ we (conjec-
turally) maximize the count of independent sets by extracting as large an independent set
as possible (one of size n − δ). In the range δ > n/2 this is still the largest independent
set size, but now it is possible to have many disjoint independent sets of this size. The
following conjecture seems quite reasonable.

Conjecture 6.2. For δ ≥ 1, n ≥ δ + 1 and G ∈ G(n, δ), we have i(G) ≤
i(Kn−δ,n−δ,...,n−δ,x), where 0 ≤ x < n − δ satisfies n ≡ x (mod n − δ).

Question 6.3. For δ ≥ 1, n ≥ δ + 1 and t ≥ 3, which G ∈ G(n, δ) maximizes it (G)?

When n − δ divides n (that is, x = 0), both Conjecture 6.2 and Question 6.3 turn
out to be easy; in this case (2) gives that for all 1 ≤ t ≤ n − δ and all G ∈ G(n, δ) we
have it (G) ≤ it (Kn−δ,n−δ,...,n−δ ) and so also i(G) ≤ i(Kn−δ,n−δ,...,n−δ ) (the case n = 2δ

was observed in [1]). The problem seems considerably more delicate when x 
= 0.
Lemmas 2.3 and 2.4 allow us in the present article to focus attention on the class of edge-

min-critical and vertex-min-critical graphs. Lemma 3.2 gives us a good understanding
of min-critical graphs in the case δ = 2, and the bulk of Section 5 concerns structural
properties of min-critical graphs for δ = 3. It is clear that approaching even the case
δ = 4 by similar arguments would be considerable work. Any answer to the following
question would help significantly.

Question 6.4. For δ ≥ 4, what can be said about the structure of edge-min-critical and
vertex-min-critical graphs?
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Notes added in proof: While this article was under review, we learned that Cutler and
Radcliffe [6] have proved Conjecture 6.2 (although their methods do not seem adaptable
to Question 6.3), and we also learned that McDiarmid and Law [12] have made progress
on Conjecture 6.1 that overlaps our Theorem 1.4; specifically, they prove Conjecture 6.1
for all δ = o(n1/3), t ≥ 3 and n sufficiently large.
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