
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{D}\mathrm{I}\mathrm{S}\mathrm{C}\mathrm{R}\mathrm{E}\mathrm{T}\mathrm{E} \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2024 \mathrm{A}\mathrm{b}\mathrm{d}\mathrm{u}\mathrm{l} \mathrm{B}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{t}
\mathrm{V}\mathrm{o}\mathrm{l}. 38, \mathrm{N}\mathrm{o}. 3, \mathrm{p}\mathrm{p}. 2260--2288

GENERALIZED TUZA'S CONJECTURE FOR RANDOM
HYPERGRAPHS\ast 

ABDUL BASIT\dagger AND DAVID GALVIN\ddagger 

Abstract. A celebrated conjecture of Tuza states that in any finite graph the minimum size of a
cover of triangles by edges is at most twice the maximum size of a set of edge-disjoint triangles. For
an r-uniform hypergraph (r-graph) G, let \tau (G) be the minimum size of a cover of edges by (r - 1)-
sets of vertices, and let \nu (G) be the maximum size of a set of edges pairwise intersecting in fewer
than r - 1 vertices. Aharoni and Zerbib proposed the following generalization of Tuza's conjecture:
For any r-graph G, \tau (G)/\nu (G) \leq \lceil (r+ 1)/2\rceil . Let Hr(n,p) be the uniformly random r-graph on
n vertices. We show that for r \in \{ 3,4,5\} and any p = p(n), Hr(n,p) satisfies the Aharoni--Zerbib
conjecture with high probability (w.h.p.), i.e., with probability approaching 1 as n \rightarrow \infty . We also
show that there is a C < 1 such that for any r \geq 6 and any p= p(n), \tau (Hr(n,p))/\nu (Hr(n,p))\leq Cr
w.h.p. Furthermore, we may take C < 1/2 + \varepsilon , for any \varepsilon > 0, by restricting to sufficiently large r
(depending on \varepsilon ).

Key words. Tuza's conjecture, random hypergraph, matching and covering
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1. Introduction. For a finite graph G, \nu t(G), the triangle matching number, is
the maximum size of a set of edge-disjoint triangles in G, and \tau t(G), the triangle cover
number, is the minimum size of a set of edges C such that every triangle in G contains
a member of C. It is immediate from the definitions that \nu t(G)\leq \tau t(G)\leq 3\nu t(G). A
celebrated conjecture of Tuza states the following.

Conjecture 1.1 (Tuza [21]). For any graph G, \tau t(G)\leq 2\nu t(G).

If true, Conjecture 1.1 would be sharp, as is seen by taking G to be K4 or K5

(or a disjoint union of these), and is close to sharp in many other cases (see [3, 12]).
The best known general bound is \tau t(G) \leq 66

23\nu t(G), due to Haxell [11]. In a recent
development, Kahn and Park [14] and (independently) Bennett, Cushman, and Dudek
[5] show that Tuza's conjecture is true for the Erd\H os--R\'enyi random graph G(n,p).

Theorem 1.2 (see [14, 5]). For any p = p(n), \tau t(G(n,p)) \leq 2\nu t(G(n,p)) with
high probability (w.h.p.).1

In this paper, we are interested in a generalization of Conjecture 1.1 to r-uniform
hypergraphs, which was proposed by Aharoni and Zerbib [1] (see Conjecture 1.4).
We show that for small r, the uniformly random r-graph satisfies the Aharoni--Zerbib
conjecture w.h.p., and we obtain nontrivial bounds for larger r.

1.1. Notation and definitions. A hypergraph G is a collection of distinct
subsets (referred to as edges) of a set V (G) (the vertex set). Hence, | G| is the
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2261

number of edges of the hypergraph G. If all edges have cardinality r, then G is
r-uniform. Throughout, we restrict our attention to r-uniform hypergraphs (or r-
graphs for short). For a set \sigma \subseteq V (G) with | \sigma | = r - 1, the neighborhood of \sigma , NG(\sigma ),
is the set of v \in V (G) such that \sigma \cup \{ v\} \in E(G). The co-degree of \sigma , denoted by
dG(\sigma ), is the size of its neighborhood. When G is clear from the context, we omit the
subscript and write N(\sigma ) and d(\sigma ). We define D(G) to be the collection of (r - 1)-sets
that have nonzero co-degree, i.e., D(G) = \{ \sigma \in 

\bigl( 
V (G)
r - 1

\bigr) 
: d(\sigma )> 0\} . Equivalently, D(G)

is the union over edges e of the (r - 1)-subsets of e.
A matching in an r-graph G is a set of pairwise disjoint edges, and the matching

number \nu (G) is the maximum size of a matching in G. A cover of G is a set of vertices
intersecting all edges of G, and the covering number \tau (G) is the minimum size of a
cover. Clearly we have

\nu (G)\leq \tau (G)\leq r\nu (G).

More generally, an m-matching M in G is a set of edges such that any two edges inM
intersect in fewer than m vertices, and an m-cover C of G is a collection of m-sets of
vertices such that every edge in G contains at least one member of C. So a 1-matching
is a matching, and a 1-cover is a cover. Them-matching number, denoted by \nu (m)(H),
is the maximum size of an m-matching in H, and the m-covering number, denoted
by \tau (m)(H), is the minimum size of an m-cover of H.

For a set X and a natural number k we use
\bigl( 
X
k

\bigr) 
for the set of k-sets of X. Let

G(m) be the hypergraph whose vertex set is
\bigl( 
V (G)
m

\bigr) 
and whose edge set is

\bigl\{ \bigl( 
e
m

\bigr) 
: e\in G

\bigr\} 
.

Note that M \subseteq G is an m-matching in G iff
\Bigl\{ \bigl( 

f
m

\bigr) 
: f \in M

\Bigr\} 
is a matching in G(m),

and a collection of m-sets C is an m-cover of G iff C is a cover of G(m). That is,
\nu (m)(G) = \nu (G(m)) and \tau (m)(G) = \tau (G(m)), implying

\nu (m)(G)\leq \tau (m)(G)\leq 
\biggl( 
r

m

\biggr) 
\nu (m)(G).

Given a (2-)graph G, let T (G) be the 3-graph with vertex set V (G) whose edges
are triples of vertices forming triangles in G. Conjecture 1.1 can be rephrased as
follows: for any graph G, \tau (2)(T (G))\leq 2\nu (2)(T (G)). Aharoni and Zerbib conjectured
that the same inequality holds for any 3-graph G.

Conjecture 1.3 (Aharoni and Zerbib [1, Conjecture 1.2]). For any 3-graph G,

\tau (2)(G)\leq 2\nu (2)(G).

They also conjectured that a similar phenomenon holds much more generally.

Conjecture 1.4 (Aharoni and Zerbib [1, Conjecture 1.10]). For any r-graph G,

\tau (r - 1)(G)\leq 
\biggl\lceil 
r+ 1

2

\biggr\rceil 
\nu (r - 1)(G).

If true, Conjecture 1.4 would be tight; for every r, there exist r-graphs G with
\nu (r - 1)(G) = 1 and \tau (r - 1)(G) =

\bigl\lceil 
r+1
2

\bigr\rceil 
. The complete r-graph on r+ 1 vertices is one

such example; see [1, Proposition 3.7] for details. We refer the reader to [4, 10] for
partial results on Conjecture 1.4 and its fractional variants.

1.2. Results and organization. We study Conjecture 1.4 for random hyper-
graphs. Specifically, let Hr(n,p) be the r-graph on a set V of n labelled vertices,
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2262 ABDUL BASIT AND DAVID GALVIN

where each e\in 
\bigl( 
V
r

\bigr) 
is an edge with probability p= p(n), independent of other e\prime \in 

\bigl( 
V
r

\bigr) 
(so H2(n,p) is the Erd\H os--R\'enyi, or Gilbert, random graph G(n,p)). For 3 \leq r \leq 5
and with G=Hr(n,p), we verify Conjecture 1.4.

Theorem 1.5. For any 3\leq r\leq 5 and any p= p(n),

\tau (r - 1) (Hr(n,p))\leq 
\biggl\lceil 
r+ 1

2

\biggr\rceil 
\nu (r - 1) (Hr(n,p)) w.h.p.

Remark 1.6. In fact, our proof of Theorem 1.5 shows, numerically, that the truth is
strictly less than

\bigl\lceil 
r+1
2

\bigr\rceil 
. See Appendix A for details. This mirrors the situation for the

original Tuza conjecture, where there is C < 2 such that for all p, \tau (Gn,p)\leq C\nu (Gn,p)
w.h.p. (see [14]).

We also show that our methods can be extended for larger r, to give a nontrivial
upper bound on \tau (r - 1) (Hr(n,p))/\nu 

(r - 1) (Hr(n,p)) (w.h.p.). Unfortunately, while we
believe Conjecture 1.4 to be true, our methods do not seem sufficient to obtain it.

Theorem 1.7. There exists an absolute constant C < 1 such that, for any r \geq 6
and any p= p(n),

\tau (r - 1) (Hr(n,p))\leq Cr\nu (r - 1) (Hr(n,p)) w.h.p.(1.1)

Furthermore, for every \varepsilon > 0, there is r0 = r0(\varepsilon ) such that, for all r\geq r0 and p= p(n),

\tau (r - 1) (Hr(n,p))\leq 
\biggl( 
1

2
+ \varepsilon 

\biggr) 
r\nu (r - 1) (Hr(n,p)) w.h.p.(1.2)

Remark 1.8. For r = 6, we show C may be taken to be 0.781; for 7 \leq r \leq 270,
C may be taken to be 0.938; and for r \geq 271, C may be taken to be 0.747. With
more involved analysis these numbers could certainly be improved; for example, for
r \geq 1000, C can be taken to be 0.6964, and by appeal to a numerical optimization
tool such as Mathematica we can obtain an improved bound for any particular r.
These calculations suggest, for example, that for r \geq 84, we may take C < 0.60, and
verify that for r \geq 12, we may take C < 0.70. Since it is very unlikely that our
present methods are optimal, we forgo this more detailed analysis and just make a
short report on the process in Appendix D.

Let d= d(r,n, p) = (n - (r - 1))p be the expected co-degree of an (r - 1)-set of ver-
tices of Hr(n,p). We consider three ranges of d, each requiring different approaches.
Our methods are inspired by those of Kahn and Park [14], and some of the follow-
ing results are immediate generalizations of the results therein (Theorems 1.9, 1.10,
and 1.12). To keep our paper self-contained, we give complete proofs. Our main
contribution consists of obtaining bounds, for r > 3, on both \tau (r - 1)(Hr(n,p)) and
\tau (r - 1)(G) for arbitrary r-graph G (Theorems 1.11, 1.13, and 1.14).

That \tau (r - 1)(Hr(n,p)) \geq \nu (r - 1)(Hr(n,p)) is trivial. For small d, we obtain the
following optimal bound.

Theorem 1.9. For every r\geq 3, if d\leq 1/(r - 1), then w.h.p.

\nu (r - 1)(Hr(n,p))\sim \tau (r - 1)(Hr(n,p)).

Note that throughout the paper, we use the standard Bachmann--Landau notation
to describe the limiting behavior of functions as n \rightarrow \infty . We also write A \sim B if
A/B\rightarrow 1 as n\rightarrow \infty , and A\lesssim B if A\leq (1 - o(1))B as n\rightarrow \infty .

For large d, we use a variant of Pippenger's theorem [13] to show that there is an
(r - 1)-matching that contains almost every (r - 1)-set, implying the following.
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2263

Theorem 1.10. For every r \geq 3, if d = \omega (1), then w.h.p. \nu (r - 1)(Hr(n,p)) \sim 
1
r

\bigl( 
n

r - 1

\bigr) 
.

To bound \tau (r - 1), we show that known constructions for the hypergraph Tur\'an
problem [15] can be adapted to obtain (r  - 1)-covers for arbitrary r-graphs. Recall
from earlier that D(G) is the union over edges e of G of the (r - 1)-subsets of e.

Theorem 1.11. Let r\geq 3 and l\leq r/2. Then, for any r-graph G,

\tau (r - 1)(G)\leq | D(G)| 
2

\Biggl[ 
1

l
+

\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
.

Additionally,

\tau (r - 1)(G)\leq 

\left\{     
1
2 | D(G)| if r= 3,
4
9 | D(G)| if r= 4,
5
16 | D(G)| if r= 5.

Theorems 1.10 and 1.11 together almost immediately imply Theorems 1.5 and 1.7
for d= \omega (1). In fact, for large r, we obtain the significantly stronger bound

\tau (r - 1)(Hr(n,p))\leq (1 + o(1)) ln r \nu (r - 1)(Hr(n,p)) w.h.p.

The details are given in Appendices A (Theorem 1.5 for d = \omega (1)), and B.2
(Theorem 1.7 for d= \omega (1)).

Finally, for d = \Theta (1), extending ideas of Kahn and Park [14], we obtain the
following.

Theorem 1.12. For every r\geq 3, if d=\Theta (1), then w.h.p.

\nu (r - 1)(Hr(n,p))> (1 + o(1))
1

r
\alpha r(d)

\biggl( 
n

r - 1

\biggr) 
,

where

\alpha r(d) = 1 - 
\biggl( 

1

(r - 1)d+ 1

\biggr) 1/(r - 1)

.

Theorem 1.13. Let r \in \{ 3,4,5\} . If d=\Theta (1), then w.h.p.

\tau (r - 1)(Hr(n,p))\leq (1 + o(1))\beta r(d)

\biggl( 
n

r - 1

\biggr) 
,

where

\beta r(d) =

\left\{     
1
2

\bigl[ 
1 - exp

\bigl( 
 - d

2

\bigl( 
1 + e - d

\bigr) \bigr) \bigr] 
if r= 3,

4
9

\bigl[ 
1 - exp

\bigl( 
 - d

3

\bigl( 
2 + e - 2d

\bigr) \bigr) \bigr] 
if r= 4,

5
16

\bigl[ 
1 - exp

\bigl( 
 - d

2

\bigl( 
1 + e - d

\bigr) \bigr) \bigr] 
if r= 5.

Theorem 1.5 now follows from Theorems 1.12 and 1.13 combined with the fact that
\beta r(d)/(\alpha r(d)/r) \leq \lceil (r+ 1)/2\rceil (see Appendix A). For larger r, we use Theorem 1.12
and the simpler bound from Theorem 1.11, which is sufficient to obtain Theorem 1.7
(see Appendix B.3). This comes at the cost of a worse constant. However, we show
that the methods used to obtain Theorem 1.13 can be extended to larger r.

For a uniform random partition of an (r - 1)-set into l blocks (i.e., each element
is placed into one of the l blocks, independent of other elements), let \zeta 1 := \zeta 1(r, l) be
the probability that there are least two elements in each block, and let \zeta 2 = \zeta 2(r, l) =
1 - \zeta 1(r, l). We obtain the following.
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2264 ABDUL BASIT AND DAVID GALVIN

Theorem 1.14. Let r\geq 3 and l\leq r/2. If d=\Theta (1), then w.h.p.

\tau (r - 1)(Hr(n,p))< (1 + o(1))

\biggl( 
n

r - 1

\biggr) 
\psi r,l(d),

where

\psi r,l(d) =
\zeta 1
2l

\biggl( 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr) 
+

\Biggl( 
\zeta 2
l
+

\biggl( 
1 - 1

l

\biggr) r - 1
\Biggr) \bigl( 

1 - e - d
\bigr) 
.

In Appendix C, we use Theorem 1.14 to obtain a better bound for r= 6. Finally,
in Appendix D, we give computational evidence that Theorem 1.14 implies better
bounds for all r\geq 7.

Conventions. For the rest of this paper, unless otherwise noted, we will treat r
as a fixed constant. We write \nu (G) and \tau (G) for \nu (r - 1)(G) and \tau (r - 1)(G); when the
r-graph G is clear from the context we simply write \tau and \nu . We fix H := Hr(n,p)
to be the random r-graph and use G for a general r-graph. Let d= (n - (r - 1))p be
the expected co-degree of an (r - 1)-set of vertices of H.

Outline. In section 2, we collect some standard probabilistic tools that we use
throughout. Section 3 introduces breadth-first trees and gives a coupling which is
central to the proofs of Theorems 1.9 and 1.12--1.14. Sections 4, 5, and 6 give the
proofs of Theorems 1.9, 1.10, and 1.12, respectively. Section 7 is devoted to the proofs
of Theorems 1.11, 1.13, and 1.14. As noted above, that Theorems 1.9--1.14 imply
Theorem 1.5 and Theorem 1.7 is shown in Appendices A--C. In Appendix D, based
on computational evidence, we present some better bounds that could be obtained
with a more involved analysis.

2. Probabilistic tools. We need the following standard concentration facts.
The first is the Chernoff--Hoeffding inequality (see, e.g., [7, Theorem 21.6]).

Theorem 2.1. If X is binomial with \BbbE X = \mu , then for all t\geq 0

Pr(X \geq \mu + t)\leq exp[ - t2/(2(\mu + t/3))],

and for t\leq \mu ,

Pr(X \leq \mu  - t)\leq exp[ - t2/(2(\mu  - t/3))].

The second fact is McDiarmid's inequality, or the Hoeffding--Azuma inequality
(see, e.g., [17, Lemma 1.2]).

Theorem 2.2. Let X1, . . . ,Xl be independent random variables, with Xk \in Ak

for each k. Suppose the (measurable) function f :
\prod 
Ak \rightarrow \BbbR satisfies, for each k,

| f(X) - f(X \prime )| \leq ck(2.1)

whenever X = (Xi : i\in [l]) and X \prime = (X \prime 
i : i\in [l]) differ only in their kth coordinates.

Then, for any t > 0,

Pr(| f  - \BbbE f | \geq t)\leq 2exp
\Bigl[ 
 - 2t2/

\sum 
c2k

\Bigr] 
.

We use Theorem 2.2 with l =
\bigl( 
n
r

\bigr) 
and Xi = 1ei\in H , where \{ ei : i \in [l]\} =

\bigl( 
V (H)

r

\bigr) 
(i.e., X is the random hypergraph H). Then we have the following:

If f is Lipschitz (i.e., satisfies (2.1) with ck = 1) and(2.2)

\BbbE f = \omega (nr/2), then f \sim \BbbE f w.h.p.
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2265

We denote by \delta (X,Y ) the total variation distance between discrete random vari-
ables X and Y . That is, \delta (X,Y ) is half the \ell 1 distance between the distributions of X
and Y , and it is the minimum of P (X \not = Y ) under couplings of X and Y . We require
the following fact, which appears in [14].

Proposition 2.3. For n > 0 and c \geq  - n integers, p \in [0,1], X \sim Bin(n+ c, p),
and Y \sim Po(np),

\delta (X,Y )\leq | c| p+O(p).

Here Bin(\cdot , \cdot ) and Po(\cdot ) are the binomial and Poisson distributions, respectively.

3. Breadth-first trees. Throughout this section, we assume d= (n - (r - 1))p=
\Theta (1), i.e., p=\Theta (1)/n.

An r-graph T is a tree rooted at an (r - 1)-set \rho if it can be constructed iteratively
as follows: at the first step, add a new vertex v and the edge \{ v\} \cup \rho . At each
subsequent step, add a new vertex v\prime and an edge of the form \{ v\prime \} \cup \sigma , where \sigma is an
(r  - 1)-set contained in a previously added edge (i.e., \sigma \in D(T )). A tree is a path if
at each step in the construction (other than the first) the set \sigma contains the vertex
added at the previous step (so \sigma is a subset of the edge added at the previous step).
The length of the path is the number of steps in its iterative construction.

By an element of T we mean an element of T \cup V (T ) \cup D(T ), i.e., an edge of T ,
a vertex of T , or an (r - 1)-set with positive co-degree. Note that if T is a tree, then
there is a unique path between any two elements of T .

The base of an element a of T is the last (r  - 1)-set preceding a on the path to
the root. The parent of an element a is the last edge preceding a on the path to the
root. The children of an edge e are the (r - 1)-sets of e other than its base, the edges
that have a child (r - 1)-set of e as a base, and vertices of the form f \setminus \sigma where f is
a child edge of e and \sigma is the base of e.

The depth of an element a of T is the length of the path from a to \rho , and the
depth of the tree is the largest depth of an element of T .

Proposition 3.1. If T is a finite tree, then \tau (T ) = \nu (T ).

Proof. We prove the lemma by induction on | T | . Let t be the depth of T . The
statement is trivial when t \leq 1, so assume that t \geq 2. Let e be an edge of depth t,
and let f be the parent of e. Suppose \sigma and \gamma are the bases of e and f , respectively.

Let T0 be the set of edges with base \sigma . We decompose T \setminus (f \cup T0) into trees
T1, . . . , Tr - 1, where T1, . . . , Tr - 2 are trees of depth 1 rooted at (r  - 1)-sets (not in-
cluding \sigma and \gamma ) that are children of f and Tr - 1 is T \setminus 

\bigl( 
f \cup 

\bigcup r - 2
i=0 Ti

\bigr) 
. Note that if

s is an edge of Ti and t is an edge of Tj with i \not = j, then | s \cap t| < r  - 1. For every
1\leq i\leq r - 1, let Mi and Ci be a maximum matching and a maximum cover of Ti re-
spectively, and note that, by induction, | Mi| = | Ci| . Finally, since M = \{ e\} \cup 

\bigcup r - 1
i=1 Mi

and C = \{ \sigma \} \cup 
\bigcup r - 1

i=1 Ci are a matching and a cover, respectively, in T with | M | = | C| ,
the assertion follows.

For an r-graph G with distinguished (r - 1)-set \rho \subseteq V (G) and for \gamma \in \BbbN , let S\gamma (\rho )
be the subgraph of G consisting of the edges of G that lie on a path of length at most
\gamma rooted at \rho , and let S(\rho ) =

\bigcup 
\gamma S\gamma (\rho ).

We say G is connected iff there is a path between any two edges of G. A connected
component of G is a maximal connected subgraph of G and is trivial if it is a single
edge. For \sigma \in D(G), note that S(\sigma ) is the connected component containing \sigma .
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2266 ABDUL BASIT AND DAVID GALVIN

Proposition 3.2. Let H = Hr(n,p) and \gamma = o(logn/ log logn). Then, for any
(r - 1)-set \rho \subseteq V (G), the probability that S\gamma (\rho ) is not a tree is n - 1+o(1).

Proof. Suppose S := S\gamma (\rho ) is not a tree. Then there is a vertex v \in V (S), v /\in \rho ,
with the property that there are two distinct paths from \rho to v. Suppose that v is
such a vertex with smallest depth. These two paths may initially agree; say they both
start u1, u2, . . . , ut for some t \geq r  - 1, and one of the paths continues u

(1)
t+1, . . ., while

the other continues u
(2)
t+1, . . ., with u

(1)
t+1 \not = u

(2)
t+1.

By appropriately truncating both paths, we can assume that the sequences (u
(1)
t+1,

u
(1)
t+2, . . . , v) and (u

(2)
t+1, u

(2)
t+2, . . . , v) have nothing in common except v. If the first path

contains t(1) vertices and the second has t(2), then the union of the two paths is a
subhypergraph of H =Hr(n,p) with t

(1)+t(2) - t - 1 vertices and t(1)+t(2) - t - (r - 1)
edges. Noting that t(1) + t(2) \leq 2\gamma , the probability that H has a subhypergraph with
that many vertices and edges, including the vertices in \rho , is upper bounded by

\sum 
k\leq 2\gamma 

\biggl( 
n - r+ 1

k - r+ 1

\biggr) \biggl( \bigl( 
k
r

\bigr) 
k - r+ 2

\biggr) 
pk - r+2,(3.1)

where here k is the number of vertices. Using p = \Theta (1/n) and standard binomial
coefficient estimates, as long as \gamma = o(logn/ log logn) we have that the expression in
(3.1) is o(n - 1+o(1)).

Let T d
r be the (Galton--Watson-like, possibly infinite) random tree rooted at an

(r - 1)-set \rho generated as follows: At the first step, we let \rho give birth to Po(d) many
edges. At each subsequent step, each (r - 1)-set in D(T d

r ) generated at the previous
step gives birth to Po(d) many edges, independent of other (r  - 1)-sets. Since r is
always fixed, we write T d instead of T d

r .

Proposition 3.3. For the random tree T d

1. T d is finite with probability 1 iff d\leq 1/(r - 1),
2. the expected number of edges at depth i is ((r - 1)d)i/(r - 1).

Proof. We associate with T d the random (ordinary) tree U where V (U) =D(T )
and f is a child of e iff e is the base of f in T d. Then U is a Galton--Watson tree
where the number of children of each vertex has distribution L= (r - 1)Po(d). That
the Galton--Watson tree is finite iff \BbbE [L] \leq 1 (unless L \equiv 1), and that the number
of vertices at depth i is \BbbE [L]i are basic properties of Galton--Watson trees (see [16,
Propositions 5.4 and 5.5]). The claims follow from these properties.

The breadth-first tree. For \rho \in D(H) the breadth-first tree S\ast (\rho ) rooted at
\rho is obtained by processing (r  - 1)-sets in the order in which they enter the tree.
Specifically, let \prec be an arbitrary order on

\bigl( 
V (H)
r - 1

\bigr) 
, and set P0 = \{ \rho \} , E0 to be the set

of edges containing \rho , D0 =D(E0), and Q0 =D0 \setminus P0.
At step i \in \BbbN , the (r  - 1)-set \sigma i \in Qi - 1 is processed, producing a sequence

(Ei, Pi,Qi,Xi). We process (r - 1)-sets in Qi - 1 in the order in which they enter Qi - 1,
breaking ties according to the ordering \prec . Each Ei will be the set of edges of a tree,
with Di = D(Ei) = Pi \sqcup Qi and Xi = V \setminus V (Ei). Pi is the collection of (r  - 1)-sets
that have been processed, and the (r - 1)-sets in Qi are in queue, i.e., waiting to be
processed. We stop when Qi is empty, producing the tree S\ast (\rho ).

Processing an (r - 1)-set \sigma i \in Qi - 1 means that we produce Ei by adding to Ei - 1

all edges of the form \sigma i \cup \{ v\} , where v \in Xi - 1. We then set Pi = Pi - 1 \cup \{ \sigma i\} and set
Di,Qi,Xi as above.
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2267

Note that for each i, Ei is indeed a tree. This is clearly true for E0. That it is
true for Ei when i > 0 follows from the fact that if \sigma \in Qi, then it is in a unique edge
of Ei, and if \sigma \in Pi, i.e., \sigma has been processed, then N(\sigma )\cap Xi = \emptyset .

Let S\ast 
\gamma (\rho ) be the breath-first tree consisting of edges that lie on paths of length

at most \gamma rooted at \rho . The following is straightforward from the definitions.

Proposition 3.4. For any \gamma and \rho \in D(H), if S\gamma (\rho ) is a tree, then S\gamma (\rho ) =
S\ast 
\gamma (\rho ).

Proposition 3.5. For \gamma = o(logn/ log logn) and \rho \in D(H), we may couple S\ast 
\gamma (\rho )

and T d
\gamma so they are equal w.h.p.

Proof. We generate S\ast := S\ast (\rho ) and T d in parallel by exposing edges as needed.
When processing an (r - 1)-set \sigma in S\ast , we also specify the number of edges containing
\sigma in T d, coupling so these numbers agree as often as possible. If the numbers agree,
then we can couple so the trees agree as well. If at any step the trees do not agree,
we say the coupling has failed.

At the first step, we expose N(\rho ), specifying the edges that contain \rho . Note that
N(\rho ) has distribution Bin(n  - (r  - 1), p). By Proposition 2.3 on processing \rho the
probability that the coupling fails is bounded above by

\delta (Bin(n - (r - 1), p),Po(d)) =O(p).

Let Q = \{ | T d
\gamma | > \kappa \} with \kappa = n0.1. By Proposition 3.3 and Markov's inequality

P (Q) = o(1). At step i, we expose edges of the form \sigma i \cup \{ v\} where v \in Xi. The
distribution of the number of such edges is Bin(| Xi| , p). By Proposition 2.3, the
probability that the coupling fails is bounded above by

\delta (Bin(| Xi| , p),Po(d))\leq | (n - | Xi| )| p+O(p) =O(p| V (Ei)| ).

As long as | Vi| <\kappa , this probability is O(n - 0.9). Thus, the total probability that the
coupling fails is

P (Q) +O(p) + \kappa O(n - 0.9) = o(1).

Propositions 3.2, 3.4, and 3.5 together present the main point of this section.

Corollary 3.6. For \gamma = o(logn/ log logn) and \rho \in D(H), we may couple S\gamma (\rho )
and T d

\gamma so they are equal w.h.p.

4. Proof of Theorem 1.9. Recall that the goal here is to show that for ev-
ery r \geq 3, if d \leq 1/(r  - 1), then w.h.p. \nu (H) \sim \tau (H), where (again recall) H =
Hr(n,p) is the random r-graph on n vertices with edges selected independently with
probability p.

Assume first that d=\Omega (1) and that d\leq 1/(r - 1). For any \rho \in D(H), under the
coupling of section 3, w.h.p. S(\rho ) = T d. Indeed, with \gamma = o(logn/ log logn), we have
that S\gamma (\rho ) = T d

\gamma (by Corollary 3.6) and that T d is a finite tree (by Proposition 3.3),
each of which happens w.h.p. It follows that the expected number of (r  - 1)-sets
of V (H) in connected components that are not trees is o(nr - 1), so, by Markov's
inequality, the actual number is o(nr - 1) w.h.p.

Now note that \tau (H) =
\sum 

H\prime \tau (H \prime ) and \nu (H) =
\sum 

H\prime \nu (H \prime ), where H \prime ranges over
all connected components of H. By Proposition 3.1, we have

\tau (H) =
\sum 
H\prime \prime 

\tau (H \prime \prime ) + o(nr - 1) =
\sum 
H\prime \prime 

\nu (H \prime \prime ) + o(nr - 1) = \nu (H) + o(nr - 1),
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2268 ABDUL BASIT AND DAVID GALVIN

where H \prime \prime ranges over connected components that are trees. It suffices to show that
w.h.p. \nu (H) = \Omega (nr - 1) which, by (2.1), follows from the fact that \BbbE \nu (H) = \Omega (nr - 1).
Now \BbbE \nu (H) is at least the expected number of isolated edges which is\biggl( 

n

r

\biggr) 
p
\bigl( 
(1 - p)n - r

\bigr) r \geq \biggl( n
r

\biggr) 
p (1 - p)

rn
=\Omega (nr - 1).

Suppose now that d = o(1). Let X be the number of edges in H, X \prime be the
number of edges that share r  - 1 vertices with another edge, and Y be the number
of (r - 1)-sets that lie in exactly one edge. It suffices to show that w.h.p. X \prime = o(X).
Indeed, this gives \nu (H)\geq X + o(X), which combined with \nu (H)\leq \tau (H)\leq X implies
the assertion.

The expected number of pairs of edges that share a given (r - 1)-set is O(n2p2);
hence, the expected number of pairs of edges that share an (r - 1)-set is O(nr+1p2).
It follows by Markov's inequality that for p= o(n - (r+1)/2), w.h.p. X \prime = 0.

Otherwise, we have X \prime \leq rX  - Y . Now \BbbE X =
\bigl( 
n
r

\bigr) 
p\sim nrp

r! , and

\BbbE Y =

\biggl( 
n

r - 1

\biggr) 
(n - (r - 1))p(1 - p)n - r \sim nrp

(r - 1)!
\sim r\BbbE X.

This gives \BbbE X \prime \leq r\BbbE X  - \BbbE Y = o(\BbbE X), implying that w.h.p. X \prime = o(\BbbE X). But for
p = \omega (n - r) (recall that we are assuming p = \Omega (n - (r+1)/2)) w.h.p. X \sim \BbbE X, giving
X \prime = o(X) w.h.p.

5. Proof of Theorem 1.10. Recall that the goal here is to show that for every
r\geq 3, if d= \omega (1) (where d= (n - (r - 1))p is the expected number of edges containing

a given (r - 1)-set), then w.h.p. \nu (H)\sim 1
r

\bigl( 
n

r - 1

\bigr) 
\sim nr - 1

r! . That \nu \leq 1
r

\bigl( 
n

r - 1

\bigr) 
follows from

the facts that every edge contains r (r - 1)-sets and each (r - 1)-set is in at most one
edge of an (r - 1)-matching.

For the lower bound, we will use the following fractional variant of Pippenger's
theorem (see, e.g., [8] or [2, Theorem 4.7.1]), which is a special case of [13, Theorem
1.5]. For a hypergraph G and \varphi :G\rightarrow [0,1], let \alpha (\varphi ) =max

\sum 
\{ \varphi (e) : e \in G, x, y \in e\} ,

where the maximum is taken over all pairs of distinct vertices x, y \in V (G). Recall
that \varphi is a fractional matching if for all v \in V (G),

\sum 
\{ \varphi (e) : e\ni v\} \leq 1.

Theorem 5.1. For fixed r, if G is r-uniform and \varphi : G \rightarrow [0,1] is a fractional
matching, then

\nu (G)> (1 + o(1))
\sum 
A\in G

\varphi (A),

where o(1)\rightarrow 0 as \alpha (\varphi )\rightarrow 0.

We will apply Theorem 5.1 with G = H(r - 1); recall from the introduction that
\nu (r - 1)(H) = \nu (H(r - 1)) (= \nu (G)).

Choose \varepsilon such that \varepsilon = o(1) and \varepsilon = \omega (d - 1/2) (recall that d = \omega (1)). Set D =
(1 + \varepsilon )d. Say that a vertex \sigma \in V (G) is heavy if it lies in at least D edges of G, and
define the fractional matching \varphi :G\rightarrow [0,1] via

\varphi (f) =

\Biggl\{ 
1/D if f contains no heavy vertices,

0 otherwise.

It is easy to see that \varphi is indeed a fractional matching; moreover, any two distinct
vertices \sigma 1, \sigma 2 \in V (G) are contained in at most one edge of G, implying that \alpha (\varphi )\leq 
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2269

1/D\rightarrow 0 (as n\rightarrow \infty ). So, recalling Theorem 5.1, to complete the proof that \nu \gtrsim nr - 1

r!
it suffices to show \sum 

A\in G

\varphi (A)\sim nr - 1

r!
w.h.p.(5.1)

We will establish (5.1) by showing that the expected number of edges in G that
contain heavy vertices is o(nrp), and so (by Markov's inequality) is w.h.p. o(nrp).
Now note that the number of edges in G (which equals the number of edges in H) is
Bin(

\bigl( 
n
r

\bigr) 
, p), so w.h.p. | G| \sim 

\bigl( 
n
r

\bigr) 
p, and that also (by our choice of \varepsilon ) D\sim np. It follows

that w.h.p. \sum 
A\in H\prime 

\varphi (A)\sim 
\biggl( 
n

r

\biggr) 
p \cdot 1

np
\sim nr - 1

r!
,

verifying (5.1).
Thus, letting X be the number of edges in G that contain heavy vertices, it

remains to show E(X) = o(nrp). For each \ell \in \BbbN , let X\ell be the number of vertices in
G that are in exactly \ell edges, and for a < b \in \BbbR let X[a,b) be the number of vertices
in G that are in at least a and fewer than b edges. For a vertex \sigma \in V (G), let n\sigma be
the number of edges that \sigma is in. We have

\BbbE X =
\sum 

\gamma \geq \varepsilon : (1+\gamma )d\in \BbbN 

\BbbE X(1+\gamma )d(1 + \gamma )d

\leq 
\sum 
i\geq 0

\BbbE X[(1+2i\varepsilon )d,(1+2i+1\varepsilon )d)(1 + 2i+1\varepsilon )d

=
\sum 
i\geq 0

\biggl( 
n

r - 1

\biggr) 
P (n\sigma \in [(1 + 2i\varepsilon )d, (1 + 2i+1\varepsilon )d))(1 + 2i+1\varepsilon )d

\leq 
\biggl( 

n

r - 1

\biggr) 
d
\sum 
i\geq 0

P (n\sigma \geq (1 + 2i\varepsilon )d)(1 + 2i+1\varepsilon )

\lesssim 
nrp

(r - 1)!

\sum 
i\geq 0

P (n\sigma \geq (1 + 2i\varepsilon )d)(1 + 2i+1\varepsilon ).(5.2)

Now, noting that n\sigma is Bin(n - (r - 1), p), Theorem 2.1 gives

P (n\sigma \geq (1 + 2i\varepsilon )d)\leq exp
\bigl[ 
 - (2i\varepsilon d)2/(2(d+ 2i\varepsilon d/3))

\bigr] 
=

1

exp [22i\varepsilon 2d/(2(1 + 2i\varepsilon /3))]
,

so that

E(X)\lesssim nrp
\sum 
i\geq 0

1 + 2i+1\varepsilon 

exp [22i\varepsilon 2d/(2(1 + 2i\varepsilon /3))]
\leq nrp

\sum 
i\geq 0

1 + 2i+1\varepsilon 

exp[2i\varepsilon d/4]
.

Finally, recalling that \varepsilon = o(1) and \varepsilon = \omega (d - 1/2), we obtain E(X) = o(nrp) as required.

6. Proof of Theorem 1.12. Recall that the goal here is to prove that for every
r\geq 3, if d=\Theta (1), then w.h.p.

\nu (H)> (1 + o(1))
1

r
\alpha r(d)

\biggl( 
n

r - 1

\biggr) 
,
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2270 ABDUL BASIT AND DAVID GALVIN

where

\alpha r(d) = 1 - 
\biggl( 

1

(r - 1)d+ 1

\biggr) 1/(r - 1)

.

Given an r-graph G and a function w : G\rightarrow [0,1] (referred to as weights on the
edges), the greedy (r  - 1)-matching corresponding to w is denoted by Mw. That is,
we consider edges in increasing order of weights and add an edge to the matching iff
it shares at most (r - 2) vertices with any edge already in the matching. When w is
uniform from [0,1]| G| , we denote by M\ast the random greedy (r  - 1)-matching. Note
that we may assume that weights are distinct, since this happens with probability 1
when w is chosen uniformly from [0,1]| G| .

We will consider the random greedy (r - 1)-matching on H. Given an (r - 1)-set
\rho \in 
\bigl( 

V
r - 1

\bigr) 
, we would like to bound P (\rho \in D(M\ast )), where the probability is over choices

of H and w. Since dM\ast (\sigma )\leq 1 for each \sigma \in D(M\ast ), we obtain

\BbbE | M\ast | = 1

r
P (\rho \in D(M\ast ))

\biggl( 
n

r - 1

\biggr) 
,

which, by (2.1), implies that w.h.p.

\nu > | M\ast | = (1+ o(1))
1

r
P (\rho \in D(M\ast ))

\biggl( 
n

r - 1

\biggr) 
.

Thus, it suffices to show that

P (\rho \in D(M\ast )) = 1 - 
\biggl( 

1

(r - 1)d+ 1

\biggr) 1/(r - 1)

.(6.1)

Remark 6.1. The proof of (6.1) is an immediate generalization of the proof of
[14, equation (11)]. However, in [14], the existence of a triangle in a random 2-graph
containing the pair of vertices \{ x, y\} depends on the existence of the edge xy; hence
the corresponding equation bounds a conditional probability. For us, each r-set of
vertices is an edge of the random r-graph H independently of other r-sets, so the
probability in (6.1) is not a conditional probability.

Before proving (6.1), we need some notation and definitions. Note that the fol-
lowing proof is a straightforward generalization of the ideas in [14] and is based on
the coupling from section 3.

For a finite tree T , we work with the following recursive survival rule for (r - 1)-
sets, in which we evaluate (r - 1)-sets in any order for which each (r - 1)-set appears
earlier than its base (further specification of the order doesn't affect the outcome),
and ``dies"" means fails to survive:

An (r - 1)-set dies iff it is the base of an edge all of whose other (r - 1)-sets survive.
(6.2)

For example, any (r - 1)-set that is the base of no edges survives.
For an r-graph G, \rho \in D(G), and a weight function w uniform in [0,1]| G| , let

W (\rho ) = \{ \sigma \in D(G) : there is a path from \rho to \sigma on which the weights decrease\} .

Note that W (\rho ) is a random subgraph of S(\rho ). The main point here is that if W (\rho )
is a finite tree, then \rho is in D(M\ast ) iff it dies when we apply the survival rule to W (\rho ).
To see this, observe that an (r - 1)-set \sigma dies iff it is the base of an edge that is in M .

When H = T d with root \rho , we write W d for W (\rho ). When talking about W d, the
probabilities are over choices of H and w. We have the following proposition.
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2271

Proposition 6.2. W d is finite with probability 1.

Proof. By Proposition 3.3 (part 2), the expected number of (r - 1)-sets at depth
i is ((r - 1)d)i/((r - 1)i!). As i\rightarrow \infty this goes to 0, implying the assertion.

By Corollary 3.6 and Proposition 6.2, for \rho \in 
\bigl( 

V
r - 1

\bigr) 
, we may couple W (\rho ) and W d

to agree w.h.p. It follows that P (\rho \in D(M\ast )) tends to the probability that the root
dies in W d. Hence, to complete the proof, it suffices to show the following.

Proposition 6.3. Under the survival rule, the root of W d survives with proba-
bility

((r - 1)d+ 1) - 1/(r - 1).

Proof. It will be convenient to extend w to (r - 1)-sets: Set w(\rho ) = 1, and for any
other (r  - 1)-set \sigma \in D(W d), let w(\sigma ) be the weight of the (unique) edge containing
\sigma of minimum depth.

Let f(x) be the probability that an (r  - 1)-set of weight x survives. Trivially
f(0) = 1. The probability that an edge with weight x survives is

f(x) =
\sum 
k

e - ddk

k!

\biggl[ 
1 - 

\int x

0

fr - 1(y)dy

\biggr] k
.

To see this note that for a given child edge of an (r - 1)-set \sigma , the probability that at
least one other (r - 1)-set dies is 1 - 

\int x

0
fr - 1(y)dy. Given that there are k edges on \sigma ,

the probability that for all of them at least one (r - 1)-set dies is
\bigl[ 
1 - 

\int x

0
fr - 1(y)dy

\bigr] k
.

Let F (x) =
\int x

0
fr - 1(y)dy, so F (0) = 0 and

F \prime (x) = fr - 1(x) =

\Biggl( \sum 
k

e - ddk

k!

\biggl[ 
1 - 

\int x

0

fr - 1(y)dy

\biggr] k\Biggr) r - 1

=

\Biggl( 
e - d

\Biggl[ \sum 
k

dk

k!
(1 - F (x))

k

\Biggr] \Biggr) r - 1

= e - (r - 1)dF (x).

Solving this gives

F (x) =
1

(r - 1)d
ln ((r - 1)dx+ 1) .

Now we have

F \prime (x) = fr - 1(x) =
1

(r - 1)dx+ 1
,

which implies

f(x) = ((r - 1)dx+ 1) - 1/(r - 1).

7. Proofs of Theorems 1.11, 1.13, and 1.14. In each of the following sub-
sections, we show the existence of an (r - 1)-cover for an arbitrary r-graph G, which
gives the bounds in Theorem 1.11. These covers are based on constructions for the
hypergraph Tur\'an problem (which give (r - 1)-covers for the complete r-graph Kr

n).
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2272 ABDUL BASIT AND DAVID GALVIN

We then proceed to show that for the random hypergraph H with d = \Theta (1), these
covers can be improved upon, resulting in the bounds in Theorems 1.13 and 1.14.

For l \in \BbbN , by a uniformly random partition of V (H) into l blocks, we mean the
partition (V0, V1, . . . , Vl - 1) where every v \in V (H) is placed into each of V0, . . . , Vl - 1

with probability 1/l, independent of other vertices. We say that an m-set A of [n] has
ordered type a= a0a1 \cdot \cdot \cdot al - 1 (with respect to this partition) if | A \cap Vi| = ai for each
i. So (a0, . . . , al - 1) forms a weak composition of m into l parts. A has unordered type
a= a0 \geq a1 \geq \cdot \cdot \cdot \geq al - 1 if the ordered type of A is a permutation of a0a1 \cdot \cdot \cdot al - 1.

7.1. Covers for 3-graphs. The following is the standard construction showing
that every 2-graph G has a bipartite (and, hence, triangle-free) subgraph with at least
half the edges. Let G be 3-graph, and let (V0, V1) be a uniformly random partition of
V (G). Set

C0 =

\biggl\{ 
\sigma \in 

\biggl( 
V

2

\biggr) 
: \sigma has unordered type 20

\biggr\} 
.

Let C =C0 \cap D(G), and notice that C is a 2-cover of G. Note that P (\sigma \in C0) = 1/2,
so \BbbE | C| = | D(G)| /2. Hence, by the first moment method, we have

\tau (G)\leq 1

2
| D(G)| .

Improved bounds for \bfitd =\Theta (1). We now improve the cover C0 for H with
d=\Theta (1) by removing some additional elements (this construction appeared in [14]).
Let

C1 = \{ \sigma \in C0 : all edges containing \sigma are contained in the same block as \sigma \} .

Note that C0 \setminus C1 may not be a 2-cover of H; indeed, if e\in H has unordered type 30
and has the property that all three pairs in

\bigl( 
e
2

\bigr) 
are in C1, then e is not covered by

C0 \setminus C1. However, setting

C2 = \{ \sigma \in C1 : there is an edge e\supset \sigma such that for every \sigma \prime \in 
\bigl( 
e
2

\bigr) 
we have \sigma \prime \in C1\} ,

we obtain that

C =C(V0, V1) := (C0 \setminus C1)\cup C2

is again a 2-cover of H.
We will show that for each \sigma \in 

\bigl( 
V
2

\bigr) 
,

P (\sigma \in C)\rightarrow 1

2

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
= \beta 3(d).(7.1)

The proof of (7.1) is an immediate generalization the proof of [14, equation (15)]. For
the same reason as in Remark 6.1, the probability in [14, equation (15)] needs to be
conditional, whereas the probability in (7.1) is unconditional.

From this it follows that \BbbE | C| =
\bigl( 
n
2

\bigr) 
\beta 3(d), which, by (2.1), implies the asserted

bound.
The number of edges containing \sigma has distribution Bin(n - 2, p)\rightarrow Po(d) implying

P (\sigma \in C1)\sim 
1

2

\sum 
k\geq 0

e - ddk

k!

1

2k
=

1

2
e - d/2.(7.2)
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2273

To estimate P (\sigma \in C2), we rely on the coupling from section 3 (with \gamma = 2). Given
an edge e\in V0 containing \sigma \in C1, the probability that all edges with base in

\bigl( 
e
2

\bigr) 
\setminus \{ \sigma \} 

are contained in V0 is

\sum 
l,m\geq 0

e - ddl

l!

e - ddm

m!

1

2m
1

2l
=

\left(  \sum 
l\geq 0

e - ddl

l!

1

2l

\right)  2

= e - d.

It follows that

P (\sigma \in C2)\sim 
1

2

\sum 
k\geq 0

e - ddk

k!

1

2k

\Bigl( 
1 - 

\bigl( 
1 - e - d

\bigr) k\Bigr) 
=

1

2

\biggl[ 
e - d/2  - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.

(7.3)

Finally, combining (7.2) and (7.3) gives (7.1).

7.2. Covers for 4-graphs. The following is based on a construction of Tur\'an
[20]. Let G be a 4-graph and (V0, V1, V2) a uniformly random partition of V (G). Set

\bullet C1
0 =

\bigl\{ 
\sigma \in 

\bigl( 
V
3

\bigr) 
: \sigma has unordered type 300

\bigr\} 
,

\bullet C2
0 =

\bigl\{ 
\sigma \in 

\bigl( 
V
3

\bigr) 
: \sigma has ordered type in \{ 210,021,102\} 

\bigr\} 
.

Note that C = C(V0, V1, V2) = (C1
0 \cup C2

0 ) \cap D(G) is a 3-cover of G. We have P (\sigma \in 
C1

0 ) = 1/9 and P (\sigma \in C2
0 ) = 1/3, giving \BbbE | C| = 4| D(G)| /9. The first moment method

then gives

\tau (G)\leq 4

9
| D(G)| .

Improved bounds for \bfitd =\Theta (1). We now improve the cover C for H with
d=\Theta (1). Let C =C(V0, V1, V2) =

\bigl( 
(C1

0 \setminus C1
1 )\cup C1

2

\bigr) \bigcup \bigl( 
C2

0 \setminus C2
1

\bigr) 
, where

\bullet C1
1 = \{ \sigma \in C1

0 : all edges containing \sigma are contained in the same block as \sigma \} ,
\bullet C1

2 = \{ \sigma \in C1
1 : \exists edge e\supset \sigma such that \forall \sigma \prime \in 

\bigl( 
e
3

\bigr) 
, we have \sigma \prime \in C1

1\} ,
\bullet C2

1 = \{ \sigma \in C2
0 : all edges containing \sigma have unordered type 310\} .

It is easy to verify that this is indeed a 3-cover for H. Indeed, edges of unordered
type 400 and 310 are covered by (r - 1)-sets in

\bigl( 
(C1

0 \setminus C1
1 )\cup C1

2

\bigr) 
; edges of unordered

type 220 and 211 are covered by (r - 1)-sets in
\bigl( 
C2

0 \setminus C2
1

\bigr) 
. The asserted bound follows,

by (2.1), from the following: For each \sigma \in 
\bigl( 
V
3

\bigr) 
P (\sigma \in C)\lesssim 4

9

\biggl[ 
1 - exp

\biggl( 
 - d
3

\bigl( 
2 + e - 2d

\bigr) \biggr) \biggr] 
= \beta 4(d).(7.4)

The number of edges containing \sigma has distribution Bin(n - 3, p)\rightarrow Po(d) implying

P (\sigma \in C1
1 )\sim 

1

9

\sum 
k\geq 0

e - ddk

k!

1

3k
=

1

9
e - 2d/3.(7.5)

To estimate P (\sigma \in C1
2 ), we rely on the coupling from section 3. Given an edge e\in V0

containing \sigma \in C1
1 , the probability that all edges with base in

\bigl( 
e
3

\bigr) 
\setminus \sigma are contained in

V0 is \left(  \sum 
l\geq 0

e - ddl

l!

1

3l

\right)  3

= e - 2d.

© 2024 Abdul Basit

D
ow

nl
oa

de
d 

07
/3

0/
24

 to
 1

29
.7

4.
25

0.
20

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2274 ABDUL BASIT AND DAVID GALVIN

It follows that

P (\sigma \in C1
2 )\sim 

1

9

\sum 
k\geq 0

e - ddk

k!

1

3k

\Bigl( 
1 - 

\bigl( 
1 - e - 2d

\bigr) k\Bigr) 
=

1

9

\biggl[ 
e - 2d/3  - exp

\biggl( 
 - d
3

\bigl( 
2 + e - 2d

\bigr) \biggr) \biggr] 
.

(7.6)

Combining (7.5) and (7.6) gives

P
\bigl( 
\sigma \in 

\bigl( 
(C1

0 \setminus C1
1 )\cup C1

2

\bigr) \bigr) 
\sim 1

9

\biggl[ 
1 - exp

\biggl( 
 - d
3

\bigl( 
2 + e - 2d

\bigr) \biggr) \biggr] 
.(7.7)

Similarly, we have P (\sigma \in C2
1 )\sim e - 2d/3/3 which immediately gives

P
\bigl( 
\sigma \in 

\bigl( 
C2

0 \setminus C2
1

\bigr) \bigr) 
\sim 1

3

\Bigl[ 
1 - e - 2d/3

\Bigr] 
\leq 1

3

\biggl[ 
1 - exp

\biggl( 
 - d
3

\bigl( 
2 + e - 2d

\bigr) \biggr) \biggr] 
.(7.8)

Note that the second inequality is easy (and, strictly speaking, unnecessary) but helps
to simplify the analysis. Finally, combining (7.8) and (7.7) gives (7.4), implying the
assertion.

7.3. Covers for 5-graphs. We adapt a construction of Giraud [9]. Let G be a 5-
graph, let (V0, V1) be a uniformly random partition of V (G), and let f : V0\times V1 \rightarrow \{ 0,1\} 
be a uniformly random function. That is, for each (x, y) \in V0 \times V1, f(x, y) is 0 or 1
with probability of 1/2 independent of other inputs.

For A0 \subseteq V0 and A1 \subseteq V1, we set f(A0,A1) =
\sum 

(x,y)\in A0\times A1
f(x, y). For a set

A\subseteq V , we let f(A) = f(A\cap V0,A\cap V1). Given \sigma \in 
\bigl( 
V (H)

4

\bigr) 
of type 22 (with respect to

V0, V1), we say \sigma is even if f(\sigma ) is even. Note that

if \sigma \cap V0 = \{ x, y\} , then \sigma is even iff f(x,\sigma \cap V1)\equiv f(y,\sigma \cap V1) (mod 2),

and

if \sigma \cap V1 = \{ u, v\} , then \sigma is even iff f(\sigma \cap V0, u)\equiv f(\sigma \cap V0, v) (mod 2).

Let C =C(V0, V1) = (C1
0 \cup C2

0 )\cap D(G), where

\bullet C1
0 =

\bigl\{ 
\sigma \in 

\bigl( 
V
4

\bigr) 
: \sigma has unordered type 40

\bigr\} 
,

\bullet C2
0 =

\bigl\{ 
\sigma \in 

\bigl( 
V
4

\bigr) 
: \sigma has type 22 and \sigma is even

\bigr\} 
.

We claim that C is a 4-cover of G. Indeed, any edge in G that has at least
four vertices in the same block is evidently covered by something in C. For an edge
e = \{ v1, v2, v3, v4, v5\} of G that is not covered by this case, assume (without loss of
generality) that v1 and v2 are in V0 and v3, v4, and v5 are in V1. Now, at least two
of f(\{ v1, v2\} , v3), f(\{ v1, v2\} , v4), and f(\{ v1, v2\} , v5) must have the same parity, and
hence, the corresponding 4-set must be in C.

We now compute the expected size of C. For \sigma \in 
\bigl( 
V
4

\bigr) 
, note that P (\sigma \in C1

0 ) = 1/8.
Note that P (\sigma has type 22) = 3/8 and P (\sigma is even) = 1/2, implying P (\sigma \in C2

0 ) =
3/16. It follows that \BbbE | C| = 5| D(G)| /16. The asserted bound follows from the first-
moment method.

Improved bounds for \bfitd =\Theta (1). We now improve the cover C0 for H with
d=\Theta (1).

Suppose \sigma is even, and let e be an edge of the form e = \sigma \cup \{ v\} . If v \in V0, we
say e is compatible with \sigma if f(v,\sigma \cap V1) has the same parity as f(x,\sigma \cap V1) for any
x \in \sigma \cap V0. Similarly, if v \in V1, we say e is compatible with \sigma if f(\sigma \cap V0, v) has the
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2275

same parity as f(\sigma \cap V0, x) for any x\in \sigma \cap V1. The motivation behind this definition is
that if e is compatible with \sigma , then it is covered by multiple 4-sets, which we exploit
in the following construction.

Let C =C(V0, V1) =
\bigl( 
(C1

0 \setminus C1
1 )\cup C1

2

\bigr) \bigcup \bigl( 
(C2

0 \setminus C2
1 )\cup C2

2

\bigr) 
, where

\bullet C1
1 = \{ \sigma \in C1

0 : all edges containing \sigma are contained in the same block as \sigma \} ,
\bullet C1

2 = \{ \sigma \in C1
1 : \exists edge e\supset \sigma such that \forall \sigma \prime \in 

\bigl( 
e
4

\bigr) 
, we have \sigma \prime \in C1

1\} ,
\bullet C2

1 = \{ \sigma \in C2
0 : every edge containing \sigma is compatible with \sigma \} ,

\bullet C2
2 = \{ \sigma \in C2

1 : \exists edge e\supset \sigma such that \forall \sigma \prime \in 
\bigl( 
e
4

\bigr) 
of type 22, we have \sigma \prime \in C2

1\} .
An argument similar to those in the preceding sections suffices to show that C is a
4-cover. The asserted bound follows from the fact that, for each \sigma \in 

\bigl( 
V
4

\bigr) 
,

P (\sigma \in C)\lesssim 5

16

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
,(7.9)

where the probability is over choices of the partition (V0, V1) and the function f .
Note first that P (\sigma \in C1

0 ) = 1/8. The number of edges containing \sigma has distribu-
tion Bin(n - 4, p)\rightarrow Po(d) implying

P (\sigma \in C1
1 )\sim 

1

8

\sum 
k\geq 0

e - ddk

k!

1

2k
=

1

8
e - d/2.(7.10)

To estimate P (\sigma \in C1
2 ), we rely on the coupling from section 3. Given an edge e\in V0

containing \sigma \in C1
1 , the probability that all edges with base in

\bigl( 
e
4

\bigr) 
\setminus \sigma are contained in

V0 is \left(  \sum 
l\geq 0

e - ddl

l!

1

2l

\right)  4

= e - 2d.

It follows that

P (\sigma \in C1
2 )\sim 

1

8

\sum 
k\geq 0

e - ddk

k!

1

2k

\Bigl( 
1 - 

\bigl( 
1 - e - 2d

\bigr) k\Bigr) 
=

1

8

\biggl[ 
e - d/2  - exp

\biggl( 
 - d
2

\bigl( 
1 + e - 2d

\bigr) \biggr) \biggr] 
.

(7.11)

Combining (7.10) and (7.11), we obtain that

P
\bigl( 
\sigma \in 

\bigl( 
(C1

0 \setminus C1
1 )\cup C1

2

\bigr) \bigr) 
=

1

8

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - 2d

\bigr) \biggr) \biggr] 
\leq 1

8

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.(7.12)

The second inequality serves to simply the final bound and, hence, the analysis. Given
\sigma \in C2

0 , the probability that an edge e= \sigma \cup \{ v\} is compatible with \sigma is 1/2. It follows
that

P (\sigma \in C2
1 )\sim 

3

16

\sum 
k\geq 0

e - ddk

k!

1

2k
=

3

16
e - d/2.(7.13)

Let e be an edge containing \sigma \in C2
1 . Then e must be of type 32, and so there are

two 4-sets in
\bigl( 
e
4

\bigr) 
\setminus \{ \sigma \} that are of type 22. The probability that these two 4-sets are

also in C2
1 is
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2276 ABDUL BASIT AND DAVID GALVIN

\sum 
l,m\geq 0

e - ddl

l!

e - ddm

m!

1

2m
1

2l
=

\left(  \sum 
l\geq 0

e - ddl

l!

1

2l

\right)  2

= e - d.

It follows that

P (\sigma \in C2
2 )\sim 

3

16

\sum 
k\geq 0

e - ddk

k!

1

2k

\Bigl( 
1 - 

\bigl( 
1 - e - d

\bigr) k\Bigr) 
=

3

16

\biggl[ 
e - d/2  - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.

(7.14)

Combining (7.13) and (7.14), we obtain that

P
\bigl( 
\sigma \in 

\bigl( 
(C2

0 \setminus C2
1 )\cup C2

2

\bigr) \bigr) 
\sim 3

16

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.(7.15)

Finally, (7.12) and (7.15) together give (7.9), implying the assertion.

7.4. Larger arity. For r \geq 6, we use the following construction of Frankl and
R\"odl [6], along with an improvement due to Sidorenko [18].

The Frankl--R\"odl construction. Let G be an r-graph, l be a positive integer,
and (V0, . . . , Vl - 1) be a uniformly random partition of V (G). For A\subseteq V (G), define

d(A) := | \{ i\in \{ 0, . . . , l - 1\} :A\cap Vi = \emptyset \} | 

and

w(A) :=

l - 1\sum 
i=0

i| A\cap Vi| .

For 0\leq j \leq l - 1, let \scrC j be the family

\scrC j := \{ \sigma \in D(G) : (w(\sigma ) + j) mod l \in \{ 0, . . . , d(\sigma )\} \} .

We claim that for every 0 \leq j \leq l  - 1, \scrC j is a cover of G. To see this, note that for
every e \in G, there are l  - d(e) indices i such that e \cap Vi \not = \emptyset , at least one of which
must be in

(w(e) + j) mod l, (w(e) + j  - 1) mod l, . . . , (w(e) + j  - d(e)) mod l.

Fix i to be such an index. Let x\in e\cap Vi, and let \sigma = e\setminus \{ x\} . Now, since w(\sigma )\equiv w(e) - i
(mod l) and d(\sigma )\geq d(e), we have 0\leq (w(\sigma ) + j) mod l\leq d(\sigma ) implying \sigma \in \scrC j .

Lemma 7.1. For any l \in \BbbN and any r-graph G,

\tau (G)\leq | D(G)| 

\Biggl[ 
1

l
+

\biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
.

Proof. The assertion follows by the first moment method, along with the pigeon-
hole principle from

\BbbE 
l - 1\sum 
j=0

| \scrC j | =

\Biggl[ 
1 + l

\biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
| D(G)| .(7.16)
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To see (7.16), note that each \sigma \in D(G) belongs to exactly d(\sigma ) + 1 of the covers
\scrC 0, . . . ,\scrC l - 1, giving

l - 1\sum 
j=0

| \scrC j | =
\sum 

\sigma \in D(G)

(d(\sigma ) + 1) = | D(G)| +
l - 1\sum 
i=0

| \scrA i| ,

where \scrA i = \{ \sigma \in D(G) : e\cap Vi = \emptyset \} with

\BbbE | Ai| = | D(G)| P (\{ \sigma \cap Vi = \emptyset \} ) = | D(G)| 
\biggl( 
1 - 1

l

\biggr) r - 1

.

Sidorenko's improvement. Consider a function f : V0 \times \cdot \cdot \cdot \times Vl - 1 \rightarrow \{ 0,1\} .
For a set A\in 

\bigl( 
V (G)
2l

\bigr) 
with | A\cap Vi| = 2 for every i, let

q(A) =
\sum 

xi\in A\cap Vi

f(x0, . . . , xl - 1).(7.17)

Let \scrE = \{ \sigma \in D(G) : | \sigma \cap Vi| \geq 2 for every i\} , and let \pi (\sigma ) be the 2l element set
obtained by taking the two maximal elements (with respect to an arbitrary linear
order on V ) from each of the sets \sigma \cap Vi, 0\leq i\leq l - 1. For 0\leq j \leq l - 1, let \scrC \prime 

j be the
family

\scrC \prime 
j = \{ \sigma \in \scrC j : \sigma /\in \scrE or q(\pi (\sigma )) is even\} .

We claim that for any j, \scrC \prime 
j is a cover. Fix 0 \leq j \leq l  - 1, and recall from the

Frankl--R\"odl construction that, given an edge e\in G, there exists an index i such that
e \cap Vi \not = \emptyset and \sigma = e \setminus \{ x\} \in \scrC j for any x \in e \cap Vi. If e \setminus \{ x\} /\in \scrE , then e is covered
by \scrC \prime 

j . Otherwise, if e \setminus \{ x\} \in \scrE , then | e \cap Vi| \geq 3 and | e \cap Vk| \geq 2 for k \not = i. Suppose
\{ x, y, z\} \subseteq e\cap Vi are the three maximal elements, and consider the sum

Q := q(\pi (e \setminus \{ x\} )) + q(\pi (e \setminus \{ y\} )) + q(\pi (e \setminus \{ z\} )).

Observe that every term of the form f(x0, . . . , xl - 1) appears twice in the sum implying
Q is even. It follows that at least one of q(\pi (e \setminus \{ x\} )), q(\pi (e \setminus \{ y\} )), or q(\pi (e \setminus \{ z\} ))
is even and, hence, in \scrC \prime 

j .

Lemma 7.2. For any l\leq r/2 and any r-graph G,

\tau (G)\leq | D(G)| 
2

\Biggl[ 
1

l
+

\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
.

Proof. Let f : V0 \times \cdot \cdot \cdot \times Vl - 1 \rightarrow \{ 0,1\} be a random function whose entries are
chosen uniformly and independently. For any \sigma \in D(G), P (q(\pi (\sigma )) is odd) = 1/2.
Hence,

\BbbE | \{ \sigma \in \scrE : q(\pi (\sigma )) is odd\} | = 1

2
| \scrE | .

By the first moment method, there exists a function f\ast such that

| \{ \sigma \in \scrE : q(\pi (\sigma )) is odd\} | \geq | \scrE | /2.(7.18)
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2278 ABDUL BASIT AND DAVID GALVIN

Choosing f\ast to be a function satisfying (7.18), we obtain

l - 1\sum 
j=0

| \scrC \prime 
j | \leq 

l - 1\sum 
j=0

| \scrC j |  - 
1

2
| \scrE | 

=

\Biggl[ 
1 + l

\biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
| D(G)|  - 1

2
| \scrE | 

=

\Biggl[ 
1

2
+ l

\biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
| D(G)| + 1

2
(| D(G)|  - | \scrE | )

\leq 

\Biggl[ 
1

2
+ l

\biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
| D(G)| + 1

2

l - 1\sum 
i=0

| \scrB i| ,(7.19)

where \scrB i = \{ \sigma \in D(G) : | \sigma \cap Vi| \leq 1\} , and

\BbbE | \scrB i| = | D(G)| P (| \sigma \cap Vi| \leq 1)

= | D(G)| 

\Biggl[ \biggl( 
1 - 1

l

\biggr) r - 1

+ (r - 1) \cdot 1
l

\biggl( 
1 - 1

l

\biggr) r - 2
\Biggr] 
.(7.20)

The assertion follows, by the first moment method and the pigeonhole principle, from
the following inequality obtained by combining (7.19) and (7.20)

\BbbE 
l - 1\sum 
j=0

| \scrC \prime 
j | \leq 

| D(G)| 
2

\Biggl[ 
1 + l

\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
.

7.4.1. Improved bounds for \bfitd =\Theta (1). We now show that for H with d =
\Theta (1), the cover described above can be improved. The ideas and proof are similar to
the preceding sections---we obtain an improved bound on \tau by removing additional
(r - 1)-sets from the cover constructed in the previous section---so we aim to be brief.

For \sigma \in \scrE , we say \sigma is even if q(\pi (\sigma )) is even. Clearly, for every 0\leq i\leq l - 1, \sigma is
even iff, with \pi (\sigma )\cap Vi = \{ x, y\} , we have\sum 

xj\in \pi (\sigma )\cap Vj

j \not =i

f(x0, . . . , x, . . . , xl - 1)\equiv 
\sum 

xj\in \pi (\sigma )\cap Vj

j \not =i

f(x0, . . . , y, . . . , xl - 1) (mod 2).(7.21)

Suppose \sigma \in \scrE is even, and let e be an edge of the form e= \sigma \cup \{ v\} with v \in Vi.
We say e is compatible with \sigma if, for all x\in \pi (\sigma )\cap Vi,\sum 

xj\in \pi (\sigma )\cap Vj

j \not =i

f(x0, . . . , v, . . . , xl - 1)\equiv 
\sum 

xj\in \pi (\sigma )\cap Vj

j \not =i

f(x0, . . . , x, . . . , xl - 1) (mod 2).

Let C0 be the set of \sigma \in \scrE such that \sigma is even, and let C1 be the set of \sigma \in C0

such that every edge containing \sigma is compatible with \sigma . As before, simply taking
C0 \setminus C1 would leave some edges uncovered. Specifically, suppose \sigma \in C1, e= \sigma \cup \{ v\} 
is an edge with v \in Vi, and \pi (\sigma ) \cap Vi = \{ x, y\} . Then, if e \setminus \{ x\} = (\sigma \cup \{ v\} ) \setminus \{ x\} and
e \setminus \{ x\} = (\sigma \cup \{ v\} ) \setminus \{ y\} are in C1, it may be that e is not covered. Let C2 be the set
of \sigma \in C1 such that there exists an edge e as in the preceding sentence containing \sigma .
Finally, set C = (C0 \setminus C1)\cup C2.
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2279

Set \scrE \prime =D(H) \setminus \scrE . In words, \scrE \prime is the set of \sigma \in D(H) such that | \sigma \cap Vi| \leq 1 for
some 0\leq i\leq l - 1. For each 0\leq j \leq l - 1, let

\scrD j := \{ \sigma \in \scrE \prime \cup C : (w(\sigma ) + j) mod l \in \{ 0, . . . , d(\sigma )\} \} .

As before, we have

l - 1\sum 
j=0

| \scrD j | =
\sum 

\sigma \in \scrE \prime \cup C

(d(\sigma ) + 1) =
\sum 
\sigma \in \scrE \prime 

(d(\sigma ) + 1) +
\sum 
\sigma \in C

(d(\sigma ) + 1).(7.22)

We deal with each of the two terms on the right-hand side (RHS) of (7.22) sepa-
rately. First note that

\sum 
\sigma \in \scrE \prime 

(1 + d(\sigma )) =
\sum 
\sigma \in \scrE \prime 

1 +

l - 1\sum 
i=0

| \scrA i| ,

where \scrA i = \{ \sigma \in D(G) : e\cap Vi = \emptyset \} . We have

\BbbE | Ai| = | D(G)| 
\biggl( 
1 - 1

l

\biggr) r - 1

\sim 
\biggl( 

n

r - 1

\biggr) 
(1 - e - d)

\biggl( 
1 - 1

l

\biggr) r - 1

.

Recalling that \zeta 2 is the probability that in a random partition of an (r - 1)-set into l
blocks, there is a block with at most one element (i.e., P (\sigma \in \scrE \prime ) = \zeta 2), we obtain\sum 

\sigma \in \scrE \prime 

1 =\BbbE | \scrE | =\BbbE | D(G)| \zeta 2 \sim 
\biggl( 

n

r - 1

\biggr) 
(1 - e - d)\zeta 2.

It follows that

\BbbE 
\sum 
\sigma \in \scrE \prime 

(1 + d(\sigma ))\sim 
\biggl( 

n

r - 1

\biggr) \bigl( 
1 - e - d

\bigr) \Biggl[ 
l

\biggl( 
1 - 1

l

\biggr) r - 1

+ \zeta 2

\Biggr] 
.(7.23)

On the other hand, for every \sigma \in \scrE , we have d(\sigma ) = 0. Hence to bound the latter
term on the RHS of (7.22), it suffices to bound the expected size of C. To bound the
probability that \sigma \in C, we rely on the coupling from section 3 (with \gamma = 2). Recall
that \zeta 1 is the probability that in a uniform random partition of an (r  - 1)-set into l
blocks, there are at least two elements in each block (i.e., P (\sigma \in \scrE ) = \zeta 1). Now we
have P (\sigma \in C0) = \zeta 1/2 and

P (\sigma \in C1)\sim 
\zeta 1
2

\sum 
k\geq 0

e - ddk

k!

1

2k
=
\zeta 1
2
e - d/2.(7.24)

Given \sigma \in C1 and an edge e= \sigma \cup \{ v\} with v \in Vi, suppose that \pi (\sigma )\cap Vi = \{ x, y\} . The
probability that both (\sigma \setminus \{ x\} )\cup \{ v\} and (\sigma \setminus \{ y\} )\cup \{ v\} are in C1 is (e - d/2)2 = e - d.
It follows that

P (\sigma \in C2)\sim 
\zeta 1
2

\biggl[ 
e - d/2  - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.(7.25)

Combining (7.24) and (7.25) gives

P (\sigma \in C)\sim \zeta 1
2

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.

© 2024 Abdul Basit

D
ow

nl
oa

de
d 

07
/3

0/
24

 to
 1

29
.7

4.
25

0.
20

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



2280 ABDUL BASIT AND DAVID GALVIN

From the above discussion, we obtain

\BbbE 
\sum 
\sigma \in C

(1 + d(\sigma )) =\BbbE | D(G)| P (\sigma \in C)\sim 
\biggl( 

n

r - 1

\biggr) 
\zeta 1
2

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.

(7.26)

Finally, (7.22), (7.23), and (7.26) imply

\BbbE 
l - 1\sum 
j=0

| \scrD j | \sim 
\biggl( 

n

r - 1

\biggr) \Biggl[ 
\zeta 1
2

\biggl( 
1 - exp

\biggl( 
 - d
2

\bigl( 
1+e - d

\bigr) \biggr) \biggr) 
+

\Biggl( 
l

\biggl( 
1 - 1

l

\biggr) r - 1

+ \zeta 2

\Biggr) \bigl( 
1 - e - d

\bigr) \Biggr] 
,

which, by with the first moment method and the pigeonhole principle, implies the
assertion.

Appendix A. Proof of Theorem 1.5. For d= \omega (1), we have | D(H)| \sim 
\bigl( 

n
r - 1

\bigr) 
w.h.p. With this, Theorems 1.10 and 1.11 immediately imply that w.h.p.

\tau 

\nu 
\leq 

\left\{     
3/2 if r= 3,

16/9 if r= 4,

25/16 if r= 5.

For d=\Theta (1), by Theorems 1.12 and 1.13, it suffices to show

\beta r(d)

\alpha r(d)/r
\leq 
\biggl\lceil 
r+ 1

2

\biggr\rceil 
.(A.1)

For r= 3, we have

\alpha 3(d) = 1 - 
\biggl( 

1

2d+ 1

\biggr) 1/2

and \beta 3(d) =
1

2

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.

For r= 4, we have

\alpha 4(d) = 1 - 
\biggl( 

1

3d+ 1

\biggr) 1/3

and \beta 4(d) =
4

9

\biggl[ 
1 - exp

\biggl( 
 - d
3

\bigl( 
2 + e - 2d

\bigr) \biggr) \biggr] 
.

For r= 5, we have

\alpha 5(d) = 1 - 
\biggl( 

1

4d+ 1

\biggr) 1/4

and \beta 5(d) =
5

16

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.

We refer the reader to [14, Lemma 1.6] for a detailed sketch of a proof for r= 3.
For r= 4,5, the asserted bound is easy when d\geq 5 since \alpha 4(d)\geq 4/27 and \alpha 5(d)> 5/48
(we also have \beta 4(d) \leq 4/9 and \beta 5(d) \leq 5/16 for all d). It remains to deal with the
intervals d \in [1/3,5] and d \in [1/4,5] for r = 4 and r = 5, respectively. For this, we
simply note that a finite computation akin to [14, Lemma 1.6] suffices to verify the
asserted bound.

We remark that an explicit optimization of the expressions using Mathematica

suggests that for r = 3,4,5, the ratio \tau /\nu \leq Crr w.h.p., where Cr <
\bigl\lceil 
r+1
2

\bigr\rceil 
. We may

take C3 = 1.976, C4 = 2.883, and C5 = 2.696.

Appendix B. Proof of Theorem 1.7.

B.1. Preliminary bounds. We first give some bounds that will make the analy-
sis easier for larger values of r. Throughout this section, we restrict our attention to
r\geq r0 for some fixed r0.
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2281

B.1.1. An effective bound on \bfittau . From Theorem 1.11, for any l\leq r/2 and any
r-graph G, we have

\tau (G)\leq | D(G)| 
2

\Biggl[ 
1

l
+

\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
.(B.1)

We will set

l=

\Biggl\lfloor 
r - 1

ln(r - 1) +
\sqrt{} 

ln(r - 1)

\Biggr\rfloor 
,

so
r - 1

ln(r - 1) +
\sqrt{} 
ln(r - 1)

 - 1\leq l\leq r - 1

ln(r - 1) +
\sqrt{} 
ln(r - 1)

.

Now, using the lower bound for l, we have, for r\geq r0,

1

l
\leq 

ln(r - 1) +
\sqrt{} 
ln(r - 1) + c0

(r - 1)
(B.2)

as long as

c0 \geq 

\Bigl( 
ln(r0  - 1) +

\sqrt{} 
ln(r0  - 1)

\Bigr) 2
(r0  - 1) - 

\Bigl( 
ln(r0  - 1) +

\sqrt{} 
ln(r0  - 1)

\Bigr) .(B.3)

Similarly,

r - 1

l - 1
\leq ln(r - 1) +

\sqrt{} 
ln(r - 1) + c1(B.4)

holds for r\geq r0 as long as

c1 \geq 
2
\Bigl( 
ln(r0  - 1) +

\sqrt{} 
ln(r0  - 1)

\Bigr) 2
(r0  - 1) - 2

\Bigl( 
ln(r0  - 1) +

\sqrt{} 
ln(r0  - 1)

\Bigr) .(B.5)

On the other hand, the upper bound for l gives\biggl( 
1 - 1

l

\biggr) r - 1

\leq 1

(r - 1) exp
\Bigl( \sqrt{} 

ln(r - 1)
\Bigr) 

which is valid for all r. Along with (B.4), this implies\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1

\leq 
ln(r - 1) +

\sqrt{} 
ln(r - 1) + 3+ c1

(r - 1) exp
\Bigl( \sqrt{} 

ln(r - 1)
\Bigr) \leq c2

r - 1
,(B.6)

where the second inequality, for all r\geq r0, is valid for

c2 \geq 
ln(r0  - 1) +

\sqrt{} 
ln(r0  - 1) + 3+ c1

e
\surd 

ln(r0 - 1)
.(B.7)

Finally, (B.1), (B.2), and (B.6) together imply what is the main point of this
section. For any r\geq r0 and any r-graph G,

\tau (G)\leq | D(G)| 
2

\Biggl[ 
ln(r - 1) +

\sqrt{} 
ln(r - 1) + c0 + c2
r - 1

\Biggr] 
,(B.8)

where c0, c1, and c2 are as in (B.3), (B.5), and (B.7) respectively. In our application
of (B.8), we will take c0, c1, and c2 to be the lower end of their ranges and, hence,
treat them as functions of r0.
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2282 ABDUL BASIT AND DAVID GALVIN

B.1.2. A lower bound on \bfitalpha \bfitr for \bfitd \geq 2. Note that, for each fixed r, \alpha r(d) is
monotone increasing in d. We claim that there is c3 > 0 such that, for all r \geq r0 and
d\geq 2,

\alpha r(d)\geq 1 - 
\biggl( 

1

2r - 1

\biggr) 1/(r - 1)

\geq (1 - c3) ln(2r - 1)

r - 1
.(B.9)

Note that (B.9) is equivalent to\biggl( 
1 - (1 - c3) ln(2r - 1)

r - 1

\biggr) r - 1

\geq 1

2r - 1
,

which, for c3 large enough, is implied by\Bigl( 
e - ln(2r - 1)/(r - 1)

\Bigr) r - 1

\geq 1

2r - 1
.

The last implication follows from the standard bound:

e - x \leq 1 - x+
x2

2
\leq 1 - (1 - c3)x,

where the second inequality is true as long as x\leq 2c3. Hence (B.9) holds as long as

c3 \geq 
ln(2r0  - 1)

2(r0  - 1)
.(B.10)

Finally, from (B.9), we obtain that, for every r\geq r0 and d\geq 2,

\alpha r(d)\geq 
(1 - c3) ln(2r - 1)

r - 1
,(B.11)

where c3 is defined as in (B.10). In using (B.11), we will take c3 to be the lower end
of its range and, hence, treat it as a function of r0.

B.2. Proof for \bfitd = \bfitomega (1). For d = \omega (1), we have D(H) \sim 
\bigl( 

n
r - 1

\bigr) 
w.h.p. Then,

Theorems 1.10 and 1.11 (with l= 2) give

\tau 

\nu 
\leq r

2

\Biggl[ 
1

2
+ (r+ 2)

\biggl( 
1

2

\biggr) r - 1
\Biggr] 

w.h.p.

Now \tau /\nu <Cr is implied by

(r+ 2)

\biggl( 
1

2

\biggr) r - 1

< 2C  - 1

2
.

Setting C = 0.4, this is evidently true for all r\geq 6.
For every constant r0 and r\geq r0, Theorem 1.10 and (B.8) give

\tau 

\nu 
\leq r

2(r - 1)

\Bigl( 
ln(r - 1) +

\sqrt{} 
ln(r - 1) + c0 + c2

\Bigr) 
w.h.p,

where c0, c2 go to zero as r0 \rightarrow \infty . So, for large enough r, we obtain the significantly
stronger bound

\tau 

\nu 
= (1+ o(1))

ln r

2
w.h.p.
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TUZA'S CONJECTURE FOR RANDOM HYPERGRAPHS 2283

B.3. Proof for \bfitd =\Theta (1). For d=\Theta (1), we have | D(H)| \sim 
\bigl( 

n
r - 1

\bigr) 
(1 - e - d) w.h.p.

Let

\eta r(d) :=
1 - e - d

\alpha r(d)
.

We first show that for each r\geq 6, \eta is weakly increasing in the range d\in [1/(r - 1),2].
This allows us to restrict our attention to d \geq 2, where we use the trivial bound
| D(H)| \leq 

\bigl( 
n

r - 1

\bigr) 
, simplifying the analysis considerably (at the cost of a worse constant).

Claim B.1. For each fixed r\geq 6, \eta r(d) is weakly increasing for 1/(r - 1)\leq d\leq 2.

Proof. Note that

\partial 

\partial d
[\alpha r(d)] =

\biggl( 
1

(r - 1)d+ 1

\biggr) r
r - 1

and
\partial 

\partial d

\bigl[ 
1 - e - d

\bigr] 
= e - d.

Hence, that \eta r is weakly increasing on d\in [1/(r - 1),2] is implied by

e - d\alpha r(d) - 
\bigl( 
1 - e - d

\bigr) \biggl( 1

(r - 1)d+ 1

\biggr) r
r - 1

\geq 0.

Setting z = (r - 1)d, this is equivalent to

f(z) := (z + 1)
r

r - 1  - z  - e
z

r - 1 \geq 0

in the range z \in (1,2(r - 1)]. In the arguments below, we restrict our attention to the
interval z \in [0,\infty ). We have

f \prime (z) =
r

r - 1
(z + 1)

1
r - 1  - 1 - 1

r - 1
e

z
r - 1 and

f \prime \prime (z) =
r

(r - 1)
2 (z + 1)(

1
r - 1 - 1)  - 1

(r - 1)
2 e

z
r - 1 .

For r \geq 3, the first term is monotone decreasing and the second term is monotone
increasing; hence the difference, f \prime \prime (z), is monotone decreasing. We also have, for
r > 1, that f \prime \prime (0) = 1/(r - 1)> 0 and

f \prime \prime (2(r - 1)) =
1

(r - 1)2

\Biggl( 
r

(2r - 1)1 - 
1

r - 1

 - e2

\Biggr) 
< 0.

Indeed, the last claim follows from the fact that r/(2r  - 1)1 - 1/(r - 1) is decreasing in
r with a limit of 1/2. Now we have that f \prime (0) = 0, that f \prime (0 + \epsilon ) > 0 for small
enough \epsilon , and that f \prime is has a unique critical point. Finally, we have that f(0) = 0,
that f(0 + \epsilon )> 0 for small enough \epsilon , and that f has at most one critical point. Our
assertion now follows from the fact that f(2(r - 1))\geq 0, for which it suffices to note
that

f(2(r - 1)) = (2r - 1)
r

r - 1  - (r - 1) - e2 \geq 0

for r= 5, and that f(2(r - 1)) is increasing in r.
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B.3.1. Bounds for large \bfitr . Here we prove (1.2), and (1.1) for r \geq 271. We
will restrict attention to r\geq r0 and use the bounds obtained in Appendix B.1. Recall
that from Theorem 1.12, we have

\nu (H)> (1 + o(1))

\biggl( 
n

r - 1

\biggr) 
1

r
\alpha r(d) w.h.p.

Suppose first that 1/(r - 1)\leq d\leq 2. With | D(H)| \sim 
\bigl( 

n
r - 1

\bigr) 
(1 - e - d) (w.h.p.), (B.8)

gives

\tau (G)< (1 + o(1))

\biggl( 
n

r - 1

\biggr) 
1

2

\Biggl[ 
ln(r - 1) +

\sqrt{} 
ln(r - 1) + c0 + c2
r - 1

\Biggr] \bigl( 
1 - e - d

\bigr) 
w.h.p.

It follows that

\tau 

\nu 
\leq r

2(r - 1)

\Bigl( 
ln(r - 1) +

\sqrt{} 
ln(r - 1) + c0 + c2

\Bigr) 
\eta r(d) w.h.p.

Since \eta r(d) is weakly increasing for d\in [1/(r - 1),2], it suffices to bound this expression
for d= 2. From (B.11), we have

\alpha r(2)\geq 
(1 - c3) ln(2r - 1)

r - 1
,

giving

\eta r(d) =
1 - e - d

\alpha r(d)
\leq (r - 1)(1 - e - 2)

(1 - c3) ln(2r - 1)
.

Hence, for 1/(r - 1)\leq d\leq 2, we obtain

\tau 

\nu 
\leq r \cdot \delta r \cdot (1 - e - 2) w.h.p.,

where

\delta r :=
ln(r - 1) +

\sqrt{} 
ln(r - 1) + c0 + c2

2(1 - c3) ln(2r - 1)
.

For d\geq 2, we rely on Theorem 1.12 and (B.8) with | D(H)| \leq 
\bigl( 

n
r - 1

\bigr) 
to obtain

\tau 

\nu 
\leq \delta r \cdot r w.h.p.

In either case, we have \tau /\nu \leq \delta rr. We claim that \delta r is decreasing in r and, hence, it
suffices to bound \delta r0 .

Claim B.2. For r\geq 4, \delta r is decreasing in r.

Proof. By setting z = ln(r - 1) and then differentiating, it suffices to show that\biggl( 
1 +

1

2
\surd 
z

\biggr) 
ln(2ez + 1) - 2ez

2ez + 1

\bigl( 
z +

\surd 
z + c0 + c2

\bigr) 
< 0,

which is equivalent to\biggl( 
1 +

1

2ez

\biggr) 
ln(2ez + 1)<

\biggl( 
1 - 1

2
\surd 
z + 1

\biggr) \bigl( 
z +

\surd 
z + c0 + c2

\bigr) 
.(B.12)
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Denote by L(z) (resp., R(z)) the LHS (resp., RHS) of (B.12). We have

dL

dz
= 1 - ln(2ez + 1)

2ez
and

dR

dz
= 1+

z +
\surd 
z + c0 + c2\surd 

z(2
\surd 
z + 1)2

,

which implies that L(z)<R(z) for z \geq z0, where we may take z0 = 1. The assertion
follows.

From the above discussion, we have that for every r0 \geq 6, the ratio \tau /\nu is bounded
above (w.h.p.) by \delta r0r. Noting that ci(r0)\rightarrow 0 as r0 \rightarrow \infty for each 0 \leq i \leq 3, we get
that \delta r0 \rightarrow 0.5 as r0 \rightarrow \infty , establishing (1.2) of Theorem 1.7.

To see (1.1) of Theorem 1.7 for r \geq 271, it suffices to compute explicitly the
values of the different constants. We may take c0 = 0.2421, c1 = 0.50, c2 = 1.08, and
c3 = 0.012. With this, we obtain \delta 271 < 0.747.

B.3.2. Bounds for medium \bfitr . For 7 \leq r \leq 270, we reduce the analysis to a
finite computation, which can be carried out easily through Mathematica. Computa-
tion shows that C may be taken to be 0.938.

For d \geq 2, we rely on Theorem 1.11 with the trivial bound D(H) \leq 
\bigl( 

n
r - 1

\bigr) 
and

Theorem 1.12 to obtain

\tau 

\nu 
\leq r

2

\Biggl[ 
1

l
+

\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 

1

\alpha r(d)
w.h.p.(B.13)

Since \alpha r is a monotone increasing function in d, it suffices to bound (B.13) at d= 2.
For 1/(r  - 1) \leq d \leq 2, we use Theorem 1.11 with D(H) \sim 

\bigl( 
n

r - 1

\bigr) 
(1  - e - d) and

Theorem 1.12 to obtain

\tau 

\nu 
\leq r

2

\Biggl[ 
1

l
+

\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] 
\eta r(d) w.h.p.(B.14)

Since \eta r(d) is monotone increasing for 1/(r  - 1) \leq d \leq 2, it suffices to bound (B.14)
at d= 2.

In either case, we have

\tau 

\nu 
\leq r

2

\Biggl[ 
1

l
+

\biggl( 
3 +

r - 1

l - 1

\biggr) \biggl( 
1 - 1

l

\biggr) r - 1
\Biggr] \Biggl( 

1 - 
\biggl( 

1

2r - 1

\biggr) 1/(r - 1)
\Biggr)  - 1

w.h.p.

Now it suffices to verify that for each 7 \leq r \leq 270, there exists an l \leq r/2 such that
the expression on the RHS is bounded by 0.938r.

Appendix C. 6-uniform hypergraphs. We need only consider d=\Theta (1). We
use Theorem 1.14 with l= 2 (and, of course, r= 6). It is easy to verify that

\zeta 1(6,2) =
20

32
and \zeta 2(6,2) =

12

32
.

And so, w.h.p.

\tau (H)< (1 + o(1))

\biggl( 
n

5

\biggr) \biggl[ 
5

32

\biggl( 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr) 
+

7

32

\bigl( 
1 - e - d

\bigr) \biggr] 
.

On the other hand, from Theorem 1.12, we have that w.h.p.

\nu (H)> (1 + o(1))

\biggl( 
n

5

\biggr) 
1

6

\Biggl[ 
1 - 

\biggl( 
1

5d+ 1

\biggr) 1/5
\Biggr] 
.
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We claim that for d\geq 1/5,

\tau 

\nu 
< 0.781 \cdot 6 = 4.686.

This is easily verified for d\geq 6 (since \tau \leq 3/8 and \nu is increasing in d). To show that
it is true for d\in [1/5,6], one may rely on a finite computation similar to [14, Lemma
1.6].

We note that the methods used in section 7 can be extended to give \tau /\nu <
0.721 \ast 6 = 4.326. Unfortunately, this is not enough to settle Conjecture 1.4. Hence,
we only give a brief sketch below.

We may obtain an explicit 5-cover of H by taking 5-sets of type 50,05,14, and
32 (in a uniform random partition). The bound in Theorem 1.14 is then obtained by
removing certain 5-sets of type 32. We may also (as in sections 7.1--7.3) remove 5-sets
of type 41 that only cover edges of type 51 (edges that these cover are also covered by
5-sets of type 50), and 5-sets of type 05,50 that only cover edges contained within the
same block (though one then needs to add back a small proportion of these). This
results in a bound of the form

\tau < (1 + o(1))

\biggl( 
n

5

\biggr) 
3

8

\biggl[ 
1 - exp

\biggl( 
 - d
2

\bigl( 
1 + e - d

\bigr) \biggr) \biggr] 
.

Appendix D. Further computations. The parameter \zeta 1(r, l), introduced just
before the statement of Theorem 1.14, can be expressed explicitly as

\zeta 1(r, l) =
1

lr - 1

\sum 
a1+\cdot \cdot \cdot +al=r - 1, ai\geq 2

\biggl( 
r - 1

a1, . . . , al

\biggr) 
,(D.1)

and so for d=\Theta (1) (and d\geq 1/(r - 1)), Theorems 1.12 and 1.14 can be combined to
give an upper bound on \tau /\nu that (up to a factor of 1+on(1)) is an explicit expression
involving r, l, and d, specifically,

\tau 

\nu 
\leq (1 + o(1)) min

2\leq l\leq r/2
sup

d\geq 1/(r - 1)

\left(    \psi r,l(d)

1
r

\biggl( 
1 - 

\Bigl( 
1

(r - 1)d+1

\Bigr) 1/(r - 1)
\biggr) 
\right)    .(D.2)

The expression in (D.1) is not amenable to easy calculation, except for quite small
r; however, setting T (r, l) = lr - 1\zeta 1(r, l), we have the following much simpler explicit
expression:

T (r, l) = l!

l\sum 
j=0

( - 1)j
\biggl( 
r - 1

j

\biggr) \biggl\{ 
r - 1 - j
l - j

\biggr\} 
(D.3)

(see [19, A200091]). Here \{ a
b \} is the Stirling number of the second kind. Using this

expression, the minimax optimization (D.2) can be computed using Mathematica

in a reasonable amount of time, up to say r = 500. For larger values of r, we can
still obtain upper bounds for the ratio \tau /\nu by a judicious restriction on the range
of l. Table D.1 shows the results obtained for 6 \leq r \leq 85. For 86 \leq r \leq 1000, the
bound obtained on \tau /\nu is always at most Cr for C < .60. Specifically, we may take
C = 0.5993. This strongly suggests that we may take C < 0.60 for all r \geq 83, and
since \delta 1000 < 0.6964, these computations are enough to show certainly that the ratio
\tau /\nu is bounded above by Cr for some C < 0.7 for all r\geq 12.
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Table D.1.
The results of running the minimax optimization (D.2) on Mathematica for 6\leq r\leq 85.

r \tau /(r\nu )\leq r \tau /(r\nu )\leq r \tau /(r\nu )\leq r \tau /(r\nu )\leq 
6 0.7805 26 0.6263 46 0.611 66 0.6058
7 0.7064 27 0.6253 47 0.6097 67 0.604

8 0.6789 28 0.6266 48 0.6093 68 0.6026

9 0.6804 29 0.6299 49 0.6098 69 0.6018
10 0.699 30 0.6309 50 0.6109 70 0.6014

11 0.7062 31 0.6248 51 0.6127 71 0.6013

12 0.6741 32 0.6209 52 0.6099 72 0.6017
13 0.6565 33 0.6188 53 0.608 73 0.6025

14 0.6503 34 0.6185 54 0.6067 74 0.6027

15 0.6526 35 0.6196 55 0.6062 75 0.6013
16 0.6613 36 0.6221 56 0.6063 76 0.6003

17 0.6638 37 0.622 57 0.607 77 0.5997

18 0.6484 38 0.6178 58 0.6082 78 0.5994
19 0.6392 39 0.6151 59 0.6075 79 0.5995

20 0.6353 40 0.6136 60 0.6057 80 0.5999
21 0.6357 41 0.6134 61 0.6044 81 0.6005

22 0.6397 42 0.6141 62 0.6037 82 0.6003

23 0.6465 43 0.6159 63 0.6035 83 0.5992
24 0.6369 44 0.6165 64 0.6038 84 0.5984

25 0.63 45 0.6132 65 0.6046 85 0.5979
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