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We analyze three applications of Ramsey’s Theorem for 4-tuples to infinite traceable graphs and finitely gen-
erated infinite lattices using the tools of reverse mathematics. The applications in graph theory are shown to be
equivalent to Ramsey’s Theorem while the application in lattice theory is shown to be provable in the weaker
system RCA0 .
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1 Introduction

This paper falls within the general program of investigating the proof theoretic strength (in terms of reverse
mathematics) of combinatorial principals which follow from versions of Ramsey’s theorem. We examine two
statements in graph theory and one statement in lattice theory proved by Galvin, Rival and Sands [1] using
Ramsey’s theorem for 4-tuples. Our main results are that the statements concerning graph theory are equivalent
to Ramsey’s theorem for 4-tuples over RCA0 while the statement concerning lattices is provable in RCA0 . We
give the basic definitions for graph theory and lattice theory below, but assume the reader is familiar with the
general program of reverse mathematics. The definitions in this section are all given within RCA0 .

If X ⊆ N and n ∈ N, then [X]n denotes the set of all n-element subsets of X . A k-coloring of [X]n is
a function c : [X]n −→ k. Ramsey’s theorem for n-tuples and k colors

(
denoted RTn

k

)
is the statement that

for all k-colorings of [N]n , there is an infinite set X such that [X]n is monochromatic. Such a set X is called a
homogeneous set for the coloring. We let RT(4) denote the statement ∀kRT4

k . In terms of reverse mathematics,
RTn

k is equivalent to ACA0 over RCA0 for all n ≥ 3 and k ≥ 2 and RT(4) is equivalent to ACA0 over RCA0 .
(Cf. [3, Section III.7].)

Before giving the Galvin, Rival and Sands results, we introduce some basic terminology from graph theory
in RCA0 . A graph G is a pair (VG,EG ) = (V,E) such that V (the vertex set) is a subset of N and E (the edge
relation) is a symmetric irreflexive binary relation on V . (Thus our graphs are undirected and have no edges from
a vertex to itself.) If E(x, y) holds, then we say there is an edge between x and y. When specifying the edge
relation on a graph, we assume that whenever we say E(x, y) holds we implicitly declare that E(y, x) holds as
well. (That is, we abuse notation by regarding E(x, y) as shorthand for E(x, y) ∧ E(y, x).) When we deal with
more than one graph, we denote the vertex set and edge relation of G by VG and EG .

A n-path in a graph G is a sequence of distinct vertices v0 , v1 , . . . , vn−1 such that E(vi, vi+1) holds for all
i ≤ n−2. (A finite path is an n-path for some n ∈ N.) Similarly, an infinite path is a sequence of distinct vertices
v0 , v1 , . . . (formally, specified by a function f : N −→ V ) such that E(vi, vi+1) for all i ∈ N. If a path (finite or
infinite) satisfies E(vi, vj ) if and only if |i− j| = 1, then we say the path is chordless. That is, a chordless path is
a sequence of vertices v0 , v1 , . . . (possibly finite) in which the only edges are between vertices of the form vi and
vi+1 . (We use the terminology of a chordless path from Galvin, Rival and Sands, but such a path is also called an
induced path in the literature.) An infinite graph G contains arbitrarily long chordless paths if for each n ∈ N,
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G contains a chordless n-path. Similarly, we say G contains an infinite chordless path if G contains an infinite
path which is chordless.

An infinite graph G = (V,E) is traceable if there is a bijection T : N −→ V (called a tracing function) such
that for all i ∈ N, E(T (i), T (i + 1)). Thus, a traceable graph is one in which there is a path containing all the
vertices. (A similar definition can be given when G is finite.)

A graph G = (V,E) is bipartite if there is a partition V = V0 ∪ V1 such that for each edge E(x, y) there is an
i ∈ {0, 1} such that x ∈ Vi and y ∈ V1−i . We use three specific bipartite graphs in this paper. The first graph is
K2,2 which has four vertices a0 , a1 , b0 and b1 with edges between ai and bj for i, j ≤ 1.
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The second graph is the complete countable bipartite graph Kω,ω . Its vertices are V = V0 ∪V1 where V0 = {an |
n ∈ N} and V1 = {bn | n ∈ N} with edges between an and bm for all n,m ∈ N.
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Following the notation of [1], the third graph will be denoted A. Its vertices are V = V0 ∪ V1 where V0 = {an |
n ∈ N} and V1 = {bn | n ∈ N} with edges between an and bm for all n ≤ m.
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If G and H are graphs, then we say G contains a subgraph isomorphic to H (or G contains a copy of H , or
there is an embedding of H into G), if there is an injective function g : VH −→ VG such that for all x, y ∈ VH ,
if there is an edge between x and y in H , then there is an edge between g(x) and g(y) in G. (Note that we allow
additional edges in G between elements in the range of g.) The two graph theoretic results in [1] are as follows.

Theorem 1.1 Every infinite traceable graph either contains arbitrarily long finite chordless paths or contains
a subgraph isomorphic to A. [1]

Theorem 1.2 Every infinite traceable graph containing no chordless 4-path contains a subgraph isomorphic
to Kω,ω . [1]

As an application of Theorem 1.1, Galvin, Sands and Rival prove the following lattice theoretic result. (The
lattice terminology is defined in Section 3.)

Theorem 1.3 Every finitely generated infinite lattice of length 3 contains arbitrarily long finite fences. [1]

In Section 2, we show that Theorems 1.1 and 1.2 are equivalent to ACA0 over RCA0 . In Section 3, we show that
Theorem 1.3 is provable in RCA0 . We follow [3] for the reverse mathematics and we follow [4] for computability
theory.

2 Traceable graphs

We begin this section with a computable combinatorics result which will translate into a result in reverse mathe-
matics. If G = (V,E) is a graph and x ∈ V , then we say x has infinite degree if there are infinitely many y such
that E(x, y). Let V ∞ denote the set of vertices with infinite degree in G.
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Theorem 2.1 There is an infinite computable graph G = (V,E) such that G has a computable tracing func-
tion, G has no chordless 4-paths and for all X ,

if there is an e such that WX
e is infinite and WX

e ⊆ V ∞, then 0′ ≤ T X.

P r o o f. We build G in stages using a dump construction to create a computable sequence of nested subgraphs.
At stage s, our graph Gs = (Vs, Es) has Vs = {0, 1, . . . , ks} for some ks ∈ N. If t > s, then kt > ks and for any
x, y ∈ Vs , Et(x, y) holds if and only if Es(x, y) holds. Thus, the vertex set V =

⋃
s Vs = N is computable, the

edge relation E =
⋃

s Es is computable, and hence G is computable.
At stage s, the vertex set Vs will be further subdivided into nonempty convex blocks B0,s , B1,s , . . . , Bs,s .

(That is, if n < p < m and n,m ∈ Bj,s , then p ∈ Bj,s .) Each block Bj,s will have a coding vertex cj,s ,
which will be the largest element of the block. Thus, B0,s = {x | 0 ≤ x ≤ c0,s} and for 0 < j ≤ s,
Bj,s = {x | cj−1,s < x ≤ cj,s}. For x, y ≤ ks , we say x and y are in the same s-block if there is a j ≤ s such
that x, y ∈ Bj,s and we say x and y are in different s-blocks otherwise.

At stage s + 1, we may collapse a final segment of these blocks by picking a value 0 ≤ n ≤ s and “dumping”
all the blocks currently after Bn,s into Bn,s+1 , i.e., setting

⋃
n≤m≤s Bm,s ⊆ Bn,s+1 . When we do this, we will

redefine the coding vertices cm,s+1 for m ≥ n to be new large numbers. In the end, each coding vertex will have a
limit cn = lims cn,s and each block will have a finite limiting block Bn = lims Bn,s . The limiting coding vertices
will satisfy c0 < c1 < c2 < · · · .

The only vertices with infinite degree will be the limiting cn coding vertices. Suppose X can enumerate an
infinite set of infinite degree vertices. Then X can compute an infinite set of infinite degree vertices in increasing
order and hence X can compute a function f such that f(n) ≥ cn . Therefore, it suffices to construct G so that
any function dominating the sequence c0 , c1 , . . . can compute 0′. The obvious way to do this is to make sure that
n ∈ K if and only if n ∈ Kcn

. The idea of the construction is to dump later blocks into Bn,s if n enters Ks and
redefine cn,s+1 ≥ s.

Fix an enumeration Ks of the halting problem K such that exactly one number enters Ks at each stage s. Our
construction proceeds in stages as follows. At stage 0, set V0 = {0} (and thus k0 = 0), E0 = ∅, B0,0 = {0} and
c0,0 = 0.

At stage s + 1, check to see if the number n entering K at stage s is large (n > s) or small (n ≤ s). If a
number n > s enters Ks , then define Gs+1 as follows. Let Vs+1 = Vs ∪ {ks + 1}. (Recall that ks is the largest
number in Vs . Thus ks+1 = ks + 1.) For each j ≤ s, leave the blocks Bj,s+1 = Bj,s unchanged and leave
the coding vertices cj,s+1 = cj,s unchanged. Define a new block Bs+1,s+1 = {ks + 1} containing the newly
added vertex and set its coding vertex cs+1,s+1 = ks + 1. Add new edges between cs+1,s+1 and the other coding
vertices cj,s+1 for j ≤ s and end the stage. (That is, let Es+1 contain Es plus the edges Es+1(cj,s+1 , cs+1,s+1)
for each j ≤ s.)

If a number n ≤ s enters K at stage s, then define Gs+1 as follows. Let u = (s + 1) − n. Expand Vs to Vs+1
by adding u + 1 many new vertices ks + 1, ks + 2, . . . , ks + u + 1. (Thus ks+1 = ks + u + 1.) For each j < n,
leave the blocks Bj,s+1 = Bj,s and the coding vertices cj,s+1 = cj,s unchanged. Dump the current later blocks
and one additional element ks + 1 into Bn,s+1 , and redefine the coding vertex cn,s+1 = ks + 1. That is, set

Bn,s+1 =
⋃

n≤m≤s

Bm,s ∪ {ks + 1} and cn,s+1 = ks + 1.

Use the remaining new elements ks + 2, . . . , ks + u + 1 to define new single element blocks Bn+1,s+1 , . . . ,
Bs+1,s+1 with the single elements as the designated coding vertices. That is, for each 1 ≤ v ≤ u set

Bn+v ,s+1 = {ks + v + 1} and cn+v ,s+1 = ks + v + 1

Expand Es to Es+1 by adding new edges between each of the new coding vertices ca,s+1 (for n ≤ a ≤ s + 1)
and all the other coding vertices cb,s+1 (for 0 ≤ b ≤ s + 1 with b �= a). Also add edges Es+1(cn,s+1 , x) for all
x ∈ Bn,s+1 with x �= cn,s+1 . End the stage.

This completes the construction of G. As indicated above, G is computable because there is an edge between
x and y only if there is an edge between them at the first stage s at which x, y ∈ Gs . We check the remaining
properties in a series of lemmas.
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Lemma 2.2 For all s, j ≤ s, and x ∈ Bj,s , we have

x ≤ cj,s ∧ (x �= cj,s −→ Es(x, cj,s)).

P r o o f. This fact by induction on s. For s = 0, it holds for c0,0 since B0,0 is a singleton set. For s + 1, we
split into cases depending on whether a small number enters Ks . If not, then the property holds for j < s + 1 by
the induction hypothesis and the fact that the blocks and coding locations indexed by j < s + 1 do not change. It
holds for j = s + 1 since Bs+1,s+1 is a singleton set.

If n ≤ s enters Ks , then the property holds for j < n by the induction hypothesis and the fact that the blocks
and coding vertices indexed by j < n do not change. It holds for j = n because cn,s+1 = ks + 1 is the largest
element of Bn,s+1 and we add edges at stage s + 1 between this coding vertex and all the elements of Bn,s+1 . It
holds for n < j ≤ s + 1 because each block Bj,s+1 is a singleton set.

Lemma 2.3 For all s and i �= j ≤ s, we have that Es(ci,s , cj,s).

P r o o f. This lemma follows by induction on s since we add edges between any new or redefined coding
vertices and all other coding vertices at each stage.

Lemma 2.4 For all s and d < ks , we have that Es(d, d + 1).

P r o o f. This fact follows by induction on s. For s = 0, it is vacuously true since k0 = 0. For s+1, we split into
cases depending on whether a small number enters Ks . If not, then ks+1 = ks + 1. By the induction hypothesis,
we have Es(d, d + 1), and hence Es+1(d, d + 1), for all d < ks . It remains to show that Es+1(ks, ks+1). Since
ks is the greatest element in Vs , it is also the greatest element in Bs,s . By Lemma 2.2, cs,s = ks and hence by the
construction cs,s+1 = ks . Since cs+1,s+1 = ks+1 = ks + 1 and since we add the edge Es+1(cs+1,s+1 , cs,s+1),
we have the edge Es+1(ks, ks+1) as required.

For the remaining case, suppose n ≤ s enters Ks and hence ks+1 = ks + u + 1 where u = (s + 1) − n. By
the induction hypothesis, Es(d, d + 1), and hence Es+1(d, d + 1), holds for all d < ks . It remains to show that
Es+1(ks +v, ks +v +1) holds for all v ≤ u. First consider when v = 0. By construction, ks, ks+1 ∈ Bn,s+1 and
cn,s+1 = ks+1 . Since we add edges from cn,s+1 to each element of Bn,s+1 , we have Es+1(ks, ks+1) as required.
Finally, consider when v > 0. In this case, cn+v−1,s+1 = ks +v and cn+v ,s+1 = ks +v +1. By construction, we
add an edge between these coding vertices at stage s+1 and hence have Es+1(ks +v, ks +v+1) as required.

By Lemma 2.4, E(n, n + 1) holds for all n. Since T (n) = n is a bijection from N to V = N, T (n) = n is a
computable tracing function for G. We next show that G has no chordless 4-paths. It suffices to show that each
Gs has no chordless 4-paths. We need two additional technical lemmas before establishing this fact. The first
technical lemma says that whenever we have an edge Es(x, y) with x < y, then either x and y are in the same
s-block or x is a coding vertex x = cj,s for some j ≤ s.

Lemma 2.5 For all s and x < y ∈ Gs , we have: if Es(x, y), then there is a j ≤ s such that x, y ∈ Bj,s or
there is a j ≤ s such that x = cj,s .

P r o o f. This lemma follows by induction on s. For s = 0, it is trivial since |G0 | = 1. For s + 1, assume that
x < y ∈ Gs+1 and Es+1(x, y). We need to show that either x, y ∈ Bj,s+1 for some j ≤ s + 1 or x has the form
cj,s+1 . We split into cases depending on which (if any) of x and y are in Gs . If x �∈ Gs , then by construction,
x = cj,s+1 for some j and we are done.

If x ∈ Gs and y �∈ Gs , then y has the form cj,s+1 for either j = s + 1 (if no small number entered Ks)
or for some n ≤ j ≤ s + 1 (if n ≤ s entered Ks). In the former case, by construction Es+1(x, y) implies
that x = cj,s+1 for some j ≤ s and we are done. In the latter case, we split into cases depending on whether
y = cn,s+1 or y = cj,s+1 for j > n. If y = cn,s+1 , then Es+1(x, y) implies that either x ∈ Bn,s+1 (and we are
done since y = cn,s+1 ∈ Bn,s+1) or x = c�,s+1 for some � �= j (and we are done). If y = cj,s+1 for j > n, then
Es+1(x, y) implies that x = c�,s+1 for some � �= j (and we are done).

Therefore, we are left with the case when x, y ∈ Gs . Since x, y ∈ Gs and Es+1(x, y), Es(x, y) must hold.
By the induction hypothesis, either x, y ∈ Bj,s for some j ≤ s or x has the form cj,s . If x and y are in the same
s-block, then by construction they are in the same (s+1)-block. (This block may or may not have the same index
at stage s + 1 depending on whether dumping occurred at stage s + 1.)
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Therefore, we are left with the case when x, y ∈ Gs , x and y are not in the same s-block and hence x = cj,s

for some j ≤ s. If cj,s = cj,s+1 , then x = cj,s+1 and we are done. Therefore, assume that cj,s �= cj,s+1 . By the
construction, this only occurs when a number n ≤ s enters Ks and j ≥ n. In this case, x = cj,s is dumped into
Bn,s+1 . Since x < y and y ∈ Gs , y must also be dumped into Bn,s+1 . Hence, we have x, y ∈ Bn,s+1 and are
done.

Our second technical lemma says that whenever we have vertices x < y which are connected but in different
s-blocks, then x is connected to all of the elements in the s-block containing y.

Lemma 2.6 The following statement holds for all stages s. Let x < y ∈ Gs with Es(x, y) and let j ≤ s be
such that y ∈ Bj,s . If x �∈ Bj,s , then Es(x, z) holds for all z ∈ Bj,s .

P r o o f. We prove this lemma by induction on s. If s = 0 then the statement holds trivially. For s + 1, first
consider the case when no small number enters Ks . Let j be such that y ∈ Bj,s+1 and assume x �∈ Bj,s+1 . If
j �= s + 1, then we are done because Es(x, z) (and hence Es+1(x, z)) holds for all z ∈ Bj,s = Bj,s+1 by the
induction hypothesis. If j = s + 1, then y = cs+1,s+1 and Bj,s+1 = {y}, so again we are done.

Second assume that n ≤ s enters Ks . As above, let j ≤ s+1 be such that y ∈ Bj,s+1 and assume x �∈ Bj,s+1 .
If j < n, then as above (since Bj,s+1 = Bj,s) we are done by the induction hypothesis. If j > n, then as above
(since Bj,s+1 = {y}) we are done trivially. Therefore, assume that j = n. In this case, Bn,s+1 =

⋃
n≤l≤s Bl,s ∪

{cn,s+1}. By Lemma 2.5, x < y and x �∈ Bn,s+1 implies that x = ci,s+1 for some i < n. By construction,
ci,s+1 = ci,s , so x = ci,s . Therefore, for all � such that n ≤ � ≤ s, we have x < c�,s , x �∈ B�,s and Es(x, c�,s)
holds. By the induction hypothesis, Es(x, z) (and hence Es+1(x, z)) holds for all z ∈

⋃
n≤�≤s B�,s . Furthermore,

by construction, Es+1(x, cn,s+1) holds completing this case.

Lemma 2.7 For all s, Gs has no chordless 4-paths.

P r o o f. We proceed by induction on s. For s = 0, it follows trivially since |G0 | = 1. For s + 1, split into
cases depending on whether a small number enters Ks .

First, assume that no small number enters Ks and assume for a contradiction that there is a chordless 4-path
x0 , x1 , x2 , x3 in Gs+1 . By definition, we have Es+1(xi, xi+1) for i < 3 and no other edges between these nodes
(except those induced by symmetry). By the induction hypothesis, at least one xi must lie outside Gs and hence
we have xi = ks +1 = cs+1,s+1 for some i ≤ 3. We break into cases depending on which xi is equal to cs+1,s+1 .
Notice that if x0 , x1 , x2 , x3 is a chordless 4-path, then x3 , x2 , x1 , x0 is also a chordless 4-path. Therefore, by
symmetry, it suffices to show that we cannot have x0 = cs+1,s+1 or x1 = cs+1,s+1 . (Recall that the elements in
a path are required to be distinct. We use this fact repeatedly without mention.)

– If x0 = cs+1,s+1 , then by constuction Es+1(x0 , x1) implies that x1 = c�,s+1 for some � ≤ s. We break into
subcases depending on the form of x2 .
– Suppose x2 < x1 and x2 �∈ B�,s+1 . By Lemma 2.5, x2 = cj,s+1 for some j < � and hence Es+1(x0 , x2)

for a contradiction.

– Suppose x2 ∈ B�,s+1 and consider the form of x3 . If x3 ∈ B�,s+1 , then we have Es+1(x1 , x3) for a
contradiction. If x3 < x2 and x3 �∈ B�,s+1 , then x3 = cj,s+1 for some j < � and we have Es+1(x0 , x3)
for a contradiction. The remaining case, x3 > x2 and x3 �∈ B�,s+1 is not possible by Lemma 2.5 since
x2 ∈ B�,s but x2 �= c�,s+1 .

– Suppose x2 > x1 (so x2 �∈ B�,s+1) and consider the form of x3 . If x3 is in the same (s + 1)-block as
x2 , then since Es+1(x1 , x2) holds, we have by Lemma 2.6 that Es+1(x1 , x3) holds for a contradiction.
If x3 < x2 and is not in the same (s + 1)-block as x2 , then by Lemma 2.5, x3 = ci,s+1 for some i and
hence Es+1(x0 , x3) holds for a contradiction. If x3 > x2 and is not in the same (s + 1)-block as x2 , then
by Lemma 2.5, x2 = ci,s+1 for some i and Es+1(x0 , x2) holds for a contradiction.

– If x1 = cs+1,s+1 , then by the construction, x0 = c�,s+1 and x2 = cm,s+1 for some � �= m. By Lemma 2.3,
Es+1(x0 , x2) holds for a contradiction.

Next assume that n ≤ s enters Ks and x0 , x1 , x2 , x3 is a chordless 4-path. By the induction hypothesis, at
least one of the xi is not in Gs and hence must have the form xi = cj,s+1 for some n ≤ j ≤ s + 1. If xi = cj,s+1
for n < j ≤ s + 1, then since Bj,s+1 = {cj,s+1}, the same argument as in the previous case (when no small
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number enters Ks) suffices to derive a contradiction. Therefore, we can assume without loss of generality that
the chordless path is contained in B0,s+1 ∪ · · · ∪ Bn,s+1 and that xi = cn,s+1 for some i ≤ 3. By symmetry, it
suffices to consider the cases when x0 = cn,s+1 and x1 = cn,s+1 . (Below, we frequently use without mention
that none of the xi have the form c�,s+1 for � > n and that if xi ∈ Bn,s+1 and xj �∈ Bn,s+1 , then xj < xi .)

– Suppose x0 = cn,s+1 and consider the form of x1 . Since x1 < x0 , either x1 ∈ Bn,s+1 or x1 = c�,s+1 for
some � < n. Consider these cases separately.

– Suppose x1 ∈ Bn,s+1 and consider the form of x2 . If x2 ∈ Bn,s+1 , then Es+1(x0 , x2) holds (since
x0 = cn,s+1 is connected to all vertices in Bn,s+1) for a contradiction. If x2 �∈ Bn,s+1 , then x2 < x1 and
hence by Lemma 2.5, x2 = c�,s+1 for some � < n. Thus Es+1(x0 , x2) holds for a contradiction.

– Suppose x1 = c�,s+1 for some � < n and consider the form of x2 . There are three cases to consider.

– Assume x2 ∈ B�,s+1 and consider the form of x3 . If x3 ∈ B�,s+1 , then by Lemma 2.2, Es+1(x1 , x3)
holds for a contradiction. If x3 �∈ B�,s+1 , then by Lemma 2.5 and the fact that x2 ∈ B�,s+1 but
x2 �= c�,s+1 , we have x3 < x2 and hence x3 = ci,s+1 for some i < �. But then Es+1(x0 , x3) holds for
a contradiction.

– Assume x2 < x1 and x2 �∈ B�,s+1 . By Lemma 2.5, x2 = ci,s+1 for some i < � and hence Es+1(x0 , x2)
holds for a contradiction.

– Assume x2 > x1 (so x2 �∈ B�,s+1) and consider the form of x3 . If x3 is the same (s + 1)-block as x2 ,
then since Es+1(x1 , x2) holds, Lemma 2.6 implies Es+1(x1 , x3) holds for a contradiction. Therefore,
x3 is not in the same (s + 1)-block as x2 . Therefore, by Lemma 2.5, either x2 or x3 has the form ci,s+1
for some i. Hence either Es+1(x0 , x2) holds or Es+1(x0 , x3) holds, giving a contradiction.

– Suppose x1 = cn,s+1 . By the construction, x1 is connected only to the vertices in Bn,s+1 and the coding
vertices c�,s+1 . Since Es+1(x0 , x1) and Es+1(x1 , x2) hold, either x0 ∈ Bn,s+1 or x0 = c�,s+1 for some
� < n, and either x2 ∈ Bn,s+1 or x2 = ci,s+1 for some i < n. Consider each of the possible combinations
separately.

– Suppose x0 = c�,s+1 and x2 = ci,s+1 . In this case, Es+1(x0 , x2) holds for a contradiction.

– Suppose x0 = c�,s+1 and x2 ∈ Bn,s+1 . Since x0 < x1 , x0 �∈ Bn,s+1 , Es+1(x0 , x1) holds and x1 , x2 ∈
Bn,s+1 , Lemma 2.6 implies that Es+1(x0 , x2) holds for a contradiction.

– Suppose x0 ∈ Bn,s+1 and x2 = ci,s+1 . Since x2 < x1 , x2 �∈ Bn,s+1 , Es+1(x2 , x1) holds and x0 , x1 ∈
Bn,s+1 , Lemma 2.6 implies that Es+1(x2 , x0) holds for a contradiction.

– Suppose x0 , x2 ∈ Bn,s+1 . Consider the form of x3 . If x3 ∈ Bn,s+1 , then Es+1(x1 , x3) holds for a
contradiction. Therefore, x3 �∈ Bn,s+1 and x3 < x2 . By Lemma 2.5, x3 = cj,s+1 for some j < n. By
construction Es+1(x1 , x3) holds for a contradiction.

We have now established that G is a computable graph with a computable tracing function and no chordless
4-paths. It remains to show that if X can enumerate an infinite set of infinite degree vertices, then 0′ ≤T X .

Lemma 2.8 For all k, lims ck,s = ck exists.

P r o o f. For any stage s ≥ k, ck,s+1 �= ck,s only if the block Bk,s is dumped at stage s + 1 into a block
Bn,s+1 with n ≤ k. Since this happens only if a number n ≤ k enters Ks , we have that ck,s can change at most
k + 1 many times after it is first defined.

From Lemma 2.8 and the construction it is clear that for all indices k and all stages s ≥ k, ck,s ≤ ck,s+1 .
Therefore, each ck,s is increasing in s and stabilizes when it reaches its limit. It is also clear that c0 < c1 < · · ·
and that x ≤ cx for all x. Finally, since for all stages s, B0,s = {x | 0 ≤ x ≤ c0,s} and Bj,s = {x | cj−1,s <
x ≤ cj,s} for 0 < j ≤ s, we have that each block reaches a limit Bj = lims Bj,s and each vertex x sits inside
some limiting block. (That is, for each vertex x, there is a stage s and a block Bj such that x ∈ Bj,s = Bj .)

Lemma 2.9 A vertex x ∈ G has infinite degree if and only if x = ck for some k.

P r o o f. First, note that each vertex ck has infinite degree since E(ck , c�) holds for all � �= k. (More formally,
if s and t are stages such that ck,s = ck and c�,s = c� , then by stage u = max{s, t} we have added an edge
Eu (ck , c�).)
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Second, let x be a vertex such that x �= ck for all k. Suppose for a contradiction that x has infinite degree.
Fix a stage s and a block such that x ∈ Bj,s = Bj . Since x �= cj and both Bj,s and cj,s have reached limits, it
follows that for all stages t ≥ s, x ∈ Bj,t and x �= cj,t . Since x is assumed to have infinite degree, there must be
a vertex y > cj and a stage t > s such that Et(x, y) holds. By Lemma 2.2, y �∈ Bj,t and hence (since x < y and
Et(x, y)) by Lemma 2.5, x = c�,t for some �. Since x ∈ Bj,t we must have x = cj,t for a contradiction.

In addition to having x ≤ cx , it is clear that s ≤ ks for all s.

Lemma 2.10 For all x, we have x ∈ K if and only if x ∈ Kcx
.

P r o o f. Suppose x enters K at stage s. If s < x, then s < cx and hence x ∈ Kcx
. If x ≤ s, then at stage

s+1 of the construction, we dump later blocks into Bx,s+1 and set cx,s+1 = ks +1. Therefore, cx > s and hence
x ∈ Kcx

.

Lemma 2.11 If X can enumerate an infinite set of infinite degree vertices in G then 0′ ≤T X .

P r o o f. Define a function f ≤T X by setting f(0) = the first infinite degree vertex enumerated by X and
f(n + 1) = the first infinite degree vertex y enumerate by X such that y > f(n). By Lemma 2.9, f has the
property that cx ≤ f(x) for all x and hence x ∈ K if and only if x ∈ Kf (x) .

This completes the proof of Theorem 2.1.

Since the graph G constructed in Theorem 2.1 is traceable and has no chordless 4-paths, Theorems 1.1 and 1.2
tell us that G has subgraphs isomorphic to A and to Kω,ω . However, if f is an embedding of either A or Kω,ω into
G, then f can enumerate an infinite set of infinite degree vertices in G. Therefore, by Theorem 2.1, 0′ ≤T f for
any embedding of A or Kω,ω into G. Thus we have the following corollary concerning the lack of effectiveness
of Theorems 1.1 and 1.2.

Corollary 2.12 There is a computable graph G with a computable tracing function and no chordless 4-paths
such that 0′ is computable from any embedding of A or Kω,ω into G.

We next translate this result into the language of reverse mathematics.

Theorem 2.13 (RCA0) The following are equivalent.

(1) Theorem 1.1.

(2) Theorem 1.2.

(3) ACA0 .

P r o o f. The fact that (3) implies (1) and (2) follows immediately from the proofs given in [1]. (Our Theo-
rem 1.1 is Theorem 1 in [1] and our Theorem 1.2 is [1, Theorem 2].) The proofs translate easily into proofs in
RCA0 + RT(4). Since ACA0 � RT(4), this gives the desired implications.

We prove (1) implies (3) and (2) implies (3) with essentially the construction given in the proof of Theorem 2.1.
For the remainder of this proof we work in RCA0 . Fix a 1-to-1 function f : N −→ N. It suffices to construct a
graph G so that any embedding of A or Kω,ω into G yields a Δ0

1 definition of the range of f .
We build a graph G in stages as in the proof of Theorem 2.1. At stage 0, set V0 = {0} (so k0 = 0), E0 = ∅,

B0,0 = {0} and c0,0 = 0. At stage s + 1, let n = f(s) and split into cases depending on whether n > s or n ≤ s.
If n > s, then define Gs+1 as follows. Let Vs+1 = Vs ∪ {ks + 1} and ks+1 = ks + 1. For each j ≤ s, let

Bj,s+1 = Bj,s and cj,s+1 = cj,s . Define Bs+1,s+1 = {ks+1} and cs+1,s+1 = ks+1 . Expand Es to Es+1 by
adding edges between cs+1,s+1 and each cj,s+1 for j ≤ s.

If n ≤ s, then let u = (s + 1) − n and define Gs+1 as follows. Let ks+1 = ks + u + 1 and define Vs+1 =
Vs ∪ {x | ks < x ≤ ks+1} = {x | x ≤ ks+1}. For j < n, let Bj,s+1 = Bj,s and cj,s+1 = cj,s . Set

Bn,s+1 =
⋃

n≤m≤s

Bm,s ∪ {ks + 1} and cn,s+1 = ks + 1.

For 1 ≤ v ≤ u, set

Bn+v ,s+1 = {ks + v + 1} and cn+v ,s+1 = ks + v + 1.
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Expand Es to Es+1 by adding edges between each pair cj,s+1 and ci,s+1 with i �= j ≤ s + 1. (If i, j < n then
these edges already exist in Es .)

Let G = (V,E) where V =
⋃

s Vs = N and E =
⋃

s Es . Lemmas 2.2, 2.3, 2.4, 2.5 and 2.6 were all proved
by Σ0

1 induction and hence are provable in RCA0 . Therefore, G is traceable and has no chordless 4-paths.
We need an analog of Lemma 2.9. Suppose x ∈ G and x is placed in G at stage s. By the construction, x = cj,s

for some j ≤ s. If for all t > s, we have x = cj,t , then x has infinite degree because we add an edge between
x and each new element added at stage t for all t > s. On the other hand, if there is a t > s such that x �= cj,t ,
then by construction x is never equal to a coding vertex ci,u for any u ≥ t. Since the only edges added at stages
u ≥ t are between vertices of the form ci,u and cj,u , x is never connected by an edge to another vertex after stage
t. Therefore, x has finite degree.

We also need an analog of Lemma 2.10. We claim that

∀ k ∀ s ≥ k(ck,s+1 �= ck,s ↔ f(s) ≤ k).

If f(s) ≤ k, then the dumping in the definition of Gs+1 causes ck,s to be redefined and hence ck,s+1 �= ck,s . On
the other hand, if ck,s+1 �= ck,s then dumping must have occurred because f(s) = n ≤ s. Furthermore, since
cj,s+1 = cj,s for all j < n, we cannot have k < n. Therefore, f(s) ≤ k.

We are now ready to apply (1) or (2) and extract a definition of the range of f . Since G is traceable and has no
chordless 4-paths, by (1) or (2), there is an embedding g : A −→ G or g : Kω,ω −→ G. Recall that each of the
vertices ak for k ∈ N in A or Kω,ω have infinite degree.

Define an auxiliary function g′ : N −→ N by g′(n) = max{g(ak ) | k ≤ n}.
(
Note that the sets {g(ak ) |

k ≤ n } exist by bounded Σ0
1 comprehension.

)
We claim that

∀ k ∀ t ≥ g′(k)(ck,g ′(k) = ck,t).

Suppose for a contradiction that this property fails for some k and fix t ≥ g′(k) such that ck,g ′(k) �= ck,t . Let
x = ck,g ′(k) . By our analog of Lemma 2.9, x has finite degree. However, by the definition of g′(k), x = g(ai) for
some i ≤ k. Thus ai has infinite degree in A or Kω,ω but g(ai) has finite degree in G, contradicting the fact that
g is an embedding.

By our analog of Lemma 2.10, this property implies that

∀ t ≥ g′(k)(f(t) �≤ k).

Thus, k is in the range of f if and only if there is an x ≤ g′(k) such that f(x) = k, completing the proof that (1)
and (2) imply (3).

3 Finitely generated lattices

Our goal for this section is to show that Theorem 1.3 is provable in RCA0 and hence its proof does not require the
use of Theorem 1.1. Before giving the formal lattice theoretic definitions, we prove a finite Ramsey style result,
Theorem 3.1 below, that is contained in [1]. The proof of Theorem 3.1 given in [1] explicitly uses Theorem 1.1
(and hence this proof requires ACA0) although the authors indicate that an alternate proof is available using the
Finite Ramsey Theorem. Our proof of Theorem 3.1 formalizes this alternate approach in RCA0 .

Recall that for m,n, u, k ∈ N, the notation [0,m] −→ (q)n
k means that for any k-coloring of [Y ]n , where

Y = [0,m], there is a set X ⊆ Y such that |X| = q and the coloring is monochromatic on [X]n . The Finite
Ramsey Theorem is the statement

∀n, u, k∃m
(
[0,m] −→ (q)n

k

)
.

The least m satisfying [0,m] −→ (q)n
k is called the finite Ramsey number for n-tuples with k many colors and

a homogeneous set of size q. Since the Finite Ramsey Theorem is provable in PA− + IΣ1 (cf. [2, Chapter II,
Theorem 1.10]) and PA− + IΣ1 is the first order part of RCA0 (cf. [3, Corollary IX.1.11]), it follows that RCA0
proves the Finite Ramsey Theorem. The finite style Ramsey result from [1] is as follows.
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Theorem 3.1 (RCA0) For all n ∈ N, there is an m such that for all finite traceable graphs G with |G| ≥ m,
either G contains a copy of K2,2 or G contains a chordless n-path.

P r o o f. Let n′ = max{n + 1, 8} and let m be the finite Ramsey number for 4-tuples with (n− 1)2 + 1 many
colors and a homogeneous set of size n′. We claim that this m satisfies the theorem.

Let G = (V,E) be a finite traceable graph with |G| ≥ m. Without loss of generality, we assume that V is an
initial segment of N and that E(i, i + 1) holds for all i < |G|. If G contains a chordless n-path, then we are done.
Hence assume that G does not contain such a chordless n-path.

For each x < y in G, fix a chordless path x = a0(x, y) < a1(x, y) < · · · < aN (x,y )(x, y) = y. (By assump-
tion, there is an increasing path from x to y and hence there is a minimal length increasing path from x to y which
is necessarily chordless.) Note that 1 ≤ N(x, y) ≤ n− 2. We use these fixed chordless paths to define a coloring
of [G]4 using (n − 1)2 + 1 many colors. For each 0 ≤ i, j ≤ n − 2 let

Ki,j = {{x, y, u, v} | x < y < u < v ∧ N(x, y) ≥ i ∧ N(u, v) ≥ j ∧ E(ai(x, y), aj (u, v))}.

That is, an increasing 4-tuple 〈x, y, u, v〉 is assigned color Ki,j if the i-th vertex in the fixed chordless path from
x to y is connected to the j-th vertex in the fixed chordless path from u to v. Let

K = {{x, y, u, v} | x < y < u < v ∧ ∀i �= j ≤ n − 1({x, y, u, v} �∈ Ki,j )}

be the color of any element of [G]4 not colored by any of the Ki,j colors. (Note that some 4-tuples may be
assigned more than one color of the form Ki,j . This does not affect the statement of the finite Ramsey theorem.)

By the finite Ramsey theorem, G must have a homogeneous set of size n′ for one of these colors. First consider
the case when this homogeneous set is for a color Ki,j . Since n′ ≥ 8, we have elements x1 < x2 < · · · < x8 in
our homogeneous set. By the definition of Ki,j , we have at least the following edges in G:

ai(x1 , x2)

����������
ai(x3 , x4)

����������

aj (x5 , x6) aj (x7 , x8)

Thus, the vertices ai(x1 , x2), ai(x3 , x4), aj (x5 , x6) and aj (x7 , x8) form a copy of K2,2 .
Second, consider the case when this homogeneous set is for the color K. In this case we derive a contradiction

by showing that G has a chordless n-path. Since n′ ≥ n + 1, we have elements x0 < x1 < · · · < xn−1 < xn in
our homogeneous set. Thus, we have a path

x0 = a0(x0 , x1) < a1(x0 , x1) < · · · < aN (x0 ,x1 )(x0 , x1) = x1 = a0(x1 , x2) < · · ·
· · · < aN (x1 ,x2 )(x1 , x2) = x2 = a0(x2 , x3) < · · · < aN (xn −1 ,xn )(xn−1 , xn ) = xn .

Define a sequence of vertices y0 < y1 < · · · from the vertices of this path as follows: take y0 = x0 and for
i > 0 take yi+1 to be the greatest vertex w on the path such that E(yi, w) holds. Continue until either yn−1 has
been defined or until the vertices of the path have been exhausted. Since {x0 , . . . , xn} is homogeneous for K, it
follows that for each xj ≤ v ≤ xj+1 on the path (0 ≤ j ≤ n − 2), the greatest vertex w on the path such that
E(v, w) holds satisfies w ≤ xj+2 , and so for all i we have yi ≤ xi+1 . This shows that the process of defining
the yi’s terminates with the definition of yn−1 . By construction, {y0 , . . . , yn−1} is the vertex set of a chordless
path.

It would be of interest to know the minimum m = m(n) such that all finite traceable graphs G with |G| ≥ m
either contain a copy of K2,2 or contain a chordless n-path. Our proof shows that there is a constant c > 0 such
that for all n ≥ 2 we have

m(n) ≤ tc�log n�(2)

where the tower function tk (x) is defined recursively by t1(x) = x and tk (x) = 2tk −1 (x) for k > 1. (This is an
easy calculation based on known bounds for finite Ramsey numbers.) Presumably this is far from the truth, but
any substatial improvement would require a new aproach to the proof of Theorem 3.1.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 58, No. 1–2 (2012) / www.mlq-journal.org 27

Before proving Theorem 1.3 in RCA0 , we give numerous definitions from lattice theory within RCA0 . A lattice
is a quadruple (L,≤L ,∧L ,∨L ) such that L ⊆ N, ≤L is a binary relation on L satisfying the axioms for a partial
order, and ∧L and ∨L are functions from L × L into L such that for all x, y ∈ L, x ∧L y is the greatest lower
bound of x and y, and x∨L y is the least upper bound of x and y. (Typically we shall drop the subscripts on ≤, ∧
and ∨.) We denote the least element of L (if it exists) by 0L and we denote the greatest element of L (if it exists)
by 1L .

A lattice of length 3 is a lattice with a least element and a greatest element such that every element x �∈
{0L , 1L} is either an atom (i.e., there are no elements y such that 0L < y < x) or a coatom (i.e., there are no
elements y such that x < y < 1L ).

Lemma 3.2 (RCA0) Let L be a lattice of length 3. There do not exist atoms x �= y and coatoms u �= v such
that x <L u, x <L v, y <L u and y <L v.

P r o o f. Suppose for a contradiction there are such elements. Since atoms are incomparable x <L x ∨ y and
since coatoms are incomparable x ∨ y <L u. Therefore, 0L <L x <L x ∨ y <L u <L 1L , contradicting the
definition of length 3.

Let L be a lattice. For each finite subset {g0 , g1 , . . . , gk} of elements of L, we define an increasing sequence
of finite subsets F1 ⊆ F2 ⊆ F3 ⊆ · · · of L by

F1 = {g0 , g1 , . . . , gk}
Fn+1 = {x ∧ y | x, y ∈ Fn} ∪ {x ∨ y | x, y ∈ Fn}.

(More formally, we define a sequence of finite set codes for these sets. Although we can form this sequence of
finite sets, we cannot in general form their union in RCA0 as that uses Σ0

1 comprehension.) We say L is finitely
generated if there exists a finite set {g0 , . . . , gk} such that for all x ∈ L there is an n such that x ∈ Fn .

A lattice L contains arbitrarily long finite fences if for every odd n, there is a sequence of elements
x0 , x1 , . . . , xn of L such that the Hasse diagram for these elements looks like

x1

��
��

��
��

x3

��
��

��
��

x5

��
��

��
��

· · · xn−2

		
		

		
		

	 xn

x0 x2 x4 · · · xn−3











xn−1

That is, x0 <L x1 , for each even i with 0 < i < n, xi <L xi−1 and xi <L xi+1 , and no other comparability
relations hold between these elements.

We can now formalize the proof of Theorem 1.3 (restated below) in RCA0 . The classical part of this proof
is a straightforward formalization of the proof given in [1] with an application of Theorem 3.1 in place of an
application of Theorem 1.1.

Theorem 3.3 (RCA0) Every finitely generated infinite lattice of length 3 contains arbitrarily long finite fences.

P r o o f. Because this theorem is a Π1
1 statement and RCA0 is conservative over WKL0 for Π1

1 statements, it
suffices to give a proof in WKL0 . Therefore, we work in WKL0 .

Let L be an infinite lattice of length 3 which is finite generated by {g0 , . . . , gk}. Define the finite subsets
F0 ⊆ F1 ⊆ · · · as above. We say that an element x ∈ L has rank 0 if x ∈ F0 (i.e., x is a generator of L). We say
x has rank n + 1 if x ∈ Fn+1 \ Fn . Note that every element has a rank and there are only finitely many elements
of each rank. Therefore, since L is infinite, for every n ∈ N, there is an element of rank n. Furthermore, there is
a function r(x) giving the rank of each element and there is a function m(n) such that for all x ∈ L and n ∈ N,
we have

r(x) = n implies x ≤ m(n).

Form a tree T ⊆ (L \ {0L , 1L})<N as follows. The sequence 〈x0 , x1 , . . . , xn 〉 ∈ T if and only if for every
i ≤ n, r(xi) = i, and for every 0 < i ≤ n, there is an a ∈ L with r(a) < i such that xi = xi−1 ∨ a or
xi = xi−1 ∧ a. T has the following properties.
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(P1) If 〈x0 , . . . , xn 〉 ∈ T , then the xi are distinct and for all i < n, xi is comparable with xi+1 . This property
follows since r(xi) = i, r(xi+1) = i + 1 and xi+1 = xi ∧ a or xi+1 = xi ∨ a for some a ∈ L. (Because
L has length 3, the xi elements alternate between atoms and coatoms.)

(P2) For every x ∈ L \ {0L , 1L}, there is a σ ∈ T such that σ ∗ x ∈ T . This property follows by induction
on the rank of x. If the r(x) = 0, then σ = ∅. If r(x) = n + 1, then x ∈ Fn+1 \ Fn . Without loss of
generality suppose x = y ∧ z where y, z ∈ Fn . Then r(y), r(z) ≤ n and either r(y) = n or r(z) = n.
Suppose r(y) = n. By the induction hypothesis, there is a τ ∈ T such that τ ∗ y ∈ T . Let σ = τ ∗ y and
it follows from the definition of T that σ ∗ x ∈ T .

(P3) T is infinite. This property follows from (P2) and the fact that L has elements of rank n for each n ∈ N.

(P4) The branching in T is bounded by the function m(n) in the sense that if σ ∈ T then for all i < |σ|,
σ(i) ≤ m(i). This property follows from the definition of T .

Since T is an infinite tree with bounded branching, WKL0 proves that T has an infinite path f : N −→
L\{0L , 1L}. (Cf. [3, Lemma IV.1.4].) By (P1), f is 1-to-1. Furthermore the range of f exists since x ∈ range(f)
if and only if f(n) = x where n = r(x). If f(0) is an atom, then the Hasse diagram of the range of f contains at
least the following comparability relations

f(1)

��
��

��
��

f(3)

��
��

��
��

f(5) · · ·

f(0) f(2) f(4) · · ·

and may contain additional comparability relations. If f(0) is a coatom, then we obtain the dual of this picture.
To avoid breaking into simple dual cases, we shall assume f(0) is an atom for the remainder of the proof.

Define a graph G = (V,E) with V = range(f) and E(f(n), f(m)) holds if and only if f(n) and f(m)
are comparable in L. G looks like the Hasse diagram above with possibly additional edges (since the lattice
elements in this diagram could have additional comparability relations). However, each f(2n) is an atom and
each f(2n+ 1) is a coatom. Therefore, by Lemma 3.2, G does not contain a copy of K2,2 . By (P1), f is a tracing
function for G, so G is an infinite traceable graph that does not contain a copy of K2,2 . Therefore, by Theorem
3.1, G contains arbitrarily long finite chordless paths. Since finite chordless paths in G are finite fences when
viewed in L, L contains arbitrarily long finite fences.
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