

Independent sets

John Engbers and David Galvin*

University of Notre Dame

March 14, 2012

An extremal question for independent sets

Independent set Set of pairwise non-adjacent vertices

- *i*(*G*): Number of independent sets in *G*
- $i_t(G)$: Number of independent sets of size t

Question

Fix a family \mathcal{G} of graphs.

- What is the maximum of i(G) as G ranges over G?
- What about the maximum of $i_t(G)$ for each t?

Trees of fixed order

 $\mathcal{T}(n)$: trees on *n* vertices


```
Theorem (Prodinger, Tichy, 1982)

For T \in \mathcal{T}(n),

• i(G) maximized by the star K_{1,n-1}
```

```
Theorem (Wingard, 1995)
```

For $T \in \mathcal{T}(n)$, and all t, • $i_t(G)$ maximized by $K_{1,n-1}$

Graphs with fixed order and number of edges

 $\mathcal{H}(n, m)$: graphs on *n* vertices with *m* edges

Theorem (Cutler, Radcliffe, 2011)

For $G \in \mathcal{H}(n, m)$,

• i(G) maximized by the lex graph L(n, m)

• for all t, $i_t(G)$ maximized by L(n, m)

The lex graph L(8, 11)

Independent sets

Graphs with fixed order and independence number

 $\mathcal{I}(n, \alpha)$: graphs on *n* vertices with $\alpha(G) = \alpha$

Theorem (Roman, 1976)

For $G \in \mathcal{I}(n, \alpha)$,

- i(G) maximized by union of α almost-equal-sized cliques
- for all t, $i_t(G)$ maximized by same graph

The case n = 12, $\alpha = 5$

Graph of fixed order that are regular of fixed degree

 $\mathcal{R}(n, d)$: d-regular graphs on n vertices

Theorem (Kahn, 2001; (Yufei) Zhao, 2011)
For
$$G \in \mathcal{R}(n, d)$$
,
• $i(G)$ maximized by $\frac{n}{2d}K_{d,d}$, union of $n/2d$ copies of $K_{d,d}$

Conjecture (Kahn, 2001)

For $G \in \mathcal{R}(n, d)$, and all t,

• $i_t(G)$ maximized by $\frac{n}{2d}K_{d,d}$

Asymptotic evidence given by Carroll, G., Tetali, and by Zhao

Graphs of fixed order with fixed minimum degree

 $\mathcal{G}(n, \delta)$: graphs on *n* vertices with minimum degree δ

Speculation

Removing edges increases independent set count, so maybe

• i(G) maximized by $\frac{n}{2\delta}K_{\delta,\delta}$

Not true, even for $\delta = 1$

Independent sets

An unbalanced maximizer

Theorem (G., 2011) For $n \ge 8\delta^2$ and $G \in \mathcal{G}(n, \delta)$, • i(G) uniquely maximized by $K_{\delta,n-\delta}$.

 $K_{3,n-3}$

Conjecture (G., 2011) For $G \in \mathcal{G}(n, \delta)$, • for $n \ge 2\delta$, i(G) maximized by $K_{\delta,n-\delta}$ • for smaller n, i(G) maximized by $K_{n-\delta,n-\delta,\dots,n-\delta,x}$ ($x \le n - \delta$) Fixed size independent sets in $\mathcal{G}(n, \delta)$

 $i_2(G)$ = number of non-edges, so $K_{\delta,n-\delta}$ definitely *not* the maximizer

Conjecture (G., 2011)

For $n \geq 2\delta$, $t \geq 3$ and $G \in \mathcal{G}(n, \delta)$,

• $i_t(G)$ maximized by $K_{\delta,n-\delta}$

Theorem (Alexander, Cutler, Mink, 2011+)

• Conjecture true for bipartite G

Theorem (Engbers, G., 2011+)

Full conjecture is true for

- $\delta = 1, 2, 3$
- $t \geq \delta + 1$, $n \geq 3.2\delta$
- $t \ge 2\delta + 1$, $n \ge 3\delta + 1$

Proof for
$$t \ge 2\delta + 1$$
, $n \ge 3\delta + 1$ (I)

Observation

• Suffices to consider $t = 2\delta + 1$

Proof Suppose we know that for some $t > \delta$,

$$i_t(G) \leq i_t(K_{\delta,n-\delta}) = \binom{n-\delta}{t}$$

Then

$$\#(ordered \text{ independent } t\text{-sets}) \leq (n-\delta)^{\underline{t}}$$

Once *t* vertices chosen, at least $\delta + t$ ruled out, so

 $\#(\text{ordered independent } (t+1)\text{-sets}) \leq (n-\delta)^{\underline{t}}(n-(\delta+t)) = (n-\delta)^{\underline{t+1}}$

and so

$$i_{t+1}(G) \leq \binom{n-\delta}{t+1} = i_{t+1}(K_{\delta,n-\delta})$$

Proof for
$$t \ge 2\delta + 1$$
, $n \ge 3\delta + 1$ (II)

Proof strategy

 i_t

• Prove $t = 2\delta + 1$ case by induction on *n*

Base case $n = 3\delta + 1$ is trivial

Induction, case 1 There is $x \in V(G)$ with $\delta(G - x) = \delta$

$$\begin{array}{ll} (G) &=& i_t(G-x) + i_{t-1}(G-x-N(x))\\ &\leq& \binom{(n-1)-\delta}{t} \mbox{ (induction)} + \binom{n-(\delta+1)}{t-1} \mbox{ (trivial)}\\ &\leq& \binom{n-\delta}{t} \mbox{ (Pascal)} \end{array}$$

Proof for $t \ge 2\delta + 1$, $n \ge 3\delta + 1$ (III)

Induction, case 2 There is $no x \in V(G)$ with $\delta(G - x) = \delta$

Ordered independent *t*-sets starting with vertex of degree $> \delta$:

 $N_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\dots(n-(\delta+t))$

where k = number of vertices of degree $> \delta$

Ordered independent *t*-sets starting with vertex of degree = δ :

$$N_{=\delta} \leq (n-k)(n-(\delta+1))(n-(\delta+2))\dots(n-2\delta)$$
$$(n-(2\delta+2))((n-(2\delta+2)))\dots(n-(\delta+t))$$

Why the missing term?

- Worst case: each new vertex shares δ neighbors of first choice
- This can't happen $\delta + 1$ times (or we're in case 1)
- $(\delta + 1)$ st choice (at worst) removes a new vertex

Proof for $t \ge 2\delta + 1$, $n \ge 3\delta + 1$ (IV)

Have

$$N_{>\delta} \leq k(n-(\delta+2))(n-(\delta+3))\dots(n-(\delta+t))$$

and

$$N_{=\delta} \leq (n-k)(n-(\delta+1))(n-(\delta+2))\dots(n-2\delta)$$
$$(n-(2\delta+2))((n-(2\delta+2)))\dots(n-(\delta+t))$$

Worst case k = n, giving bound

$$i_t(G) \leq \frac{n(n-(\delta+2))(n-(\delta+3))\dots(n-(\delta+t))}{t!} \\ < \binom{n-\delta}{t}$$

Last inequality uses $t = 2\delta + 1$

Final comments

- Improve result by considering first, second, third ... choices more carefully, and optimizing a linear program
- $\delta = 2,3$ requires messy case analysis, structural results for δ -critical graphs, with $\delta = 4$ hopeless

Open questions

- $i_t(G)$ for all t and n-vertex, d-regular G
- i(G) for $n \le 8\delta^2$ for *n*-vertex *G* with min. degree δ
- $i_t(G)$ for $3 \le t \le \delta$ and $n \le 3.2\delta$ for *n*-vertex *G* with min. degree δ
- . . .
- e.g., \mathcal{G} the family of *n*-vertex, triangle-free, average degree *t* graphs

THANK YOU!

Slides at http://nd.edu/~dgalvin1