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Early Attempts at Causal Theories:
A Stillborn Program

In this chapter I begin to trace the origins and eventual fate of the causal
quantuxp-theory program. This begins with de Broglie’s theory of phase
waves, includes various hydrodynamical and velocity-field (essentially
“l;udden variables”) interpretations, such as those due to Madelung and
Elnstein, and progresses through de Broglie’s theory of the double solu-
tion and his (provisional) pilot-wave model, the encounters with the Co-
penhagen group at the 1927 Solvay congress, the impact of von Neu-
mann’s “impossibility” proof, an interpretation by Rosen, Bohm’s 1952
paper and, finally, Nelson’s 1966 work on a stochastic basis for the Schré-
dinger equation.

. After his fundamental paper on wave mechanics in 1926, Erwin Schré-
dinger at first attempted to give a realistic interpretation to the Y-
function.! One objection to this was that, while a real wave might exist
in the physical three-dimensional space (or possibly in a four-dimensional
space-time) in which we exist, it would make little sense to speak of a
physical wave existing and propagating in a 3#-dimensional configuration
space (where # is the number of particles in the system).2 Such a & must
bg merely a mathematical construct, useful perhaps for calculating proba-
bilities, but surely nott assigned actual physical reality.

Max Born in his successful probability interpretation of [{f? did not
initially categorically rule out the possibility that quantum mechanics, as
formulated at that time, might be a statistical theory as a matter of practi-
f:al necessity, rather than as a matter of absolute principle.? In an article
in Nature in early 1927, Born even allowed the possible existence of mi-
croscopic atomic coordinates that are averaged over in practice. “Of
course, it is not forbidden to believe in the existence of [microscopic] co-
ordinates.”* Born was at least agnostic on the question of whether, in
later terminology, a hidden-variables version of quantum mechanics
might indeed exist.

However, Pascual Jordan, in a later issue of the same volume of Na-
ture, was on the whole less open to the possibility of a basically classical,
continuous, and picturable view of microphenomena.’ Jordan did not of-
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fer proofs or even compelling arguments for foreclosing this possibility
of continuity, but rather referred to the opinions of most scientists and to
the difficulty of conceiving of such an alternative. Born later came to be-
lieve in the impossibility of microscopic coordinates, mainly as a result of
Heisenberg’s “uncertainty” paper.

The previously dominant worldview of classical physics had been
based on continuity and picturability for physical processes, and even
Born was not at first hostile toward the possibility of a largely classical
ontology being compatible with the new quantum theory. How positions
hardened against this a priori intuitively appealing understanding of the
basic physical phenomena is the question I now address.

8.1 Madelung

In the fall of 1926, Erwin Madelung suggested a hydrodynamical inter-
pretation of quantum mechanics.” He began with the Schrédinger equa-
tion for the wave function s and made a set of mathematical transforma-
tions (similar to the type Bohm would make decades later). All of the
mathematical details (appendix 1 to this chapter) aside, Madelung sug-
gested interpreting the Schrédinger equation as representing a physical
“fluid” (of identical particles of mass m2) of density p and with a velocity
field v. This ideal fluid had no viscosity. One difficulty of this interpreta-
tion, since Madelung was considering a fluid consisting of a continuous
distribution of charge, was that the equations contained a “quantum
force” term (to use a later terminology here) that depended only upon the
local density p (= [¥%), but not upon the total charge distribution. The
physical meaning or significance of the additional (“quantum potential”)
term in his Newtonian equation of motion will be a recurrent theme of, or
actually a problem for, various causal interpretations I discuss. Although
Madelung claimed that this model gave an intuitively clear picture of
quantum phenomena, it is not wholly evident, at least to a modern reader,
just what this ideal fluid was, how it represented an atom in some state,
or how emission and absorption phenomena were to be envisioned.® In
spite of conceptual difficulties that remain, it is clear that Madelung was
attempting to provide a classical picture or explanation of quantum phe-
nomena.

George Temple, in his 1934 book on quantum mechanics, derived the
equations of motion for a charged fluid and then discussed Madelung’s
theory. He showed how, for certain cases, Madelung’s transformation re-
duced the nonlinear hydrodynamical equations to the Schrédinger equa-
tion.? He observed that, to prevent radiation from these moving charges,
the fluid flow must remain steady and this cannot occur under the influ-



126 Chapter Eight

ence of electromagnetic forces alone. Hence, there was need for the qium—
tum force (or quantum potential U).*° That is, Temple attemptgud‘jto give
some motivation for introducing the quantum potential in orderto ac-
count for the lack of electromagnetic radiation in stationary states. .

8.2 De Broglie

The similarity of the Schrédinger equation to classical hydrodynamical
equations, as well as the analogy of the Hamilton-Jacobi formulation of
classical mechanics to classical wave optics, led de Broglie to his own at-
tempts at a largely classical formulation of quantum mechanics. He sug-
gested two different approaches: the hypothesis of the double solution
and the theory of the pilot wave. Neither succeeded and these failures
made him “see better the necessity for adopting entirely new ideas which
were developed during the course of the same year by Bohr and Heisen-
berg.” 11 ,

Before I sketch some of the details of de Broglie’s attempts, let me indi-
cate the significance of this quotation. The original (French) version of
Physics and Microphysics (the source of this citation) was published in
1947. At that time, de Broglie was very much in the Copenhagen camp,
having been converted (by 1930) after his bitter experience at the 1927
Solvay congress. David Bohm’s 1952 paper was to have a profound (“re-
conversion”) effect on de Broglie. However, in 1947, de Broglie still repu-
diated his former ideas. In a note to the 1955 translation of Physics and
Microphysics, he acknowledged Bohm’s paper (which he had seen only in
preprint at the time of these comments) and essentially rejected it as just
a version of his pilot-wave theory.'2 Shortly thereafter, de Broglie admitted
that Bohm had successfully overcome the original objections to a pilot-
wave model. I return to this part of the story later.

De Broglie’s main goal was to unify the wave and particle dualism into
a single coherent picture or model. His hope was to treat the “particle”
as a (mathematical) singularity in the center of an extended wave. As out-
lined in 1927, this extended, continuous part of the wave would “sense”
the environment (obstacles, slits, etc.) and thus vary the motion of the
singularity accordingly. He wanted two related wave solutions, one for
the singularity and the other for the continuous wave. This latter would
account for the statistical behavior of a collection of particles. A classical
conception of actually existing entities in a continuous space-time back-
ground was to underlie his theory or worldview.?* De Broglie’s solution
to the wave-particle duality was a synthesis of wave and particle, versus
the wave o particle of the (eventual) Copenhagen interpretation. For him,
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the (continuous, extended) wave aspect was to be represented by the func-
tion { and the singularity by a function u.

His basic motivation had been Planck’ fundamental relation for light
(e = hv) which united a particle aspect (localized energy ¢) and a wave
aspect (the frequency v).** In his Nobel Prize acceptance speech in 1929,
de Broglie recalled that he had been dissatisfied with Planck’s relation
because it defined the energy of a light corpuscle by a relation that con-
tains a frequency v. De Broglie felt that a purely corpuscular theory
should not contain a frequency. On the other hand, the stable motions of
the electrons in the atom are characterized by whole numbers that are
typically associated in physics with interference and standing waves. This
suggested to him “that electrons themselves could not be represented as
simple corpuscles either, but that a periodicity had also to be assigned to
them, too.” 1® ‘

In early 1927 de Broglie attempted to generalize these intuitive argu-
ments (cf. appendix 2 to this chapter) into his “principle of the double
solution.” To every continuous solution { = Re*” of the wave equation
there was to correspond a singularity solution # = fe’** having the same
phase & as ¥, but whose amplitude f represented a moving singularity.’¢
On the basis of this principle, he was able to show that the velocity v of
the singularity in # (the “particle”) was to be determined by the “guid-
ance formula” (v = V/m).\” It was this phase &, rather than the ampli-
tude of ¥, that determined the motion of the singularity representing the
particle.’® Only for the case of a free particle was de Broglie able to carry
through these pilot-wave ideas explicitly.?* He also suggested that p = [yf?
represented the probability of finding a particle (“singularity”) at a point
in space.?® The y-wave gave statistical information about the behavior of
an ensemble of particles (or, equivalently, probabilistic information about
the behavior of a single particle whose initial location—the “hidden vari-
able”—is unknown or uncertain). At the end of his 1927 paper on this
double-solution theory, de Broglie observed that one might simply postu-
late the existence of two distinct realities, particle and wave, with the
motion of the particle determined by the phase of the wave. He considered
such a move to be not really satisfactory and only provisional.?! His pilot-
wave theory is mathematically the same as Madelung’s formalism.*>

It should be evident that de Broglie’s style of doing physics was an
intuitive one in which general insights played the major role. He was not
a formalist possessing great mathematical power. The existence and na-
ture of the singular solution # to the wave equation for the general case
of motion in the presence of a force field proved quite complex mathemat-
ically. In later years de Broglie himself suggested that a nonlinear equation
may be required for .2 In the face of these severe mathematical difficult-
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ies, de Broglie decided, as an interim measure, to accept, or simply postu-
late, the existence of a particle accompanied by its phase wave .2 He
presented this hybrid model, his pilot-wave theory, at the fifth Solvay con-
gress in October of 1927. T have already indicated why Schrédinger was
not enthusiastic about this theory and what Pauli’s reaction to it was.
Although I have also alluded to what I believe was a factor in Einstein’s
dismissing de Broglie’s theory, I now consider that in more detail.

8.3 Finstein

A fascinating (unpublished) manuscript in the Einstein Archives is titled
“Does Schrédinger’s Wave Mechanics Determine the Motion of a System
Completely or Only in the Sense of Statistics?”2* In it, he tells us that to
each solution of the wave equation there corresponds the motion of an
individual system that is determined unambiguously and uniquely. In
1927 Einstein wrote to Born about this work and indicated that it would
soon be published.?¢

Conceptually, but not in its mathematical details, this theory was very
much in the spirit of Madelung’s hydrodynamical model. In an addendum
to this manuscript, Einstein mentioned that Walther Bothe had pointed
out a difficultly with this scheme for compound systems whose overall
state may be represented by a single product of the wave functions of
each of the subsystems. Such a system is made up of independent (i.e.,
noninteracting) subsystems. It turns out that the motions of the com-
pound system will not be simply combinations of motions for the subsys-
tems, as Finstein required on physical grounds. This showed that Ein-
stein’s particular recipe for determining the “flow lines” was not tenable
(not, of course, that there could not exist another one that would be tena-
ble). Einstein suggested that it might be possible to overcome this diffi-
culty, but nothing specific followed. The fact that this paper, originally
presented orally at a meeting of the Prussian Academy in early 1927, was
never published indicates that this “entanglement” problem remained
grounds, for him, to reject this particular “classical” attempt at interpre-
ting quantum mechanics.?’” Years later, Born commented that he himself
could no longer “remember it now; like so many similar attempts by other
authors, it has disappeared without trace”

The general, at least conceptual, similarities among this attempt by
Einstein, the Madelung hydrodynamical model, and the de Broglie pilot-
wave theory probably account for Einstein’s lack of interest in de Broglie’s
1927 Solvay congress presentation. All three of these attempts suffered
from apparently bizarre, physically unacceptable properties: Madelung’s
(of which Einstein surely already knew) had a peculiar “inner” force of
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the continuum (cf. egs. [8.14] and [8.15] in appendix 1 to this chapter),
Einstein’s own had the entanglement feature I have just discussed, and de
Broglie’s pilot-wave theory would be made to seem incoherent by Pauli’s
objection at the 1927 Solvay congress itself. Whether it was these strange
features or the general nonlocality of quantum theory that left Einstein
cool toward de Broglie’s pilot-wave presentation is unclear.?? We do know
that by the spring of 1927 (prior to this Solvay conference) Einstein was
already critical of quantum mechanics (in either the matrix or the wave
formulation) because, among spatially separated systems, there existed
correlations that seemed to violate a principle of action by contact.?°

8.4 Kennard, Rosen, Fiirth

In 1928, Earle Kennard published in The Physical Review a discussion
of the formalism and application of Schrédinger’s wave mechanics. His
opening sentence had a sense of finality on the interpretation question.*
Early in the paper Kennard cited Madelung’s work and arrived at a
“Newtonian” equation of motion and stated:

Thus each element of the probability moves in the Cartesian
space of each particle as that particle would move according to
Newton’s laws under the classical force plus a “quantum force”
given by the h-term in (Newton’s second law of motion. eq.
[8.14]).

The motion here considered occurs in a space of # dimensions.
We can also, however, replace the #-dimensional packet by # sep-
arate packets, one for each particle, all moving in the same ordi-
nary space.*

He went on to point out that, in spite of this similarity with Newton’s
second law of motion, there is a profound difference since the motion of
any one particle depends, in general, on the instantaneous location and
velocities of all the other particles as well.>* Here, again, is nonlocality.

I now step somewhat out of the time sequence of events and mention
another example of a hidden-variables interpretation because it nicely fo-
cuses on those central features of such theories that most found objec-
tionable on physical grounds. In a somewhat obscure journal, Nathan
Rosen in 1945 published a paper whose purpose was to explore “the
extent to which classical concepts can be carried over into the quantum
theory and the conditions under which they conflict with the formalism
of this theory.”3s He cited Madelung’s and Kennard’s papers and ob-
tained the same equations of motion as they did. With regard to the dy-
namical equation of motion (Newton’s second law, as modified by the
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quantum potential), Rosen observed “that the motion of each particle of
the ensemble depends on the density with which all the members of the
ensemble [of possible representatives of the actual particle under consid-
eration] are distributed, so that effectively we have an interaction among
the [virtual] particles.” 3¢ The basic point that Rosen is making here is that
the quantum potential U depends upon p = [}, the density of particles
in an ensemble in which only one particle (the actual one) is real and the
test are merely possible. This is worse than mere nonlocality among dis-
tant, actually existing particles and, interpreted as Rosen does, calls for a
bizarre influence of possible systems on actual ones. This would scarcely
help a realistic interpretation of the phenomena. On the other hand,
Bohm’s 1952 paper made a virtue of the quantum potential by interpre-
ting it in terms of a nonlocal influence of the (actual) environment upon
the (actual) particle under consideration—all very realistic.

There was also an early precursor to the Brownian-motion type of sto-
chastic mechanics that I return to in the next chapter. Schrédinger noted
the formal (mathematical) similarity between the diffusion equation and
his own wave equation, but he saw the physical differences between these
two cases as more significant than the formal resemblances.?” In 1933,
Reinhold Fiirth, citing an earlier review by Schrddinger on the interpreta-
tion of quantum mechanics, discussed this formal analogy between the
equations for the position probability of a classical statistical mechanical
system and quantum mechanics.®® Unsharp observables resulted and
there were inherent (practical) limitations on the accuracy of measure-
ments, from which “Heisenberg”-like inequalities followed. A relation
was established between diffusion equations for real density functions
and the Schrédinger equation for complex functions and this was related
to reversible and irreversible natural processes. Fiirth examined some spe-
cific cases and then argued/conjectured that in general an “uncertainty”
relation AxAv = D held, where D is the diffusion coefficient in the diffu-
sion equation.®® (In section 9.3.2 we shall see that in 1966 Edward Nelson
obtained a similar result and made the identification D = #/2.)% Fiirth
also referred to previous literature on the inherent limitations that
Brownian motion placed on the accuracy of measurements.*! There was
considerable discussion of such limitations in the years 1925 to 1935.42

Similar stochastic-mechanics approaches to quantum phenomena
would recur several times after the Second World War.* In section 9.3.2
I discuss this program at some length. I mention these early attempts here
to indicate not only that such an approach was possible just after the
1927 Solvay congress, but also that in fact it was considered. However,
there soon appeared to be a reason to believe that all such attempts must,
ultimately, fail.

s
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8.5 Von Neumann’s “proof”

We have seen how, by 1927-1928, the issue of the Copenhagen versus a
causal interpretation had been essentially decided. The story has included
both “external” factors and rational arguments that were taken at the
time as convincing for choosing Copenhagen. Even by September of
1927, prior to the October Solvay congress, Bohr’s Como lecture had to a
large extent solidified the matrix of what would become the Copenhagen
interpretation. This general acceptance of the Copenhagen interpretation
effectively precluded any consideration of causal interpretations. With the
appearance in 1932 of von Neumann’s Mathematical Foundations of
Quantum Mechanics, however, there appeared to be a logically irrefut-
able proof that any type of hidden-variables theory that gave all of the
same predictions as standard quantum mechanics was impossible.

8.5.1 The impact of the theorem

In spite of the considerable mystique that has surrounded von Neumann’s
theorem in recent decades, that proof was probably zot the decisive rea-
son that hidden-variables theories were not actively pursued in the 1930s.
Most people already believed (for reasons that, in retrospect, appear con-
siderably less convincing now than they did at the time) that such exten-
sions were ruled out on physical or experimental grounds. Although the
proof was cited by proponents of the Copenhagen interpretation, that
was usually done as a nod to mathematical purity or as a put-down
“clincher;” rather than as the central element in a refuting argument.** Of
course, it is not possible to tell what effect that theorem 7ay have had in
diverting people from seriously pursuing hidden-variables theories.

Von Neumann’s proof further confirmed de Broglie’s position against
his own causal theory.*s While that may be, de Broglie had already been
converted to Copenhagen. Similarly, in a letter of 2 July 1935 to Pauli on
the recent EPR paper and Bohr’s response to it, Heisenberg included a
long addendum titled “Is a Deterministic Completion of Quantum Me-
chanics Possible?” 4 Although Heisenberg does refer approvingly to von
Neumann’s book there, he does not single out the “impossibility” proof
specifically as a key element in his lengthy discussion of why such a com-
pletion is not possible.

In 1936 Jordan spoke out against causality in atomic phenomena, but
as was characteristic of him, much more categorically than many of his
colleagues. In his popular lectures on physics in this century, Jordan dis-
cussed the example of individual photons passing through a polarizer and
then told his reader that a “denial of the classical concept of causality is
not to be understood as a temporary imperfection of our knowledge, but
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is inherent in the nature of the thing—again showing how incorrect our
previous, classical concepts were.”*” In his more technical treatise on
quantum mechanics, Jordan handled this same example in virtually the
same way.*®

In a 1939 conference report in New Theories in Physics, Bohr referred
to von Neumann’s proof, but only as the most clear and elegant demon-
stration of the already well known fact “that the fundamental superposi-
tion principle of quantum mechanics logically excludes the possibility of
avoiding the non-causal feature of the formalism by any conceivable in-
troduction of additional variables.”* While he reported on von Neu-
mann’s own discussion of the “impossibility” proof at the conference,
Bohr also claimed that this result is already evident from more elementary
considerations.*°

As time passed, the theorem gained in importance. Born’s Waynflete
lectures at Oxford in 1948 drew up a case against a causal interpretation
of quantum mechanics and von Neumann’s result was cited as being one
of the more important elements in the argument. Born first used historical
precedent to argue against the likelihood of a reversion to a primitive
conception, such as determinism, and offered his opinion that the atten-
dant mathematical difficulties could not be overcome. He then cited von
Neumann's Mathematische Grundlagen der Quantenmechanik and as-
sured his audience “that the formalism of quantum mechanics is uniquely
determined by [a few plausible] axioms; in particular, no concealed pa-
rameters can be introduced with the help of which the indeterministic
description could be transformed into a deterministic one [so that] . . . if
a future theory should be deterministic, it cannot be a modification of the
present one but must be essentially different.” s

The limitations of the theorem were rarely stressed. For instance, Pauli
in 1948 referred to “von Neumann’s well known proof that the conse-
quences of quantum mechanics cannot be amended by additional state-
ments on the distribution of values of observables, based on the fixing of
values of some hidden parameters, without changing some consequences
of the present quantum mechanics.” 52 Even many years later, in a special
1958 issue of the Bulletin of the American Mathematical Society dedi-
cated to the memory of John von Neumann, as reflective a theoretical
physicist as Léon van Hove would state that “von Neumann could show
that hidden parameters with this property [of reinstating causality] can-
not exist if the basic structure of quantum theory is retained.” 3 Van Hove
does imply that von Neumann may have allowed the possibility of certain
types of hidden-variables theories as long as the formalism of quantum
mechanics was modified.s*

As I now show, von Neumann was able to obtain his result only with
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the assumption that one of ordinary quantum theory’s rules for statistical
ensembles could be extended to the dispersion-free ensembles of any
hidden-variables theory. This assumption turns out to be unwarranted
(although it was many years before John Bell pointed this out with great
clarity in the mid-1960s).

8.5.2 The actual theorem
The hope central to the class of causal interpretations I consider is that
there exists (at least in principle) a set of hidden variables (say, the actual
microscopic coordinates of the particles) that, if known or controllable
by the experimenter, would completely and uniquely determine the mo-
tion of individual microsystems. The results of experiments would be de-
termined on an event-by-event basis. In practice, this hope would hold,
these hidden variables are unknown and must be averaged over to obtain
predictions for an ensemble of particles. I denote these assumed hidden
variables collectively by the symbol X (i.e., A may stand for an entire set
Nis Ags Ass - - - )55 There should then be subensembles such that the value
of the observable in question should have a definite value for all members
of the subensembles (i.e., the measured values of this observable should
be dispersion free). Von Neumann’s proof shows that there will necessar-
ily be situations in which such dispersion-free states cannot exist, pro-
vided one is to maintain all of the predictions (for experimental out-
comes) of the standard formalism of quantum mechanics.*¢ This, it turns
out, is really equivalent to the question of the completeness of the Copen-
hagen interpretation of quantum mechanics.

The problem as actually posed by von Neumann involves the possible
decomposition of an ensemble E into subensembles.’” He put this as
follows:

We could attempt to maintain the fiction that each dispersing
ensemble can be divided into two (or more) parts, different from
each other and from it, without a change of its elements. . . . This
is the question: is it really possible to represent each ensemble
[E;, E,, . . ., Eyl, in which there is a quantity R with dispersion,
by the superposition of two (or more) ensembles different from
one another and from it?8

After the details of his proof, he concluded that all ensembles have disper-
sions.*? He told his reader that “the present system of quantum mechanics
would have to be objectively false, in order that another description of
the elementary processes than the statistical one be possible.” ¢ Von Neu-
mann denied the possibility of fine-grained versus coarse-grained knowl-
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edge being the source of the quantum-mechanical dispersions that would
be produced in an averaging process.

Von Neumann was able to produce a mathematical contradiction only
by assuming that, even for dispersion-free subensembles, the expectation
value of the sum of two (noncommuting) operators is simply the sum
of the expectation values of each separately (as is the case in quantum
mechanics). This was widely accepted as establishing that general
dispersion-free states cannot exist so that a hidden-variables extension of
quantum mechanics is impossible iz principle. With the aid of hindsight
provided by later work, we can see today that what has actually been
established is that the sum rule is inconsistent with a hidden-variables
extension.s! Another way to parse this is that such a hidden-variables ex-
tension requires a more complete specification of the state of a microsys-
tem than that possible with the quantum-mechanical state vector .62

While some philosophers seem to have been explicitly aware of this
logical point (even in the 1930s), this caveat was not emphasized by physi-
cists in most references to von Neumann’s proof.6* The sociological and
psychological reasons for the largely uncritical acceptance by the physics
community of the implications of von Neumann’s proof have been studied
in detail.% Von Neumann had tremendous intellectual prestige among sci-
entists, including such leaders in quantum theory as Wigner.** He had
been David Hilbert’s favorite when, as a young man, von Neumann at-
tempted an axiomatization of mathematics in the 1920s. That project,
like his no-hidden-variables proof a decade or so later, nearly succeeded.
It was shut down by Gédel’s incompleteness theorem. These were both
brilliant, but ultimately failed, undertakings. It was only with Bell’s work
in the mid-1960s that this proof’s irrelevance for many types of hidden-
variables theories became widely understood.5¢

In Bohm’s theory, how a microsystem behaves depends upon its envi-
ronment (i.e., an observed value is contextual). That makes it evident why
a set of hidden variables of the microsystem alone could not fix definite
values for outcomes of incompatible measurements. The quantum poten-
tials (or, equivalently, the wave functions) for these different experimental
arrangements would be different. This contextuality allows Bohm’s the-
ory to escape von Neumann’s theorem.”

We see that von Neumann’s theorem is fine as a mathematical theorem
(i.e., as a correct exercise in deductive logic, given his axioms), but that it
is simply irrelevant to a large class of hidden-variables theories (one of
which is Bohm’). The theorem just does not imply everything it was
taken to.

N
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Appendix 1 Madelung’s derivation

Madelung accepted Schridinger’s wave equation

# o, L, O
-V + Vi =i — 1
2m ’ ot (8.1)

as his starting point and made the substitution®®
¥ = Rexp (i S/h) . (8.2)

If this is substituted into the Schrédinger equation and real and imaginary
parts are separated, two equations result (just as, of course, happened in
Bohm’s theory in appendix 1 to chapter 4):

R _ 1 [Rvis + 2VR-VS] (8.3)
at 2m

as (VS)2 # V2R

2= +V-——. 8.4
at [ 2m 2m R 84

If eq. (8.3) is multiplied by R, the result can readily be rewritten as

2Ry = - V(RS (8.5)
If we identify
' o =R (8.6)
as a fluid density and the phase
b=3S i (8.7)

as a velocity potential so that the velocity field v of this fluid is given as®
v="Lvy="Lvs, (8.8)
m m
then eq. (8.5) becomes the continuity equation

o
v +-—==0 8.9
(pv) Py (8.9)
expressing the conservation of mass of the fluid. So, eq. (8.3) is basically
the continuity equation. The other separation equation, eq. (8.4), be-
comes, with the use of eq. (8.8),
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b _ #2 V2R
at Zm 2m R °

If we take the gradient of eq. (8.10), divide by # and use eq. (8.8), we
obtain from the left-hand side of eq. (8.10)

v 1 dv
_+__ 2
V(@)= e

a2
This is just the acceleration of a volume element of fluid as it moves along
a flow line defined by v(x, £) since, for any fix, t) along such a flow line
[where x = x(¢)],

{8.10)

(8.11)

af _ 3 of dx, af of
- —~=vVFf+-=-. .
dt ,Z‘l ax; dt =vVf ot (8.12)
If we use eq. (8.8), as v; = dd/dx; and set f = v, in eq. (8.12), we find”°
dv, & v, , v, & |, oy,
%% = k4 Tk = — 4+ & 8.13
dt ;Zﬁ U’axi at ;Zl v’axk ot ( )
1o oy
20x, ot
Therefore, the gradient of eq. (8.10) (multiplied by 1/m) is just
dv 1 #? VZR)
g . .
AL bt @14
This last “force” term can be written as —V U, where
2 2
U= - 2 V'R (8.15)
2m R

(later called a “quantum potential” by de Broglie).™

Appendix 2 De Broglie’s guidance argument

De Broglie’s basic 1923 argument was the following.” Consider a particle
of rest mass m, and denote its rest frame by §'.7 In this frame let there be
a periodic phenomenon associated with the particle and characterized by
the frequency v,

E, =m,? = hy, (8.16)
and represented by the “wave”
Y, = A, exp (—2mivgty) . (8.17)
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Notice that |, does not depend upon the spatial coordinates in frame §'.
There is a frame § in which an observer (at rest) sees this particle moving

with a velocity v = Bc along the positive x-axis. The corresponding phase
wave s as seen by S is

Y(x, t) = A, exp [—Zwivoy(t - %{)] s (8.18)

since the time coordinate £, in §' is related to the space-time coordinates
(x, 2) in S via the Lorentz transformation

th=v(t— %x) ; (8.19)
y=— (8.20)
Ny . .
Equation (8.18) represents (in frame S) a phase wave

¥ (%, ) = A, exp [—ZTriv (t - %)] = A", (8.21)
v =y, (8.22)

2
=<, (8.23)

v

Here v is the frequency of this phase wave and V is its (phase) velocity.”
The quantity &/% is the phase of ¥. The frequency v is just what one would
have expected from

bv =E =mc, (8.24)
= ym,, ' (8.25)

which is the analogue of eq. (8.16) once the relativistic value for # in
frame § is used (in place of m, for §'). For reference later note that since

x
=2mhvl=—t 5 8.26
&= 2am(Z 1) (8.26)
it follows that
10g _2nv _ b yv %Y _ (8.27)

which is just the velocity of the particle. That is, the gradient of the phase
of ¥ gives the velocity of m. Equation (8.27) is the same as eq. (8.8).
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Furthermore, de Broglie observed that the phase of the periodic phe-
nomenon associated with the particle in frame S’ remained everywhere
the same as the phase of ¢ in S. To see this consider a collection of
“clocks” in §’ each having a period 7, in that frame. One of these is to be
associated with the particle of rest mass m2,. The frequency

Vo =—, (8.28)

To

originally defined in §’, becomes for S

po=1i=l0 (8.29)
Ty
because of the time dilation effect
T=YT,. (8.30)

Now, de Broglie reasoned, if S follows the “particle” along for a time dt
(and, as it travels, by definition, dx = v dt), the observed change of phase
{for S) of this “intrinsic” phenomenon will be just

— 2mhvdt = — 2uh % dt . (8.31)

However, if &, = &(x,, 0) was the phase of ¥ at the initial position x, of
m at t = 0, then the phase of i at the new location of m a time dt later
will be (cf. eq. [8.21])

b, = b, + dx, dt) = &, + 2mhv (% dx — dt)
=&, — 2mhv(1 — B2) dt = &, — 2ﬂﬁ% dt . (8.32)

The “intrinsic” phase of the “particle” (of mass #2) moving with velocity
v in S remains fixed relative to the phase wave ¢ moving with (phase)
velocity V in S. In other words, the phases of the “particle” and of the
wave {s are always equal to each other at the location of the particle as it
moves along its trajectory in frame S. Starting from such a congruence,
one can also argue back to the {by now familiar) guidance condition”

v="Lve. (8.33)
m
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Appendix 3  Einstein’s 1927 hidden-variables theory

Einstein’s basic idea was that the time-independent Schrédinger equation
ﬁz
— VN + (E-V)y=0 (8.34)
2m

can be used to find the kinetic energy K = E — V for any given wave

function solution ¢ defined on an n-dimensional configuration space.”
He used the quantum-mechanical expression for the kinetic energy

RV
= o v (8.35)
to define an equivalent kinetic energy in point-particle mechanics as
1 1 ..
K= 3 my? = 5 mg,d,4,, (8.36)

where g, is the metric tensor for the configuration space and g, is the
velocity component of the particle.”” These ¢, are functions of the con-
figuration-space coordinates (that is, they define a velocity field, the tan-
gents to which are the “flow lines” or possible particle trajectories). Spe-
cifically, having set

Vi =g, , (8.37)

where {,, (which Einstein termed “the tensor of Y-curvature”) is the co-
variant derivative, he then sought a “unit” vector A*

g AMAY =1 (8.38)
that would render
b, ARAY = s, ' (8.39)

an extremum. This is the normal curvature of the differential geometry
of surfaces.”? A hermitian quadratic form like eq. (8.39) is rendered an
extremum by those vectors A* that are the solution to the eigenvalue
problem”

(¥, = Ag,)A"=0. (8.40)

In terms of these A* and their eigenvalues A, Einstein was able to give
an expression for uniquely assigning the g, in terms of a given . (The
details of the recipe need not concern us here.)®

The essence of Bothe’s objection is that the (covariant) derivative
for such a product wave function ¢ = U,1, is not zero when . is an‘,index
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for referring to the first subsystem and v one for the second subsystem.
That is why the motions of the compound system will not be simply com-
binations of motions for the subsystems, as Einstein demanded that they
be on physical grounds.®

Appendix 4 Von Neumann’s unwarranted assumption

To illustrate what is at issue in von Neumann’s theorem, let me consider
some physical observable A for which there are possible measurement
outcomes a,, k = 1,2, 3, .. .. The idea is that for some particular value
N, every single observation (of a specified type) would with certainty
yield a value a(\,) (i.e., a definite and fixed one of the a,). As usual, the
average value (A) for a set of N observations is defined as
1 N

A) = — a . 8.41

W=y (8.41)
If the hidden variables \ are distributed according to some density func-
tion p(\), then the ensemble average is obtained as

(A) = Jp (N) (A), d\ = J p () al\) d . (8.42)

It is these (A) that would have to agree with the predictions of standard
quantum mechanics, while the (A), might remain inaccessible in practice.
For X restricted to the fixed Ay, we would have a; = a(\,) for all j so that

N

Ay, = 111 Y. afh) = alny) (8.43)

Similarly, (A%), would have the value

4%, = %1 Z (8.44)

Now the dispersion of A (here restricted to the subensemble \;) is de-
fined as

A4, =~[A, = @Ay, (8.45)

and is generally taken as a measure of the speed or “scatter” of the indi-
vidual values of g, observed. However, if the system is in a dispersion-free
state specified by the A, then

A4, =0. (8.46)

L
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Suppose we consider two noncommuting hermitian operators repre-
senting observables A and B and define another operator C as

C=A+B. (8.47)

If A, represents an in-principle possible dispersion-free state of an ensem-
ble, then

(A) = a(Ny), (B) = b(A,), (C) = c(Ay) (8.48)

If—and this is von Neumann’s critical assumption—the same linearity
rule for expectation values that holds in standard quantum mechanics

(C) =<(4) + (B} (8.49)
can be extended to dispersion-free ensembles then, for this A%
c(No) = al(ho) + b(X) . (8.50)

However, there are many simple counterexamples to eq. (8.50).%% For
instance, begin with the spin operator o

o=0,i+0,j+o,k, (8.51)

where 7, 7, and k are unit vectors along the x-, y-, and z-axes respectively,
and the o, are the 2 X 2 Pauli spin matrices. With the choices

A=0,B=0,C=0n, (8.52)

where # = (1,.1, 0), we have C = A + B. Since all of the Pauli matrices
have eigenvalues +1 and —1 only, it follows, in this case, that a(\,) = +1
—1, b(A,) = +1 or —1, and ¢(\,) = ++/2 or —+/2. Equation (8.50)

Would then require that
2 ==+

which is impossible for any choice of the signs in eq. (8.53).

Perhaps a detailed physical model that actually accomplishes what the
theorem is often taken as forbidding will be helpful for the reader.®* For
the “spin” operator®*

[EN

*1, (8.53)

GE‘l—(Ux-i-O'y):—l—(O l_i) (8.54)

\2 N2 \1+i 0

one easily verifies that the eigenvalues of & are =1 and that the corre-
sponding eigenvectors are
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1 1
\2 2
= = ) 8.

=l b=l 2, - 859)

2 2
Since direct calculation shows that
<X+|6'1X+> =1 ] (8563)
1
X.lodx,) = N7 = Xloix,s) » (8.56b)

we see that

N 1 ( 1 1 ) 1
.= =<+ —=|=— . + 8.57
@e=1=F\g @ TG e o) G5

with a similar relation (except for an overall minus sign) holding for the

state x_. This is an example in which three operators A, B, and C are
such that

A=B+GC[B Cl#0, (8.58)
but still
(A) = (B) + (C) . (8.59)

Here the averages are to be taken over an entire ensemble (not just over
one “pure” subensemble).

But, need this be so for dispersion-free (hidden-variables) states? It is,
of course, true in quantum mechanics that there cannot be a simultaneous
complete set of eigenstates {{);} of noncommuting hermitian operators,
since the conditions

A = At, B = B, Ay, = ay, By, = BY; (8.60a)
on such a set are necessary and sufficient for
[A,B]=0. (8.60b)

However, one can give a more complete, dispersion-free state descrip-
tion for the example of eq. (8.54). Consider an “electron” moving in a
straight line and let its spin variable be A and the direction along which
this spin will be measured be denoted by the vector a (where both A and
a lie in a plane perpendicular to the direction of motion). The observed
value of the spin is to be assigned according to the rule
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sgn (Aa) > 0= + 1 (8.61a)
sgn(Aa)<0= -1 (8.61b)

Then, by construction, the “observed” values in any fixed state X of the
subensemble of those A lying between the x- and y-axes of figure 8.1 are

/

kbt Tt o

Figure 8.1 The “hidden variable” A

@ =1L{oHn=1)=1,
so that
. 1 '
(0->A o ﬁ ( <0-x)). + (Gy>,\ ). (8~62)
Therefore, these dispersion-free states do not satisfy the sum rule. It is
also evident that
) (averaged over all A in the upper half plane) = +1. (8.63)

Now assume that the “hidden variable” A is distributed over the half

plane above the horizontal axis of figure 8.1 according to the “probabil-
ity” P(A)¥

cos (9) . (8.64)

1 w4 1 /2 B 1 3 I
(o) = EJ‘ cos (0) do — = cos (0) do = ={o,), (8.65)

2 /4 ﬁ

so that

(8) = —= (o) + (o) . (8.66)

This local hidden-variable model reproduces the statistical predictions of
quantum mechanics. :



