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PREFACE OF PAUL LANGEVIN

‘_Quantum physics has brought an essential advance to science, the finding that in
‘every experiment or measurement there inescapably enters the duality between
};subject and object, the action and reaction of observer and system observed, the
‘observer and the measuring apparatus being viewable as one entity.

The classical view, disregarding the necessarily limited character of our knowl-

‘edge and the retroactive effect of the measurement on the system observed, always
gﬁostMated the possibility of an infinitely precise knowledge of the simultaneous
values of all the parameters used for the description of the system. Heisenberg, in
.:'gi_vi-'ng concrete significance to his principle of indeterminism, has shown how the

iy
f

" *Originally published as La théorie de I'observation en mécanique quantique, No. 775 of Actualités

scientifiques et industrielles: Exposés de physique générale, publiés sous la direction de Paul Langevin,
Hermann, Paris (1939). English translations—including a new paragraph by Professor Fritz London—
‘done independently by A. Shimony, and by J. A. Wheeler and W. H. Zurek, and by J. McGrath and
S. McLean McGrath; reconciled in 1982. Copyright 1982 by Princeton University Press.
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218 LONDON, BAUER

very existence of quanta excludes the possibility of knowing precisely at the same
time all the quantities which might be the object of our measurement.

The form in which quantum mechanics is presented today provides an admirable
translation of this new situation. The wave function it uses to describe the object
no longer depends solely on the object, as was the case in the classical representa-

. tion, but, above all, states what the observer knows and what, in consequence, are
his possibilities for predictions about the evolution of the object. For a given
object, this function, consequently, is modified in accordance with the information
possessed by the observer. The introduction”of the wave function at the very
foundation of our representation common-sensibly recognizes what is almost
1gnored by classical physics, that our possiblities for prediction depend, above all,
on our information. It also expresses quite exactly the fact that certain quantities,
called noncommutable, cannot be known simultaneously with complete certainty.
It characterizes the system by a certain number of observable quantities, different
forms of “maximum knowledge” corresponding to different so-called “pure cases.”

The present work, where the authors expand lectures given by one of them at the
Sorbonne, demonstrates the precision and clarity with which the formalism of
quantum theory expresses this representation by the wave function of the informa-
tion acquired by the observer, and the manner in which each new measurement
intervenes to modify this representation.

The act of observation is analyzed here in a particularly penetrating way. The
essential character of the new physics emerges with complete clarity in the two
stages of change of the wave function: by coupling of the system observed with
the measuring device; and by the intervention of the observer, who becomes aware
of the result of the measurement and thus determines the new wave function—
following the observation—by using the new datum to reconstitufe his information

bank.
" This treatise does a valuable service. It brings out the important finding of the

new physics: how we express our knowledge of the external world.

—

AUTHORS’ PREFACE

The majority of introductions to quantum mechanics follow a rather dogmatic
path from the moment that they reach the statistical interpretation of the theory.
In general, they are content to show by more or less intuitive considerations how
the actual measuring devices always introduce an element of indeterminism, as
this interpretation demands. However, care is rarely taken to verify explicitly that
the formalism of thglthec?ry, gg)(phC(? ?o that special process which constitutes the
measurement, truly Jlmphe@ a_,_;gr@ of the system under study to a state of
affairs less fully determined than before. A certain uneasiness arises. One does not
see exactly with what right and up to what point one may, in spite of this loss of
determinism, attribute to the system an appropriate state of its own. Physicists are -
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to some extent sleepwalkers, who try to avoid such issues and are accustomed to
_concentrate on concrete problems. But it is exactly these questions of principle
which nevertheless interest nonphysicists and all who wish to understand what
modern physics says about the analysis of the act of observation itself.
Although these problems have already been the subject of deep discussions (see
especially von Neumann, 1932), there does not yet exist a treatment both concise
and simple. This gap we have tried to fill.

Paris, June 1939

INTRODUCTION

‘It is well known that theoretical physics has been transformed since the beginning
of the century into an essentially statistical doctrine and that the discovery of
';qfuanta made this revolution inevitable.

- The principal aim of this study will be the statistical interpretation of the for-
‘malism of quantum theory. Although these questions of interpretation were
':‘systematlzed about ten years ago (Heisenberg, 1927; von Neumann, 1927; Dirac,
.1927), one still often meets rather fuzzy ideas about what it means that probablhtles
ppear in modern physics.

" According to some, this statistical character shows that our knowledge of laws

j&‘t:,t‘he atomic level is still incomplete: that there remain to be found some hidden

.ﬁarameters, determining those processes which, provisionally, we are content to

,\}describe statistical language. To believe them, one might hope some day to

frecast th theory in a deterministic mold.

' = would have it understood that the action of the observer is involved.

netimes consider that this would be an action that is causal, but incom-

nown, because one never knows the exact state of the observer. From this
cux Stance would arise the statistical spread of measurements, the exact results

f Wf%bh might be predictable if one could take better account of the intervention

It has also been said that the law of causality may be correct but inapplicable .
‘because there is never any way to reproduce identical conditions.

“~"The discussion of these questions is not at all a matter of speculatlon Itisa
;deﬁmte problem. To treat it one ought to apply quantum theory to—and thereby
gpxtract the central features of—the very process of measurement. One can convince’
“oneself that statistical distributions, such as are given by quantum mechanics and
‘verified by experiment, have such a structure that they cannot be reproduced by
‘hidden parameters, It is not, as often claimed, a question of philosophical interpre-
‘tation; quantum mechanics ought to be testably false, if atomic processes in fact
‘were deterministic and only incompletely known. It would be necessary to change —
‘the theory fundamentally and give up some battle-tested results, if one wished to
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reconstitute it on a deterministic basis. Causality is no longer applicable, it is true;
¢ but the reason for this fact is not the impossibility, in the last analysis, of repro-
1 ducing identically the conditions of an experiment. The heart of the matter is the

" f difficulty of separating the object-and the observer.
J " Modern physics often advances only by sacrificing some of our traditional
philosophical convictions. The case of quantum mechanics is especially instructive.
In all innocence one sought to construct a theory which would contain only
relations between the “observable” quantities of Bohr’s theory, such as the fre-
quencies and the intensities of spectral lines. Heisenberg followed this route and
in this way succeeded in obtaining a formalism which would resolve this problem.
But, as often happens in theoretical physics, the formalism of the theory, once
established, carried one further than one expected. It implied more relations than
its founders had started with, relations between quantities altogether disconnected
from the original spectroscopy, but themselves also observable (coordinates,
momenta, etc.). One was led quite naturally in this way to try—after the gnitial
shock—to interpret these relations which had been exposed automatically %5 the
theory. In this way the discussion of this formalism taught us that thé apps
philosophical point of departure of the theory, the idea of an observable:
totally independent of the observer, was a vacuous idea. Without intending % set
up a theory of knowledge although they were guided by. a rather. uesth%able
phllosophy, physwxsts were so to speak trapped in.spite of themselves mtﬁ?E dis-

~e

V&{M/j/?’ Covenng that the Tormalistm of quantum mechanics already implies a well- denned
theory of the relatlon between the obJect and the observer, a relation guite different
from that 1mp1101t in nalve reahsm Wthh had seemed, until then. one of the

ensable foundation stones of every natural science.

£ . To discuss the process of measurement it fshécessary to consider at least two
usE 11 ffj “”‘ systems, the observer and the object. It is therefore necessary to apply the quantum

. 43 theory of the many-body system. This exists at present only in the nonrelativistic

# , ... . napproximation. We are therefore forced to limit ourselves to this approximation,

FAt AU gt ~f which still neglects all effects of the time delay in the propagation of forces.

if éfé It is not possible to give here a detailed introduction to quantum mechanics.

¢ ‘ We will limit ourselves (§1 and 2) to recalling briefly, and a bit dogmatically, the
definitions and the laws that we will need. For a more detailed exposition of

quantum theory see, for example, de Broglie, 1930; Bloch, 1930; Kemble, 1937;

Dushman, 1938.

§1. RESUME OF THE PRINCIPLES OF QUANTUM PHYSICS

In atomic physics the use of statistical concepts came far earlier than wave me-
chanics. The first step in this direction was probably made at the moment when one
described spontaneous radioactive decay by the laws of probability. Of course,
at the beginning we thought that this was a provisional approach, forced by our
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ignorance of what is going on inside the nucleus. But when Bohr, obviously guided
by an analogy with statistical concepts, constructed his model of the atom with
its spontaneous quantum jumps, and, above all, when Einstein gave his famous
demonstration of Planck’s radiation law on the basis of the idea of spontaneous
and stimulated transition probabilities (Einstein’s A and B coefficients), one already
had the strong feeling that these probabilities ought to be something basic and
primordial. In a world of discontinuous phenomena, the appearance of a statistical
form for the elementary laws would seem almost inescapable. The theory of Bohr,
although it does not yet furnish a mathematical scheme that is complete and co-
herent, has already allowed“us to state questions of principle to which quantum
theory must address itself. In & physics that deals with magnitudes, whose domains
of variation are not necessarily continuous, one wants to know:

(1) What are the possible values of a physical quantity;

(2) With what probabilities are they realized in a given system and under glven

circumstances.

Quantum mechanics furnishes us with a precisé scheme which allows a quantita-
tive treatment of questions of this kind. We can summarize it in the following way:

“The state” of a system—given in classical mechanics at each instant ¢ by the
2f values of the variables gq,(z), g,(?) . . . g (t), p1(t); p2(t) - . . p,(t)—is represented
in quantum mechanics by a complex function of the f variables g, g, . .. g, and
of ¢, the “Schrédinger wave function”

¥(q1,92--- 955 1),

which is normalized in such a way that*
[wwrdg = 1. 8

The evolution of the system in time is governed in classical mechanics by a
“Hamiltonian function” H(q, p), characteristic of the system in question. This
function of the coordinates gq,, g, . . . 4, and of the momenta py, p, - . . py, which
is nothing other than the energy, permits one to write the Hamiltonian equations
of motion. This is essentially’ the same function H(g, p) which in quantum me-
chanics also gives the law of evolution of the y that represents the state of the
system: one forms the operator* H(g, — hd/0q) by replacing p, in the Hamiltonian

* In what follows the integrals | dq are always taken over the entire configuration space 4,4z - - - 4>
and y* is the complex conjugate of ¥ )

T Completed by a term referring to “spin %

* Here the symbol h/2n employed by_‘ =

s .
don and Bauer has been replaced for convenience, and in
accord with modern practice, by the g, Zrac notation for the quantum of angular momentum, h. —Eds.

v



222 LONDON, BAUER

by the differential operator —ihd/dq, and g, by the operation of multiplication by
q,- Here a certain ambiguity enters in the ordering of factors, because the operations
g, and 0/dq, are not commutable. It is enough for us to know that there are pre-
scriptions which ordinarily suffice to determine uniquely the order of the operators,
but we will not go into this in detail here. The operator H(g, — thd/dq), once given,
allows us to write the equation of evolution:?

H(g, —ihd/oghy = itpé/ot. (2)

This equation, discovered by Schrédinger, has the important property of leaving in-
variant the integral | Yy * dg, which is necessary for our normalization j YWrdg =1
to be possible. Thus , once normalized, always retains its normalization.

¥(q, t,) represents a “state” of the system at an instant to. Here we take this
term in a sense completely analogous to that which it has in classical mechanics,
where one says that the data q,(t,) - - - ¢ (to), Pilte) " * p +(to) “represent a state.”
The knowledge of the representative of the state at a given instant is necessary
and sufficient for an unambiguous calculation, with the aid of the dynamic law,
of the representative of the state at every subsequent moment. We cannot forgo a
part of these data without losing the ability to calculate the future. Neither can we
add to them supplementary data without introducing useless tautologies or con-
tradictions of the data already in hand. ‘

The stationary states of Bohr correspond to special solutions of the Schrodinger
equation, solutions exactly periodic in time and of the form:

Y = exp(—iEt/hu(g). ©)

In consequence of (1) and (2) the “amplitude” u(q) obeys a time-independent
equation,

Hu = Eu, 4
and the condition of normalization,
f uu*dg = 1. ' ®)

The pair of equations (4) and (5) ordinarily does not have a solution for every
value of E. They present a “proper value” or “eigenvalue” or “characteristic value”
problem. Only for a “spectrum” of special values E,, E,, E5 ..., possibly also

% In accordance with present-day practice we omit the square brackets in which the authors enclose
the left-hand side of this and subsequent similar equations; and we use on the right-hand side the
opposite sign of i from that which they use whenever they write the time-evolution operator. —Eds.

N
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containing continuous intervals,* can condition (5) be fulfilled. For other values

of E the linear equation (4) of course also possesses solutions u containing an ar-

. bitrary factor; but they are not square integrable, ruling out the normalization (5).
The allowed values,

ELE, .. .E,...

‘are called the “eigenvalues” of the operator H. The corresponding solutions u
are called “eigenfunctions” and designated by corresponding indices,

U Uy oo o Upy e e

o+ It was the fundamental idea of Schrédinger to identify the spectrum of eigen-

; vaiues, E,, E,, ..., which have the dimensions of energy, with the allowed values

of the energy in Bohr’s theory, and the success of this ingenious idea is well known.

bne knows also that the founders of wave mechanics were guided in the begin- NTS

ning by the conviction that it was necessary to get rid of discontinuities, or rather

to derive them from an essentially continuous substructure, from a field theory, The ovigamed

d thus overturn the basically statistical picture of Bohr and Einstein. But this } yosbwadyo

gram did not turn out to be realizable. i wresed

he statistical interpretation of quantum mechanics may be considered to be g bumanis =

particularly conservative attempt to maintain the picture worked out by Bohr #v ve ;ﬁw_, W)
Einstein and to embody it in a coherent theoretical system. }

ow that we know how to interpret the “monochromatic” solutions of the @‘ L v

wave equation (2) such as : ﬁmfmuﬁﬁ

¥ = exp(—iEt/hu(q)

escribing a state of energy E,, we have to discover the meaning of the most
ral solutions. One can show that if one limits oneself to square integrable
ons (1), the most general solution of equation (2) is written in the form:

Y= gck exp(—iEt/h)ulq), (6) W@%dw

the ¢, are complex constants.
tn, replying to this question, formulated the foundations of the statistical
pretation of quantum theory. He postulated that the quantity |c,|® gives the

1 the ease of a continuous spectrum condition, (5) has to be imposed on a function u associated
hra small interval of E of the continuum (“proper differential™). In what follows we will not take
ount of these sophistications, which do not concern questions of principle, and we will write all
ulas as if there were nothing but discrete spectra.
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probability of finding the value E, of the energy when the system in the state (6)

is subjected to a measurement of energy. ,
If we introduce the abbreviation* , = ¢, exp{—iE,t/h), we can write

wégwmmw. ©)

The coefficients ¥, depend only on the time, and, as [Wi? = |cif? we can also
interpret the quantity |y, (¢)]* as the probability of finding the value E, for the

_energy in the state .
The coefficients ¥, may, moreover, be calculated very easily with the help of

two basic properties of eigenfunctions:

(1) “Orthogonality”:.
Jutudg = 8, o )

5 = Lifk = 1)
0k 1[0

(2) “Completeness™: for an arbitrary square integrable function f(q) (that is,
§ f*f dq = finite) one has the identity:

where

2

) = [rraa ®

k

ff w,dgq

Orthogonality immediately gives the form of the coefficients ¥, of the expan-
sion (6'). Multiplying (6") by u and integrating, one obtains:

[wtant@ag = v, - ©)

Completeness guarantees that the series thus defined converges to the function
¥(g). Thus, the integral of the square of the absolute value of the difference,

ACIE N ()

goes to zero,

* Not a customary abbreviation and one possibly confusing to the reader, but well adapted to the
purpose of the next few sections. —Eds. :
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| !w@—; e

%dq:fwj* dq—lZgb, J'ﬁ*uqu—lZW fwu?dq+;lp,¢%

= Jwrda-3 [t ag o,

f;bm which also follows the result
S = [yrdg = 1.
4

~ In other words, the sum of the probabilities of finding the various values of the
_?.\j._‘energy is unity. Thus if we.ask what is the energy, we can be assured of always
~finding some value. Naturally, it is necessary that things be so if the definitions of
B’orn are to make sense.
Thus we see how, for energy at least, quantum theory answers the two questions
:-which show up (first paragraph of §1) in every theory of the discontinuous:

1. The possible values of the energy are the eigenvalues E,, E,, Es, . .. of the
erator H(q, —ihd/dq). '

2. The probability of finding the value E, of the energy in the state represented
Y is given by .,

2

Prob(E,) = J [vurdq) (10)

ere u is the eigenfunction associated with the value Ek of the energy.
n particular, if by chance this state is represented by an eigenfunction of the
>rgy; that is, if

lp = Uy,

equation (10) gives the probabilities 1 for the eigenvalue E, and O for all other
values of the energy. '

the original iheory of Bohr one was occupied above all with the energy.
€ver, in our present formalism energy does not play an exceptional part
ept for the time-evolution of the state as represented by its y function (equation
I Al// is given at a certain instant, we can also look for statistical predictions for
bitrary physical quantity F(g, p) at that moment.

¢ generalization of our definitions for other quantities F(q, p) (as, for example,
YD, X, Py, €tc.) is fully specified as follows.

Ve form the operator F(q, —ih d/3q) and define, with the help of the equations
‘eigenvalue problem,
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Fu(g) = fu(q)
fvv*dq =1, (11)

the eigenvalues f;, f,, . .. J, - - . of the operator F and the corresponding eigen-
functions v, v,, . . . U, - .. . Mathematicians have shown that these eigenfunctions,
too, under rather general conditions, form a complete system of orthogonal func- -
tions; that is, that we have the relations

o

fvpv,’f dg =5, (12)

and that we can expand the function Y ata given moment ¢, in a convergent series
of these functions v,

¥lg, to) = ;%(to)vp(qx
where
Uilto) = [Wla, to)v(q) dg.
The generalization of our previous definitions is immediate:

1. The possible values of the physical quantity F are given by the eigenvalues of

the operator F(g, —ihd/dq).
2. The probability for finding the eigenvalue J, of the quantity F (g, p) for the

state represented by i is given by
2
Prob, (f,) = [ [wta. tz@) dq[ = v, (13)

In particular, if by chance the state is represented by the eigenfunction v , of F;
that is, if

lelzvp,

one obtains the probability 1 for finding the value J, of the quantity F and 0 for

the probability for every other eigenvalue,
From these definitions immediately follows the mean value of F in the state v,

Iy pechidoa, Mean, () = S 4, 1

/ ZW & This expression can be written in a more convenient form, which allows one to
calculate immediately the mean value without having to go back to an explicit
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evaluation of the individual eigenvalues f, or the expansion of  as a series in the
" eigenfunctions v,. One easily checks that .

Mean, (F) = [y*Fydq (14)
| because, as consequence of (11) and (12) this expression lets itself be written as

S wzosPuo,dg = T usv, [oifv.dg = S 020,10,

§2. VECTOR NOTATION

5: Our definitions are now complete. We have only to introduce a slightly more
convement notation, that of the language of vectors.

~ Vectors. We will say that the function ¥/(q), representing the instantaneous state
;';of asystem, is a “vector” in a space of an infinite number of dimensions, the function
“space of Hilbert. The mtegral of the product of the two functions i* and ¢ taken
ver all coordinates q,, q, ... g, will be called the “scalar product of ¥ and ¢,

. ¢) = f V@@ dg = Y v, )

“The quantlty W, ) = [y*ydg =Y |¢,|* will be called the square of the length
i P

Vof the vector
(¥, ) = 0 means that the vectors ¥ and ¢ are “orthogonal.”
The eigenfunctions vy, v, . . . v, ... of an operator F satisfy the relation (§1,

uation 12),
(0. 0.) = lifp=o¢
727 T 0ifp £ of

o - They form therefore a system of orthogonal unit vectors that define an “orthog-
onal coordinate system” with the help of which one can represent any vector ¥ -

whatsoever in the form,

q) = 2 ¥,0,(a. (1*

The “components” i/, of the vector y are defined by the “projection”

* Both equations are numbered (1), presumably an oversight. —Eds.
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LV, = (v, ¥)
of Y in the direction of the unit vector v,.
This decomposition into components is quite analogous to the resolution of a
vector in ordinary space into projections. We can consider the set of y, as equiva-

lent to the function y(q) itself; it is one particular decomposition of the vector ¥
into orthogonal components. The coefficients

Vi = (e, ¥)

give an analogous decomposition of the same vector with respect to another

system of orthogonal axes u;, u, ... U, ... .
The representation of Y by itself, that is, the function ¥/(g), may be regarded as a
special case of representation in terms of orthogonal components—specifically,
the orthogonal system composed of the eigenfunctions of the particular operator

F = g. The eigenvalue problém for this operator has the form,

qvq) = q,v,(9),
or

(4 = 4Jvq) = 0.
The solutions are the “limiting” or symbolic functions of Dirac,
v{q) = g — 42).
Such a function by definition vanishes for g # g, but for ¢ = g, is so singular that
Joa - qyda = 1.
In terms of these special eigenfunctions one obtains for y(q) the trivial expansion,
Wlg) = %:!//(qa)(S(q — 4
where the

Wa) = [Wa)olg ~ q)

are the coefficients in the expansion.
From our general definitions thus follows the particular result,

[¥(9)]* dg = (probability tofind g in the interval from g to g + dg).
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Tensors. In the present picture the typical operator F(q, —ihd/dq), representing

" a physical quantity, is a tensor; that is, a linear transformation of vectors. Applied
to a vector ¥, it transforms it into another vector,

¥ = Fy.

It is linear because, for every combination of multiplications and differentiations,
. one always has the distributive relation,

FY + x) = Fy + Fy, : @
'_'.'.and because, for every constant c, onek hasA
Fofp = cFy.

As it represents a real (noncomplex) physical quantity, it has one more important
. property, :

(. FE) = (0, F)*. | e

‘Such an operator is termed “Hermitian.” Relation (3) is easily demonstrated by
n integration by parts that takes account of the facts that every operation of

function of ¢ and — hd/dq, is a real function.
“When we are using for  a representation in‘terms of the i,—that is, when we

decompose the operator F into components referred to the same coordinates. In
is way F evidently finds itself expressed as the linear transformation brought
bout by the matrix - ' '

Fy = [utFudg = (u, Fu). - ®
Thus if one applies this transformation to a vector ¥,

; Fa, = (u, F Zl: '//1?1) = (u, FY),

‘one obtains the kth component of the function Fy. -
From (3) immediately follows the relation

Fkle?;( : (5)

of “Hermitian matrices.”
There is a system of coordinates in which the matrix representing the operator

'iﬁ'erentiation contained in F brings in a factor i, and that F, considered as a -

fer the state vector to a system of coordinates uy, u, ... u ..., we must also .

3/\}/‘]/
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F shows an especially simple form. These are the coordinates defined by the
eigenfunctions v; -+ v, - - - of this operator itself. In terms of them one finds,

forg =
Fpa = (vp, Fv‘,) = ]2(0,,, Ua) = faépa = {g for o # g}

In its “eigen”-basis the matrix F therefore takes a diagonal form and its diagonal
elements are the eigenvalues of F, ; :

£, 0 0 0
0 f, 0 0
e 0 0 50 ©

b 0 0 0 f,

In the system of coordinates ¥, used to expand ¥ in a series of eigenfunctions
vy *** v, - of an arbitrary operator F, the Hamiltonian operator H takes the

form H,, = (v,, Hv,) and the Schrodinger equation becomes
Y Hy, = iy, @
P

the discontinuous form in which Heisenberg, Born, and Jordan found the equations
of quantum mechanics in the first place.

Invariants. We use capital letters H, F, etc. for tensors, and Greek letters v, o,
etc. for vectors. We can then suppress indices (or arguments) associated with any
special decomposition into components and write (7) in an invariant form, inde-
pendent of the system of coordinates, or rather encompassing all possible systems
(see §1, equation 2),

Hy = ity

Two distinct representations of the same vector y, for example ¥, = (u, l/))
and ¥, = (v,, ), are related by a linear transformation,

Vi =2 Si¥, Wwith Sy, = (u, v,). ®)
p
Thus, as ¥ = ) v,(v,, ¥), one has,
P

wk = (uka lp) = Z (ulu Up)(vm lp) = Z Skp‘pp'
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' For the coefficients S, , one easily finds the relations,
2SSt =8, or S§% =1, )]
: I
" where S, = S, :
‘These relations characterize the transformation (8) as a “unitary” transformation.

~* Two different representations of the same tensor F, for example F w = (g, Fuy)
and F,, = (u,, Fu,), are related, as one easily verifies, by the relations,

Fu =Y S, F,.St.
po

“o Thus,asu = ) v, (v,u) = 2. Skv,, one has
: P P

Fu = (s Fu) = [¥ 8,08 FY. Sto,dq = 3, [o3Fo, da s,
4 L4 pa

= S, F,.S%.
pa

“Physically significant numerical values naturally ought to be scalars invariant
er these unitary transformations. The only scalar invariants that we will meet
e the “scalar product” of two vectors Y and ¢,

. 8) = [V @s@ds = Tuzo. = T o,

“and the “trace” of a tensor F,;,
T e e &

Trace(F) = ) Fiu =Y F,,. -
k P

Thus, for example, mean value of a physical quantity F in a state ¥ is given in
invariant form by the scalar product

Mean,(F) = } Fi, = Y F,,.
k p

“The other results of the theory can also be expressed in invariant form. We will
‘come back to this in §5.

: '.‘.The scalar product can also be considered as the trace of a special matrix
W x ¢) defined by

W x dhp = VD, (10)

termed the “direct product” of the vectors ¥ and ¢.
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§3. STATISTICS AND OBJECTIVITY

Already in the classic memoir (Born, 1926) where he proposed foundations for the
statistical interpretation of quantum mechanics, Born remarked that the proba-
bilities which he introduced there must have a strange character, quite different
from what one normally understands when one speaks of probability.

This feature he expressed in a form a bit paradoxical: “Although the movements
of particles are not determined, except by probabilities, these probabilities them-
selves evolve according to a causal law.” What he understands here by “causal
law” is a connection between the “states” at different moments, such that a knowl-
edge of the initial state at an arbitrary instant uniquely implies a knowledge of
the state at every subsequent time. A “state,” on the other hand, is a well-defined
collection of data on the system in question at a given moment. )

Naturally, there is no way of predicting a priori whether, in a given domain of
science, there exist causal laws as so deﬁnéd, nor what are the necessary and suf-
ficient conditions for giving rise to such laws. If one does not end up with unique
predictions, if one finds oneself forced to be satisfied with probabilities, that may
be either because our knowledge of the “state” is not yet complete or because
causality does not hold. But conversely, when one has succeeded in establishing
causal laws, that is evidently a criterion for deciding that one has attained a com-
plete knowledge of the object in question and thus, in some measure, a maximum
description. L

But the Schrodinger equation has all the features of a causal connection. If the
Y function is known at a given moment, it is determined at every subsequent time.
It therefore seems difficult to believe that this function nevertheless contains a
statistical collection. At first sight it seems impossible to avoid the following
dilemma. ‘

1. One might-imagine that the Y function has the character of the ordinary
probability function such as one uses, for example, to describe Brownian motion.
A function of this type contains certain statistical predictions that we can test.
We then verify which of the possibilities foreseen in the theory is realized in fact
In a given case. After this observation we are naturally entitled to use, for the
subsequent predictions, the knowledge thus obtained and to replace our original
probability function by a function of the same type, but better tuned. Evidently
this is only possible by virtue of the enrichment of our knowledge, which is always
partial. Of course we do not claim that the object itself has changed its state as a
consequence of our observation. All that has changed is the discrepancy between
our knowledge and the object. In this case the Y function will therefore represent
the state of our partial knowledge of the object and not the state of the object
itself.

2. Imagine, on the contrary, that the  function has an “objective” character,
as, for example the wave functions of optics. It then claims to represent, in an
idealized and simplified form, something complete, a maximum picture of the state
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of the object. But if this is the situation, it seems difficult to understand how
this  function implies a statistic. If one checks experimentally predictions that
- can be made from it, and if one observes which of the possible outcomes is
realized—an outcome predicted by the theory, but only with a certain probabil-
© ity—by what right can we add this new knowledge to the supposedly complete
“knowledge that we already had?
 Heisenberg found the solution to this dilemma. He emphasized that it is the® )
process of measurement itself which introduces the element of indeterminacy in thej
. state of the object.
Thus the statistical feature would not show up except on the occasion of a

- measurement. If the  function gives us probabilities, it does so only in anticipation

of an eventual measurement. Thus these are only, so to speak, “potential” proba-
bilities which come into force only on the occasion of an actual measurement.
. They do not affect the precision with which the state of the system is currently
';-f'known thus it is already maximal when the y function is given.

 " Of course it may happen that there is an additional uncertainty in 1 the state of
fthe system—that is, in the ¥ function itself. In this case it is a question of proba-
bzlztzes in the ordinary sense of the word. They arise from an incomplete knowl-
E_-;Edge of the state of the object. It is necessary to distinguish clearly between these
~ probabilities and the “potential” probabilities furnished by ¥ functions.

§4. MIXTURES AND PURE STATES

- That an essential distinction is in question can be seen most clearly by an example.
- L Let us consider first the case where the system is represented by a wave
- function,

= ; Yiaulq),

where u;, u, - - u, - - - are, for example, eigenfunctions of the energy. We know
hat the quantity |y,|? gives us the probability of finding the value E, of the energy
when an energy measurement is made on a system in a state .

/IL Tt has often been considered that this case corresponds straightforwardly to
“'a virtual ensemble of identical systems in different states possessing respectively
_energies E;, E, ... E, . . ., each one of them being contained in an ensemble with
_f};a relative weight p, = |y,)%. '

However, this latter case (IT), which will interest us also, is basically different
'f;lfrom the pure state (I) represented by a single function . It is a mixture of several
~_»dlst1nct pure states, each represented by its wave function,*

1y (2 (n)
* In what follows the upper indices (¢, ¥, ... ¥) always designate distinct pure states.
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1)

Y(g) = uy(q)
@)
Y(q) = uy(q)
(k)
Y(g) = wlq)

with the respective fractional abundances
= wjllz" P2 =‘|'ﬁ2]2> < Dk = Mk.zs

One easily verifies that case I and case II give two completely different statistical
distributions. Of course they are identical for energy, because we have arranged
that their statistics should be the same. But let us consider another physical
quantity, F for example, not having the same eigenfunctions as energy. In case I
the mean value of F takes the form (see §1),

Mean(F) = (y, Fy) = z ViV P, ’ @

: (k)
while in case I each component ¥ = u, gives a contribution of this kind:

/
/

(k) (k) (k)
Mean (F) = ('/la F'ﬁ) = (uk7 Fuk) = Fkk‘

When this component appears with the probability p, in the mixture, one obtains
altogether

: (CINC)
Mean(F) = %pk(!//, FY) =) piFu. an

If in particular we consider the case of a mixture where Pk = [Wif%, we find,

Meany(F) = Z l‘ﬁkszkk- ar)

Thus, provided that F,, is not by a chance a diagonal matrix (that is, F does not
have the same eigenfunctions as H), the two cases I and II are completely different.

M tﬂ/\/@? WY /f Iy
ety
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‘It is evident that in case I our knowledge of the system is much more restricted

than in case I If our knowledge is limited to the statistics of energy—that is, if
¢ have only the equations

= l‘:blfzs D2 = I'/lz'z P = I'ﬁk'z—

e do not know the coefficients ¥, themselves, but only thelr absolute values.
vaen that the ¥, are normally complex quantities, we can write them in the form

Ve = by exp (i), o
here the phases o, are still indeterminate. One easily verifies that the difference /\/ 5
ctween cases II and I arises from this ignorance about the phases «,. Thus, in

oducing (1) in the expression Meany(F), we find

The
Mean(F) = %\/;EFH exp [i(o, — )] . W a G

e then average over the unknown phases we find that all of the terms with

drop out and we get precisely Meany(F). : ﬁu f i’%
e thus sees that it is necessary to make a careful distinction between : wa He Laer
pure state described by a single wave function  that represents, we see,

hing irreducible, the probabilities that it implies being only “potential” 95{- ‘
ilities;

- Ywbaes
A mixture, composed of different pure states .

0@ @
"b’ w e ./,’

with probabilities p;, p, - p,.... These latter probabilities are under-

‘the ordinary sense of the word. Naturally, they are all non-negative.
ppose them to be normalized:

Yop=1

§5. THE STATISTICAL OPERATOR

1l be useful to introduce here a concise notation to describe statistical
es in all generality. We will consider a mixture such as we have just defined
e 1I). The mean value of a physical quantity G in this mixture is

" ()
- Mean(G) = Y. p,(¥, GY),
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or, referred to a concrete coordinate system,

(n)(n)
Mean(G) =Y p, Y. Y WG,
: n po
which can be written
Mean(G) = Trace(PG)
Trace(GP), (48]

when one introduces a Hermitian matrix P, the statistical matrix, defined by

n) ()
P =3 p xy); ' (1

that is, in some chosen system of coordinates,

(n) (n) ,
Py =Y 00t (1)

The case of a pure state yy = ). Y ,u, is included in these formulas as the special
p

case of a mixture where all the p, are zero except for the single one, which is equal to
unity. Its statistical matrix takes the form '

W) )
Pop =¥, or P =(Y x ). 2

Let us call the statistical matrix for a pure state an elementary matrix (Einzel-
matrix). The matrix P for a general mixture can thus be considered 2 a.linear
superposition of “elementary matrices,”

(n)
P=Yp,P.

The elementary matrix for a pure state  takes an especially simple form in a
system of coordinates v,, v, - - - v, in which the wave function ¥ is identical with
one of the axes. For example, let § be equal to v,. Then one has
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0 0 00O
v 01 00
Pp‘aA='52p'520'= 0 0 0 0 } ) (21) .
' 0000 ‘

et us now calculate the probability of finding the value g, of G in the ensemble
cterized by the statistical matrix P. :

et us take as axes the eigenfunctions v, of the operator G. For the pure com-

ent ‘ ‘

W
V=2 v,

th the index n we have (§1, equation 13)

(m () (n
Prob(g) = |y.J* = P,

hen this component occurs in the ensemble with the probability p,, one has -
ogether /

(n) _
Prob(g) = Y p|W,)* = P,

(2)
we make use of the elementary matrix P for the pure state in which G = g,

I)’

can express the probability of finding the value g, in the mixture P in the invari-
form, '

=) )
Probp(g,) = P,, = Trace(P P). h (1)

“particular, if P = P designates the case of the pure state where an arbitrary
ysical quantity F has the eigenvalue f»» one sees that
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() (2)
Trace(P P) = Prob(f,, g,) (I11)

is the probability of finding the value G = g, for the pure state in which F = f,.
One notes that this expression is completely symmetric between F and G. The
same expression (III) also gives the probability of finding F = f, for the pure state
in which G = g,.

The statistical matrices P therefore present an evident advantage. They permit
us to express all our definitions so that the very form (I, II, III) already indicates

the invariant character.

§6. SOME MATHEMATICAL PROPERTIES OF STATISTICAL MATRICES

(@) Let us calculate the trace of an arbitrary statistical matrix P,

, (n)
TraceP = ) P,, = ZP,,ZI'ﬁalz = an =L

In this way we obtain the relation
TraceP = 1, (1)

which expresses in brief form the normalization of probabilities.
(b) In particular, the elementary statistical matrices P for pure states possess

the additional property

P* = P, @

yi Lygé Lense,

which results immediately from the definition (§5, equation 2) of these matrices,

W) W)
Py = D AS AT, = Y}Y, = P,

Relation (2) is in any case evident if one recalls the diagonal representation (§5,
equation 2') of elementary matrices.

*“E?Y?Efﬁi/i’?dfk One perceives immediately that the converse is also true. From P? = P and

, 1?‘}#3‘? Wgﬁfﬁ from Trace P = 1 it follows that P is an elementary matrix. Thus when P is ,

“0 written in its diagonal form, P? is likewise diagonal, and P = P? implies p, = p?.
The eigenvalues are therefore zero or unity. From the equation Trace P = Y pi=1

13
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it follows, finally, that a single one of p; is equal to unity, and that an-.. 218
vanish. The relation P> — P = 0 is therefore necessary and sufficient for the ‘sta-
tistical matrix P to be the matrix for a pure state.

(c) We have not yet placed any restrictions on the choice of the pure states which
constitute the mixture. In particular, we have not assumed that they were rep-
resented by orthogonal wave functions ¥ (later to be distinguished from one
another by an index (n) written directly above the ). But one can show very

easily that an arbitrary mixture composed of arbitrary pure states can always be

written in the form of a mixture of orthogonal pure states with non-negative rela-

tive probabilities p;.
Let us first verify that a matrix P is a semi-definite matrix; that is, that for our

arbitrary vector ¢ one always has

(& PE) = 0. G

Thus the definition (§5, equation 1’) of P gives
(n) (n) (n)
(éy Pé) = Z p”€: lpa : éﬂ ‘ﬁ; = Z pn{(éa l//)l27
naf n

an expression which cannot be negative because

(n)
p. =0 and (&) = 0.

But P is a Hermitian matrix. Therefore, there exists an orthogonal coordinate
system v;, v, . .. v, in which P takes its diagonal form, .

P, 0 0 0
0 p, 0 O

Po=10 0 p5 0 - @)
0 0 0 p,

The values of the diagonal elements p}, p5. .. p, cannot be negative. Thus,
again one has in these coordinates

(& P& = Y plél* 20,

e
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which is not possible for an arbitrary vector & unless p, > 0 for every p. The
matrix P therefore can always be written in the form

(p)
P=3p,P, S )
P

(p) .
where the P are the elementary matrices for a certain system of orthogonal pure

states vy, v, ...0,. The pi, p>...p, = 0 are the relative probabilities for these

states.
As Trace P = 1, we also have

and p,, > 0 implies

(d) From this inequality follows another,
P - P 4 > 0.
From this equation we conclude that for an arbitrary vector &,

&P =P =) |&)(w, —p)) = 0. 5)

The matrix P — P? is therefore likewise semidefinite.
In particular for a pure state the quantity P — P? vanishes (see equation 2).
Elementary statistical operators like P = (¥ x ) can be considered as “pro-
jectors” or “projection operators.” Applied to an arbitrary state vector &, P
singles out the projection of this vector in the direction of the vector ¥,

2 Pole = D UNEE, = ¥, 0).

~The magnitude of this vector is (, &) and its direction is that of the unit vector .
The iteration of the projection produces no further change: P? = P.

§7. THE STATISTICAL OPERATOR AND THERMODYNAMICS

The operator P describes an ensemble of identical systems which are distributed
in an arbitrary way among the different states. It plays the role analogous to that
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i{of a distribution function in ordinary statistical mechanics. Therefore there ought
“to exist a connection between operator P and the macroscopic thermodynamic
:quantltles It will be enough for us to point out briefly the main features of this
:_connectlon without stopping for proofs (see von Neumann, 1927, p. 273) Every-
‘{_thmg 1s summarized in the definition of entropy, S:

5 S = —kN Trace(PInP), (1)
;'.._;{i’(here | '
. k = Boltzmann’s constant

and
= the total number of systems.

'vThis relation becomes quite plausible when one recalls that in statistical mechanics
S=—k) (n,Inn, — NInN),

where n, is the number of systems in the state o. Therefor_e if p, = n,/N represents
he probability for a system to be in the state «, one has again

S = —kNl:Z pdlnp, + InN) — InNJ,

which is identical with (1) in a system of coordinates in which P is diagonal (§6,
":'quation 4). Our definition of entropy is therefore the entirely straightforward
eneralization of the usual definition. One sees immediately that for a pure state
the entropy thus defined is zero. Thus, if one represents P in diagonal form, the
fitropy becomes

S = —kN) p,Inp,.

very term p, Inp, of the sum vanishes, because in a pure state the p, are all zero
xcept for a single one which is unity. One also sees immediately that the entropy
f a mixture is always positive.

-~ To maximize the entropy for a given total energy E is to impose on P the fol-
;lowmg conditions:

—kN Trace(P InP) - Max;
TraceP = 1;
N Trace(PH) =



242 LONDON, BAUER
The solution of this extremum problem is represented by the matrix,

P = e ™/ Trace(e PH) = e 8)7(p), 2
where
Z(B) = Trace(e™*¥).
The Lagrange factor f is determined, as always, by equilibrium with a perfect

gas; thus, § = 1/kT, where T is the absolute temperature.
One thus obtains for the entropy of the most probable distribution,

S = kN Trace[e™ " (BH + InZ)/Z()]
= —kN[BénZ/6p — nZ],

and for tﬁe energy,
E = —Ndlnz/ap,

from which one easily gets all the other thermodynamic quantities, for example
the free energy ‘

F=E-TS=-kNT Iz,

et cetera.

§8. THE IRREDUCIBILITY OF THE PURE CASE

Our definitions would be worthless if pure cases were not characterized by some
kind of irreducibility. We have to show that it is not possible to represent a pure
case in the form of a mixture. For this purpose we will show that a statistical
matrix P, obtained as a mixture of two statistical matrices Q and R,

P =aQ + BR, ’ 1)
with
( o+ =1, o >0, B =0,

cannot be an elementary statistical matrix (such that P = P?) except if 0=
R = P. Let us calculate

P? = o?0% + B2R* + af(OR + RQ)
= 2’0" + FIR? + of[Q” + R* - (Q — R)?]
= aQ? + BR* — aB(Q — R)?,
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where we xsed the condition « + f = 1. Thus
P~ P?=a(Q - 0% + B(R — R?) + af(Q — R)%.

e now recall that the matrices Q — Q% and R — R?, as well as (Q — R)?, are
ys sem1deﬁn1te (§6, equation 5). Therefore it is necessary that all these quan-
S should vanish for P to be an elementary matrix (P = P2). In particular, we
'ave_(Q R)? = 0, from which we conclude

Q=R

ecause the square of a Hermitian matrix cannot vanish unless the original
trix vanishes,

: (g AikAki = Zk:AlkA?;( = Z IAiklz = O lInplieS Aik = 0).
k

= R and from (1) it follows that Q = R = P,
tatlstlcal operators thus form an ensemble of a characteristic structure, called.
ensemble. Its boundary is formed by the operators for pure cases. No pure
can be constructed by linear superposition with positive coefficients—that is,
1xture——of two nonidentical pure cases.
hough the statistical operator P of a pure case cannot be decomposed, one
imagine that there perhaps exists some other means to reduce directly the
sponding statistics. '
n actuality this problem does not differ from the problem that we have just
ussed. However, it would perhaps be useful to consider it explicitly.
f course we always take as our foundation the statistical distributions as
dicted by the formalism of the theory and verified by so many experiments.
refore we will not discuss the validity of these statistical predictions. We will
ourselves rather if, once assumed, they might not be represented by mixtures
.arbitrary form, but belonging to systems that are well defined in the ordmary
e of classical mechanics. '
Let us take a concrete example that is as simple as possible, that of the statistical
scription associated with a “spin.” Let us consider an atom of angular momen-
/2 and let us focus attention on the component of this angular momentum
xiarbltrary direction. For any given direction there are only two values possible
his component of the spin: +h/2 and —h/2. Let us fix in space the axis of a
m of spherical polar coordinates. Let u, and u_ be the eigenfunctions asso-
ited with the two possible values for the component along this axis. To be
ncrete, suppose that

Y =u, : :
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is the wave function of the state in question—that this state is a “pure case.”

Let us now consider, for the same state y, the component of the spin in another
direction, oblique to the polar axis and characterized, for example, by the polar
coordinates 6, ¢. The only possible values for the component of the spin in this
direction are agdin +h/2 and —h/2. To evaluate the probabilities for finding each
of these two values it is necessary to represent ¥ in terms of the two eigenfunctions
associated with those two possibilities. We will call them «/, and . A calculation
gives

u, = cyu, + c_u_,
with ;
c, = e%? cos )2,

c = e *2ging)2,

The squares of the absolute values of the coefficients v, and v’ represent the -
probabilities for finding the one or the other of the two possible components in
the direction 6, ¢ ; thus, : ) o

Ph = leaf? = cos?0)2,

po=le P = sin” §/2.

But, in the same state, the probabilities of the two values for the component along
the original polar axis are, respectively, ‘

p+ =1
and

p- =0.

" Evidently it is impossible to decompose these statistics into a mixture of defi-
nitely oriented spins. In such a mixture it would be necessary that a fraction
cos? 6/2 of the atoms should have a component h/2 in the direction 6, ¢ and that
a fraction sin” 6/2 should have the opposite orientation. This, by itself, would be
possible. But we ought, in addition, to have 100% of the atoms with the same
component h/2 along the direction of the polar axis, and yet a fraction cos?0'/2
along any other direction #. That would be a juggling trick rather difficult to

~ bring off!

Evidently it is impossible to arrange a virtual ensemble of oriented atoms that
meets simultaneously all of these statistical requirements. The mathematics of the
probability calculations already precludes this possibility.

‘We will use the same simple example in section §12 to study in detail how, by
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his own intervention, the observer succeeds in doing the juggling trick. However,
to keep the discussion clear, it is first necessary for us to bring out an aspect of
quantum mechanics which we have not yet mentioned, but which contains
.the very essence of the theory, the feature responsible for the appearance of
probabilities.

§9. STATISTICS OF A SYSTEM COMPOSED OF TWO SUBSYSTEMS

: At first sight the mathematical formalism of quantum mechanics seems entirely
analogous to that of the theories of “classical” physics: a differential equation
~ uniquely prescribes the evolution of the wave function Y that describes the state
’-"o'f the system. Therefore it seems as though our task, faced with Schrédinger’s
“equation, is no different from that of Laplace faced with the equations of Newton.
" The state of a closed system, perhaps the entire universe, is completely determined
for all time if it is known at a given instant. According to the Schrddinger equation, 7 5 1Az P
-a pure case represented by a y function remains always a pure case. One doesnot | * e
,{ immediately see any occasion for the introduction of probabilities, and our AL Ad
“statistical definitions might appear in the theory as a foreign structure. &, shdnadaes,
‘We will see that that is not the case. It is true that the state of a closed system, a»w_,m.&iz@
once given pure, always remains pure. But let us study what happens when one L Pasne wi S0
puts into contact two systems, both originally in pure states, and afterwards «’*ﬁ Fie
separates them. :
I;,et us therefore con51der two systems, I and II, originally separated. Let x be MM’{?‘; f
e ensemble of the coordinates of I and y the coordinates of 1. Each of the two . w;‘gjf’é&

-ffj'._éystems is assumed to be in a pure state given by its wave function: i } ek, ﬁg-v

Y(x) = ), Yiau(x) (system I), b, st
: AL AR P e

d(y) = ¢v,(y)  (systemII).
P

We have expressed the functions  and ¢ as series built on the orthogonal functions
- 1(x) and v,(y)- The coefficients ¥, and ¢, depend only on time.
- Although the two systems are originally taken to be separated, we can never-
- theless describe them by a combined wave function ¥(x, y), whose evolution is
“governed by a combined Hamiltonian. The fact that the two systems are isolated
“from each other is expressed in the form of the Hamiltonian. It is the sum of two
terms, each depending only upon the coordinates of one of the two systems; thus,

H(X, Px> V> py) = Hl(x7 px) + HU’(y’ py)

It is easily verified that the combined wave function W(x, y), which unites the
statistics contained in ¥(x) and ¢(y), is the simple product of the two separate
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wave functions. It obeys the wave equation with Hamiltonian H; + H,,. One has
therefore before contact

¥ix, y) = Y(x)p(y) = kz Y i (x)v,( 3)- 1)

Let us now bring the two systems into contact. That makes it necessary to add
to H an interaction term, H{(x, p,, y, p,), containing the two sets of variables x, p,
and y, p, in a form that is not simply additive. It is evident that the combined
function ¥ for the pair of systems will no longer in general keep the form of a
product of two functions each depending on a single set of variables. However, it
naturally can be expanded at each instant as a series of products w{(x)v,(y) with
coeflicients that will depend on the instant chosen. Thus, if u,(x) and v,(y) form
complete systems of orthogonal functions in their own domains, x and y, the
products u,(x)v,(y) also form an orthogonal system that is complete in the space
of functions on the domain (x, y) of the ensemble.. During or after the contact the
wave function will be written in every case in the general form,

W«z\)&ﬂw/\/\/( ' Px,3) = T Wuga(o,(y), | 2)

where the coefficients ¥,, in the generic case will not have the special form of a
product, ¥, $,. As we are always dealing with a unique wave function evolving in

~accord with a Schrédinger equation, we have for the combined system a constantly
pure case. Its statistical matrix is an elementary matrix,

— *
Pkp,lo' - lIlkplP[o"

As one pair of indices, k, p, is needed here to characterize a state of the total system,
the elements of the statistical matrix of this system will evidently depend on two
pairs of indices, k, p and |, ¢,

Let us now focus attention on the system I. What is its statistical matrix ?

Let F be a function solely of the variables of system I and F,, its representation
in the coordinates u,(x). The mean or expectation value of F in the state ¥ will be
given by

(¥, F¥) =) YW, Fiy = Trace(P'F).

kl.p

Therefore the matrix

P



II.1 OBSERVATION THEORY 247

plays the role of statistical matrix for system I. Similarly one obtains for system II
the statistical matrix

Py, = ;‘Pk,‘l’fp. : (3b)

I and PV are evidently no longer elementary matrices. We are dealing with
tures. What are their components? And what are the relative probabilities or
centrations of these components?

e.note that the ¥, are normalized in the space of the indices k, p; thus,

Z ,\Pkplz =1
k.,p

(0) :
fore the magnitude ¥ with the components

(o) 1/2
wk = Wkp/[; I‘I;lplz}

rmalized state vector for system I and represents a pure‘ case.
can therefore give to P’ the following form,

(r) (M
=20, x ¥), (3a)
b = Z I\Plplz (4a)

(n
¢ concentration with which the pure case ¥ is contained in the mixture I.

€ same way one has .

0 @ ,
T=2pdd x ) (3b)
. Pl

S o]

unit vector, representing a pure case in II; and
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P = ¥ (4b)

(k)
is the concentration with which ¢ is contained in the mixture II.

While the combined system I + II, which we suppose isolated from the rest
of the world, is and remains in a pure state, we see that during the interaction
systems I and II individually transform themselves from pure cases into mixtures.

This is a rather strange result. In classical mechanics we are not astonished by
the fact that a maximal knowledge of a composite system implies a maxzmal knowl-
edge of allits parts. We see that this equivalence, which might have' been considered
trivial, does not take place in quantum mechanics, Theré & miaximal knowledge
of a compgsite system ordinarily implies only mxxtures for the component parts—
that is, a knowledge that is not maximal.

The mixtures represented by P! and Pl naturally cannot express all that it is
possible to know about the combined system I + II. It is evident that the ele-
mentary combination of statistical mixtures for two individual systems cannot by
itself reproduce a pure case for the combined system. Thus the function Y(x, y)
for the combined system contains still other relations, to wit, statistical correlations
between the components of the two mixtures I and II.

The fact that the description we obtain for each of the two individual systems
does not have the character of a pure case warns us that we are renouncing part of
the knowledge contained in W(x, y) when we calculate probabilities for each of the
two individual systems separately. This renunciation expresses itself by the sum-
mation over the index p in the definition of P!, where we abstract away from what
might be known about the state p of system II and about its connection with
system I. This loss of knowledge expresses itself by the appearance of probabilities,
now understood in the ordinary sense of the word, as expression of the fact that
our knowledge about the combined system is not maximal.

§10. REVERSIBLE AND IRREVERSIBLE EVOLUTION

Itis evidently necessary to make a characteristic distinction between two essentially
different modes of evolution of an individual system, a distinction which has no
analog in classical mechanics.

L. Reversible or “causal” transformations. These take place when the system is
isolated. They can be described by the change with time of a Y function (or of a
certain number of distinct Y functions when one deals with a mixture). If y(z,) -
represents a pure case at the instant ¢, its evolution can be written in the form

Y(t) = TY(to), 1)

with the operator
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(4b) T = exp[=iH(t = to)/] = X (/n)] ~iki(c — to)h].

n'the case of a mixture, the time dependence of the statistical operator
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P(t) =Y Pp( W(t) x '//(t)) =3'p, (TW(to) X T*ﬁ(to))
p ) p
s thus given by the equation
P(t) = TP(t,)T*,

' re T is the abbreviation for the matrix T);. One verifies that
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s. therefore a umtary transformation that characterizes a causal evolutlon. It
sforms a pure case into a pure case. '
\ umtary transformation, keeping invariant—as it does—the trace of a tensor.
not change the value of the entropy; the quantity Trace (P, In P) stays constarit.
Irreversible transformations, which one might also call “acausal.” Thesey
take place only when the system in question (I) makes physical contact with
another system (II). The total system, comprising the two systems (I + II), again
n:this case undergoes a reversible transformation so long as the combined system
‘11 1s isolated. But if we fix our attention on system 1, this system will undergo
irreversible transformation. If it was in a pure state before the contact, it will
dinarily be transformed mto a mixture. If it was already a mixture, it will be
ransformed into a entropy._of- which (§7, equation 1) will be
creased. Once thus degraded, the system has no chance in and by itself ever to
gain 1ts initial degree of defermination. T

© We shall see specifically that measurement processes bring about an irreversible
ransformation of the state of the measured object, such that the initial statistical
perator for a pure case

2
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jis transformed, by interaction with the measuring apparatus, into the mixture,
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P =Y W, x u,),

the u, being the eigenfunctions of the quantity measured. The transition from
P to P’ clearly cannot be represented by a unitary transformation. It is associated

- with an increase of the entropy from 0 to — k > [W.* Infy, 2, which cannot come

about by a unitary transformation.

The distinction between these two modes of evolution has no analog in classical
mechanics, where it is always possible to give a maximal description of the state
of an object by its 2f coordinates and momenta qy, q, ' - - p,, whatever the inter-
actions between systems.

§11. MEASUREMENT AND OBSERVATION.
THE ACT OF OBIECTIFICATION

We are now ready to analyze what happens in the act of measurement. We will
first outline a protocol for this process and then verify in the following section
that it describes properly the typical course of a measurement.
Suppose that we want to measure the quantity F(x, p,jofa systerﬁ (“the object”)
given to be in the state ¥ =Y Y (x) where Uy is an eigenfunction corresponding
k

to the value f, of F. We couple it with an apparatus capable of measuring F.

Let G(y, p,) be the coordinate specifying the pesition of the “needle” of the
measuring device, and g, g,. .. g, its eigenvalues, with eigenfunctions vy y),
vi(y) ... v,{y). The state vyf y} corresponds to the zero of this apparatus,

Before the coupling we will attribute to the combined system a collective wave
function of the form;, '

Flx, y) = ve(y)"; Witk (x). (1)

This is a pure case for each of the two individual systems. After the interaction the
wave function will be of a2 more general character,

P :

But an arbitrary interaction does not provide a measurement. In order for it to
do so, it is necessary that it disturb the state of the object as little as possible and in
addition that it should let one deduce from a g, the corresponding f;. Thus the

values of the measurement scale g, should BeJcoordinated one-to-one with the

values f, of the quantity under consideration, so that one can mscribe Vhdfirectryf
onto the g, scale the corresponding values of F. That ocoars by replacing the
index pg, by k. Thus g, = 9oay Will correspond to f,. -

e
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We will see (§12) that after a measurement of the quaritity the wave funection
es the special form,

¥, y) = 3 yaan (ol y). 29

rding to the preceding section, this function represents a state of the combmed
11 that has for each separa te system, object, and apparatu s, the ¢ character of
xture. According to §9, equation (4), the quantity P = [f? gives the prob-
of finding the object in the pure state u, with F = = f,; and the sane quarntity
Mkf also gives the probability of finding the apparatus indication G = g,.
cover, we have a correlation between the two mixtures: specifically, we know
‘certainty that if G = ¢, then F = - fi. But of course quantum méchanics
not allow us to predict which value will actually be found in the measurerent.
raction with the apparatus does not put the object fito a new pure state.
it does not confer on the object a new wave function. On the contrary, it
y gives nothing but a statistical mixture: It leads to one mixture for the
nd one mixture for the apparatus. For either system regarded individually
esults wncertainty, incomplete knowledge. Yet nothing prevents our re-
is uncertainty by further observation. And this is our opportunity.
/¢ have only coupled one apparatus with one object. But a couplmg,

Ineasuring. dewce i$ not yet a measurement, A frfeasure‘ment )

owledge, acquired by observatmm that gtves the observer'the
0 ng the dlﬁerent components of the mtxture prc : tc‘ée I By tResTy

om the mixture to the gurecase.. /
L reve) obtam 4 new lé func’ao *-I‘:o"”

nid UHIGUE System. We w“ﬁ desmBe it by a gl-obaI wave functmn
alogous to (2),

{

¥(x, . 2) = ; VXl yIwil2);

- wy, fepresent the different states of the observer.

ely”—that is, for us who consider as “object” the combined system
ke situation seems little changed comipared fo what we just met when we
ering only apparatus and object. We now have three mixtures, one
em, with those statistical correlations between them that are tied to
» for the combined system. Thus the function W(x, y, z) represents a
aal deseription of the combined “object,” comsisting of the actual object x,
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the apparatus y, and the observer z; and nevertheless we do not know in what
state the object x is. '

The observer has a completely different impression. For him it is only the object
x and the apparatus y that belong to the external world, to what he calls “objec-
tivity.” By contrast he has with himself relations of a very special character. He
possesses a characteristic and quite familiar faculty which we can call the “faculty
of introspection.” He can keep track from moment to moment of his own state.
By virtue of this “immanent knowledge” he attributes to himself the right to
create his own objecﬁvity——that is, to cut the chain of statistical correlations
summarized in )" Y, (x)v,(y)wy(z) by declaring, “I am in the state w,” or more

k

simply, “I see G = g,,” or even directly, “F = 1" .

- Accordingly, we will label this creative action as “making objective.” By it the
observer establishes his own framework of objectivity and acquires a new piece of
information about the object in question.*

*Thus it is not a mysterious interaction between the apparatus and the object
that produces a new y for the system during the rheasurement. It is only the con-
sciousness of an “I” who can separate himself from the former function Y(x, y, z)
and, by virtue of his observation, set up a new objectivity in attributing to the object
henceforward a new function Y(x) = u(x). : '

- Neither is it some ignorance as to the state of the observer that creates quantum
indeterminacy. On the contrary, in assuming a pure case for the combined system,
we have implicitly presupposed an equally perfect knowledge of the initial state
wo(z) of the observer and of the apparatus v(y), that is, maximal information.
Moreover, we have assumed that the observer can keep track perfectly of his own
state. :

Of course there might also be restrictions on the immanent knowledge of the
observer. But these, if they existed, would in any case have nothing to do with
quantum indeterminism; they would be additional restrictions of a completely
different character. Moreover, it is not ordinarily required for a discussion of the
measuring process that one should have an all-encompassing knowledge of the
state of the observer; for example, there is little chance of making a big mistake
if one does not know his age.

§12. AN EXAMPLE OF MEASUREMENT

It only remains for us now to verify the protocol for measurement that we have
just discussed. Let us take as a typical example the determinaktion of the value of

* This paragraph is new. We have translated it from a typed addition inserted by Professor Fritz
London in his own copy of the printed book, kindly sent to us October 24, 1980, by Mrs. Fritz
London.—Eds.
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_one component of the magnetic moment of an atom by the method of Stern and

'Gerlach. The formulas that we will get can be generalized without difficulty to an
“arbitrary measurement.. : .
- This measurement is made, as is well known, by observing the motion of an

. atom through a nonuniform magnetic field. The field points in the direction along

~which one wants to determine the component of the magnetic moment of the

.atom. The coordinates, y, of the center of gravity of the atom play the role of

ﬂf'the pointer reading G(y, B,). The internal coordinates of the atom, relative to the

center of gravity, serve as object coordinates x. Specifically, we are concerned with

~the component, M = M(x, Px), of the magnetic moment in the direction of the

“field.

* ““Let us write the wave equation for this problem in the form

{=(0/2m)A, + H(x, 9/ox) + [M(x, p,), FOyL ¥ y) = it¥(x, ). (1)

;Here H, is the Hamiltonian operator for the field-free atom after one has separated
‘off the center-of-gravity variables, —(B2m)A, is the operator of the “apparatus”
rresponding to the kinetic energy of the center of gravity, (M, F ) is the contri-
ution arising from the magnetic field F, and M is the operator for the magnetic
ment of the atom in the direction of the field.

So long as the field F is constant— that is, so long as it does not depend on the
I y—the variables x and y can be separated in' equation (1). For the
ifferent states of the “object” we must deal with the eigenvalue problem,

(Ho + MF)uy(x) = Eai(x). - » ‘ 2

“Let us limit ourselves to the lowest state of the atom, a state which we assume to be
generate, with its components splitting in the field in proportion to the field
rehgth F, "

Ey = Eo + (kp/j)F. )
ere u is the magnetic moment of the atom and k is the magnetic quantum num-
ber, k =j, j — 1, J—2,j—3...—j, where jh represents the total magnetic

-‘fnioment of the atom. When the field is no longer constant, F = F(y), equation (2
"__c:o'ntains the coordinates y as parameters. Consequently the eigenvalues of (2),

Ey) = Eo + (ku/))F(y), (3a)

will also depend on these parameters y; likewise the eigenfunctions u,(x), which
_will be written more appropriately as u,(x, y). In practical terms the perturbation
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of the u, by the nonuniformity of the field is so slight that we can forget this de-
pendence of the u, on the parameter y.
Let us now develop ¥(x, y) in a series in terms of the functions u,(x),*

¥(x, y) = Z vilt, yuglx),

k

and let us introduce this development into the Schrédinger equation (1). After
multiplication by u, and integration over x we find for the coefficients v,{z, y) the
following equations:

(= /2m)A, + Ed}oly) = ity ). (4

They are still of the Schrédinger type but now refer solely to the motion of the
center of gravity. In a typical such equation, the eigenvalue (3a) of (2), Ei(y), plays
the role of the potential. Let us now consider an atomic beam and let us develop
E(y) in the neighborhood of this beam,

E, = Eo + ()[Fo + (3, grad Fy + -],

In first approximation the “potential” E;(y) varies linearly; thus it behaves like
the potential of gravity near the earth’s surface. Consequently equation (4) is
nothing other than the equation of free fall. But in it the acceleration is proportional
to the quantum number k. Thus the acceleration depends on the value of the cori-
ponent of the magnetic moment in the direction of the field, and can be positive or
negative. Therefore it is easy to foresee in general terms and without detailed

calculation the shape of the various trajectories which come from a well-collimated |

and initially monokinetic source and then travel through the nonuniform mag-
netic field. A single beam v, splits into separate beams belonging to different
values of k. The cross-hatched regions in Figure 1 show where the functions v,
are appreciably different from zero.
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FIGURE l. Splitting of the atomic beam in 4 non-uniform feld,

* This is certainly permissible. The v,(y, £) show up in this development, riot as given eigenfanctions,
but as the still unknown coefficients of the functions wlx).

[t
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So far we have been discussing the not-yet-normalized solutions of the auxiliary
uations (4). A complete solution of the Schrédinger equation (1) will have the

Yix,y) = ; O V) (x). (5)
4 = ;‘pk“k(x)

Ll = 1

¢ state of the atom before the measurement in the region at the left of the figure,
2 we can still separate off the motion of the center of gravity and where all
ctions v,(y) are identical [ = v Wl

rotal wave function of object-plus-apparatus before entry into the region of
dis i ‘

H(x, y) = vy y)'z:; Wt ().

¥
il

‘;her side of the field region, according to (5) and théj@prmciplfe of continuity,
Yix, y) = ; Yie(x)o( y).

isurement of the y coordinate of the center of gravity of an atom that has
field is equivalent to a determination of k because each o€ b differs
only in a limited region, fixed by k, and because a determination of k is
o a knowledge of the component of the magnetic moment parallel to
s exactly the type of statistical link that we presumed in §11.

take, for example, an atom of total angular momentum 1, for whick k is
 to the values 1, 0, — 1. The effect of the measurement shows up in the
B of the coefficients W, of the wave function of the combined system from

(before the measurement)
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Yy, 0 0
Vi, =V, =| 0 Yo O (after the measurement).
0 0 vy,

Before the measurement the statistical matrices P! and P have the form of two
pure cases,

Yoty oW Yoyt
PL: ‘poW—tl ‘:bo‘%= K//O‘Vf
Yoty YyE Yyt

and
0 00
PIL=10 1 0.
0 00

The action of the magnetic field transforms them into mixtures,

W_*> 0 0
(Pu) = O | 0
0 0 |y,f
and .
W_i* o 0
Py =1 0 Jof o©
0 0 [zﬁllz

Here the components have a one-to-one correspondence, implying the associated
correlations. For the combined system the transition ¥ — ¥’ is a unitary trans-
formation,

r
kp = Z Tkp,la\Plaa
(X

where
Tkp,la = 5k15p,z+a,

it being understood that

p = 12 isequivalentto p = FI.



II.1 OBSERVATION THEORY 257

§13. INDIVIDUALITY AND PURE CASE

;;A measuring arrangement, such as we have just finished describing in the previous
section, can be used to “filter” through objects possessing a prescribed value of a

“certain physical quantity. It is enough to make a suitable slit through the screen

~on which the atoms fall to transform the Stern-Gerlach apparatus into a source of
entically oriented atoms. It thus becomes a good set-up for producing pure

Does not this conclusion contradict what we just learned (§11), to the effect that
pure case is brought about only by an “act of objectifying,” accomplished by the
ppropriate intervention of an observer? It is necessary, however, to be more
recise: the filter never puts any individual object whatsoever into a new pure
ate. It can only put it into a mixed state. This is what always happens when one

n only works out, so to speak, at the expense of the individuality of the object,
one does not know in advance which are the atoms that have the property in
stion. We can easily attribute to the objects that get through the slit the
ction of the pure case, but we cannot say which object, that is, which variable
the argument of this ¥ function. Without a supplementary check by an observer,

een caught in it. The filter alone thus truly produces pure cases, but in an
solutely anonymous f8rm. Of course we can attribute to these cases afresh some

es of their own, for example by numbering in sequence the atoms that really
hrough the slit. But that is no different from a true measurement, and we

d be led back in that way to what we have already discussed. '

oreover, anonymous objects are precisely the focus of one’s interest in many

riments. The majority of the measurements in atomic physics really do not

with an individual system; rather, they seek to find out the general properties

| entire species of atoms—or of molecules, or of elementary particles. Thus

mple the Stern-Gerlach set-up just discussed is ordinarily used, not to

ure a component of the spin of an individual atom, but rather to determine

n of the silver atom.

=

crimental task. But given that every measurement confains 3 Macroscopic

t'and within what limits the everyday concent of an individual object is still #
ognizable in quantum mechanics. '

is' not possible to guarantee wﬁt:ther a given atom has gone through the filter

antum mechanics, truly a “theory of species,” is perfectly adapted to this Wt »
' B the comaph

ss, unique and separate, we can hardly escape asking ourselves to what 0% M

Lv#i@%{,w{

AL

M}jgd“

vy %m ?



258 NDON, BAUER

$14. ScienTtiFic COMMUNITY AND OBJECTIVITY

At first sight it would appear that in quantum mechanics the concept of scientific
objectivity has been strongly shaken. Since the classic period, the idea has become
familiar that a physical object is something real, existing outside of the observer,
independent of him, and in particular independent of whether or not the object
has been subjected to measurement. The situation is not the same in quantum
mechanics. Far from it being possible to attribute to a system at every instant its
measurable properties, one cannot even claim that to attribute to it so much as a
wave function has a well-defined meaning, unless referring explicitly to a definite
measurement. Moreover, it looks as if the result of a measurement is intimately
linked to the consciousness of the person making it, and as if quantum mechanics
thus drives us toward complete solipsism.

Actually, however, we know that the relations between physicists have under-
gone practically no change since the discovery of quantum mechanics. No physi-
cist has retired into a solipsistic isolation. Physicists use the same means. of
scientific exchange as in the past and are capable of cooperation in studying the
same object. Thus there really exists something like a community of scientific
perception, an agreement on what constitutes the object of the investigation, and
it is this that still has to be looked into. v

First of all, it is easy to recognize that the act of observation, that is, the coupling
between the measuring apparatus and the observer (see our example in §11), is
truly a macroscopic action and not basically quantal. Consequently one always has
the right to neglect the effect on the apparatus of the “scrutiny” of the observer.
Tracing things back in time, one will obtain definite conclusions about the state
of the apparatus (or the photographic plate) and consequently the state of the
object before the observation (but of course after the coupling is turned off).
Moreover, nothing prevents another observer from looking at the same apparatus;
and one can predict that, barring errors, his observations will be the same. The
possibility of abstracting away from the individuality of the observer and of

| creating a collective scientific perception therefore in no way comes seriously into

L question.

It might appear that the scientific community thus created is a kind of spiri-
tualistic society which studies imaginary phenomena—that the objects of physics
are phantoms produced by the observer himself. In classical physics, one can
picture a system at every instant in a unique and continuous way by the set of all
of its measurable properties, even when it is not subjected to observation. It is
exactly the possibility of this continuity of connection between properties and
object that has ordinarily been considered as proof that physics deals with some-
thing “real,” that is, having in principle an existence “independent of all observers.”
In quantum mechanics an object is the carrier, not of a definite set of measurable
properties, but only of a set of “potential” probability distributions or statistics
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3) referring to measurable properties, statistics which only come into force on
he occasion of an effective, well-defined measurement. If one abstracts away
:from all acts of measurement, it is meaningless to claim these measurable prop-
rties as realized; the very mathematical form of the statistics does not allow it

But that does not keep us from predicting or interpreting experimental results.
heory fixes the rules. It teaches us first of all how to filter an object to get a pure
ase—that is, reproducible conditions; then it suggests how to make measure-
ents, either to check theoretical predictions or to discover new empirical regu-
rities. The theory adapts itself truly marvelously to the realities of experiment.
gives answers on all desired details and is silent on hypothetical questions with-
ut experimental meaning.

n present physics the concept of “objectivity” is a little more abstract than the
assxcal idea of a material object. Is it not a guarantee of “the objectivity” of an
ject that one can at least formally attribute measurable properties to it in a
ntinyous manner even at times when it is not under observation? The answer is
s this new theory shows by its internal consistency and by its impressive
ations. It is enough, evidently, that the properties of the object should be
nt at the moment they are measured and that they should be predicted by
n agreement with experiment.

limiting case of macroscopic phenomena, quantum theory rejoins classical
Thu» it justifies the use of the “naive” concept of “objectivity” and at the
1€ ecifies the limitations of this concept.

: has just been said relates to an important philosophical problem that we
notenter into here: the determination of the necessary and sufficient conditions
t of thought to possess objectivity and to be an object of science. This
s perhaps posed for the first time in any general way by such mathe-
s Malebranche, Leibniz, and especially by B, Bolzano. More recently
1, 1913; see also the rather similar ideas in Cassirer, 1910, 1936) has
cally studied such questions and has thus created a new method of
n called “Phenomenology.”

nsofar as it is an empirical science cannot enter into such problems
eir generality. It is satisfied to use philosophical concepts sifficient for its
-0n occasion it can recognize that some of the concepts that once served
come quite unnecessary, that they contain elements that are useless and
rrect, actual obstacles to progress. One can doubt the possibility of
g phllosophlcal truths by the methods of physics, but it is surely not
¢ competence of physicists to demonstrate that certain statements which
0 have a philosophical validity do not. And sometimes these “negative”
hical discoveries by physicists are no less important, no less revolutionary
sophy than the discoveries of recognized philosophers.







