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The manner in which states of some quantum systems become effectively classical is of great
significance for the foundations of quantum physics, as well as for problems of practical interest such
as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps
all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus
decoherence is caused by the interaction in which the environment in effect monitors certain
observables of the system, destroying coherence between the pointer states corresponding to their
eigenvalues. This leads to environment-induced superselection or einselection, a quantum process
associated with selective loss of information. Einselected pointer states are stable. They can retain
correlations with the rest of the universe in spite of the environment. Einselection enforces classicality
by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the
flagrantly nonlocal ‘‘Schrödinger-cat states.’’ The classical structure of phase space emerges from the
quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with
dynamics leads to the idealizations of a point and of a classical trajectory. In measurements,
einselection replaces quantum entanglement between the apparatus and the measured system with the
classical correlation. Only the preferred pointer observable of the apparatus can store information
that has predictive power. When the measured quantum system is microscopic and isolated, this
restriction on the predictive utility of its correlations with the macroscopic apparatus results in the
effective ‘‘collapse of the wave packet.’’ The existential interpretation implied by einselection regards
observers as open quantum systems, distinguished only by their ability to acquire, store, and process
information. Spreading of the correlations with the effectively classical pointer states throughout the
environment allows one to understand ‘‘classical reality’’ as a property based on the relatively
objective existence of the einselected states. Effectively classical pointer states can be ‘‘found out’’
without being re-prepared, e.g, by intercepting the information already present in the environment.
The redundancy of the records of pointer states in the environment (which can be thought of as their
‘‘fitness’’ in the Darwinian sense) is a measure of their classicality. A new symmetry appears in this
setting. Environment-assisted invariance or envariance sheds new light on the nature of ignorance of
the state of the system due to quantum correlations with the environment and leads to Born’s rules
and to reduced density matrices, ultimately justifying basic principles of the program of decoherence
and einselection.
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I. INTRODUCTION

The interpretation of quantum theory has been an is-
sue ever since its inception. Its tone was set by the dis-
cussions of Schrödinger (1926, 1935a, 1935b), Heisen-
berg (1927), and Bohr (1928, 1949; see also Jammer,
1974; Wheeler and Zurek, 1983). Perhaps the most inci-
sive critique of the (then new) theory was that of Ein-
stein, who, searching for inconsistencies, distilled the es-
sence of the conceptual difficulties of quantum
mechanics through ingenious gedanken experiments. We
owe to him and Bohr clarification of the significance of
quantum indeterminacy in the course of the Solvay Con-
gress debates (see Bohr, 1949) and elucidation of the
nature of quantum entanglement (Bohr, 1935; Einstein,
Podolsky, and Rosen, 1935; Schrödinger, 1935a, 1935b).
The issues they identified then are still a part of the
subject.

Within the past two decades, the focus of research on
the fundamental aspects of quantum theory has shifted
from esoteric and philosophical to more down to earth
as a result of three developments. To begin with, many
of the old gedanken experiments [such as the Einstein-
Podolsky-Rosen (EPR) ‘‘paradox’’] became compelling
demonstrations of quantum physics. More or less simul-
taneously the role of decoherence began to be appreci-
ated and einselection was recognized as key to the emer-
gence of classicality. Last but not least, various
developments led to a new view of the role of informa-
tion in physics. This paper reviews progress in the field
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with a focus on decoherence, einselection, and the emer-
gence of classicality, and also attempts to offer a preview
of the future of this exciting and fundamental area.

A. The problem: Hilbert space is big

The interpretation problem stems from the vastness of
Hilbert space, which, by the principle of superposition,
admits arbitrary linear combinations of any states as a
possible quantum state. This law, thoroughly tested in
the microscopic domain, bears consequences that defy
classical intuition: It appears to imply that the familiar
classical states should be an exceedingly rare exception.
And, naively, one may guess that the superposition prin-
ciple should always apply literally: Everything is ulti-
mately made out of quantum ‘‘stuff.’’ Therefore there is
no a priori reason for macroscopic objects to have defi-
nite position or momentum. As Einstein noted1 localiza-
tion with respect to macrocoordinates is not just inde-
pendent of, but incompatible with, quantum theory.
How, then, can one establish a correspondence between
the quantum and the familiar classical reality?

1. Copenhagen interpretation

Bohr’s solution was to draw a border between the
quantum and the classical and to keep certain objects—
especially measuring devices and observers—on the
classical side (Bohr, 1928, 1949). The principle of super-
position was suspended ‘‘by decree’’ in the classical do-
main. The exact location of this border was difficult to
pinpoint, but measurements ‘‘brought to a close’’ quan-
tum events. Indeed, in Bohr’s view the classical domain
was more fundamental. Its laws were self-contained
(they could be confirmed from within) and established
the framework necessary to define the quantum.

The first breach in the quantum-classical border ap-
peared early: In the famous Bohr-Einstein double-slit
debate, quantum Heisenberg uncertainty was invoked
by Bohr at the macroscopic level to preserve wave-
particle duality. Indeed, since the ultimate components
of classical objects are quantum, Bohr emphasized that
the boundary must be moveable, so that even the human
nervous system could be regarded as quantum, provided
that suitable classical devices to detect its quantum fea-
tures were available. In the words of Wheeler (1978,
1983), who has elucidated Bohr’s position and decisively
contributed to the revival of interest in these matters,
‘‘No [quantum] phenomenon is a phenomenon until it is
a recorded (observed) phenomenon.’’

1In a letter dated 1954, Albert Einstein wrote to Max Born,
‘‘Let c1 and c2 be solutions of the same Schrödinger equa-
tion... . When the system is a macrosystem and when c1 and c2
are ‘narrow’ with respect to the macrocoordinates, then in by
far the greater number of cases this is no longer true for c
5c11c2 . Narrowness with respect to macrocoordinates is not
only independent of the principles of quantum mechanics, but,
moreover, incompatible with them.’’ [The translation from
Born (1969) quoted here is due to Joos (1986), p. 7].
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This is a pithy summary of a point of view—known as
the Copenhagen interpretation (CI)—that has kept
many a physicist out of despair. On the other hand, as
long as no compelling reason for the quantum-classical
border could be found, the CI universe would be gov-
erned by two sets of laws, with poorly defined domains
of jurisdiction. This fact has kept many students, not to
mention their teachers, awake at night (Mermin 1990a,
1990b, 1994).

2. Many-worlds interpretation

The approach proposed by Everett (1957a, 1957b)
and elucidated by Wheeler (1957), DeWitt (1970), and
others (see Zeh, 1970, 1973; DeWitt and Graham, 1973;
Geroch, 1984; Deutsch, 1985, 1997; Deutsch et al., 2001)
was to enlarge the quantum domain. Everything is now
represented by a unitarily evolving state vector, a gigan-
tic superposition splitting to accommodate all the alter-
natives consistent with the initial conditions. This is the
essence of the many-worlds interpretation (MWI). It
does not suffer from the dual nature of the Copenhagen
interpretation. However, it also does not explain the
emergence of classical reality.

The difficulty many have in accepting the many-
worlds interpretation stems from its violation of the in-
tuitively obvious ‘‘conservation law’’—that there is just
one universe, the one we perceive. But even after this
question is dealt with, many a convert from the Copen-
hagen interpretation (which claims the allegiance of a
majority of physicists) to the many-worlds interpretation
(which has steadily gained popularity; see Tegmark and
Wheeler, 2001, for an assessment) eventually realizes
that the original many-worlds interpretation does not
address the preferred-basis question posed by Einstein
(see footnote 1) (see Bell, 1981, 1987; Wheeler, 1983;
Stein, 1984; Kent, 1990, for critical assessments of the
many-worlds interpretation). And as long as it is unclear
what singles out preferred states, perception of a unique
outcome of a measurement and, hence, of a single uni-
verse cannot be explained either.2

In essence, the many-worlds interpretation does not
address, but only postpones, the key question. The
quantum-classical boundary is pushed all the way to-
wards the observer, right against the border between the
material universe and the consciousness, leaving it at a

2DeWitt, in the many-worlds reanalysis of quantum measure-
ments, makes this clear: in DeWitt and Graham (1973), the last
paragraph of p. 189, he writes about the key ‘‘remaining prob-
lem.’’ ‘‘Why is it so easy to find apparata in states [with a well
defined value of the pointer observable]? In the case of mac-
roscopic apparata it is well known that a small value for the
mean square deviation of a macroscopic observable is a fairly
stable property of the apparatus. But how does the mean
square deviation become so small in the first place? Why is a
large value of the mean-square deviation of a macroscopic ob-
servable virtually never, in fact, encountered in practice? ... a
proof of this does not yet exist. It remains a program for the
future.’’
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very uncomfortable place to do physics. The many-
worlds interpretation is incomplete: it does not explain
what is effectively classical and why. Nevertheless, it was
a crucial conceptual breakthrough. Everett reinstated
quantum mechanics as a basic tool in the search for its
interpretation.

B. Decoherence and einselection

Environment can destroy coherence between the
states of a quantum system. This is decoherence. Accord-
ing to quantum theory, every superposition of quantum
states is a legal quantum state. This egalitarian quantum
principle of superposition applies in isolated systems.
However, not all quantum superpositions are treated
equally by decoherence. Interaction with the environ-
ment will typically single out a preferred set of states.
These pointer states remain untouched in spite of the
environment, while their superpositions lose phase co-
herence and decohere. Their name—pointer states—
originates from the context of quantum measurements,
where they were originally introduced (Zurek, 1981).
They are the preferred states of the pointer of the appa-
ratus. They are stable and, hence, retain a faithful record
of and remain correlated with the outcome of the mea-
surement in spite of decoherence.

Einselection is this decoherence-imposed selection of
the preferred set of pointer states that remain stable in
the presence of the environment. As we shall see, einse-
lected pointer states turn out to have many classical
properties. Einselection is an accepted nickname for
environment-induced superselection (Zurek, 1982).

Decoherence and einselection are two complementary
views of the consequences of the same process of envi-
ronmental monitoring. Decoherence is the destruction
of quantum coherence between preferred states associ-
ated with the observables monitored by the environ-
ment. Einselection is its consequence—the de facto ex-
clusion of all but a small set, a classical domain
consisting of pointer states—from within a much larger
Hilbert space. Einselected states are distinguished by
their resilience—stability in spite of the monitoring en-
vironment.

The idea that the ‘‘openness’’ of quantum systems
might have anything to do with the transition from
quantum to classical was ignored for a very long time,
probably because in classical physics problems of funda-
mental importance were always settled in isolated sys-
tems. In the context of measurements, Gottfried (1966)
anticipated some of the later developments. The fragility
of energy levels of quantum systems was emphasized by
the seminal papers of Zeh (1970, 1973), who argued [in-
spired by remarks relevant to what would be called to-
day ‘‘deterministic chaos’’ (Borel, 1914)] that macro-
scopic quantum systems are in effect impossible to
isolate.

The understanding of how the environment distills the
classical essence from quantum systems is more recent
(Zurek, 1981, 1982, 1993a). It combines two observa-
tions: (1) In quantum physics, ‘‘reality’’ can be attributed
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to the measured states. (2) Information transfer usually
associated with measurements is a common result of al-
most any interaction of a system with its environment.

Some quantum states are resilient to decoherence.
This is the basis of einselection. Using Darwinian anal-
ogy, one might say that pointer states are the most ‘‘fit.’’
They survive monitoring by the environment to leave
‘‘descendants’’ that inherit their properties. The classical
domain of pointer states offers a static summary of the
result of quantum decoherence. Save for classical dy-
namics, (almost) nothing happens to these einselected
states, even though they are immersed in the environ-
ment.

It is difficult to catch einselection in action. Environ-
ment has little effect on the pointer states, since they are
already classical. Therefore it is easy to miss the
decoherence-driven dynamics of einselection by taking
for granted its result—existence of the classical domain
and a ban on arbitrary quantum superpositions. Macro-
scopic superpositions of einselected states disappear
rapidly. Einselection creates effective superselection
rules (Wick, Wightman, and Wigner, 1952, 1970; Wight-
man, 1995). However, in the microscopic domain, deco-
herence can be slow in comparison with the dynamics.

Einselection is a quantum phenomenon. Its essence
cannot even be motivated classically. In classical physics,
arbitrarily accurate measurements (also by the environ-
ment) can, in principle, be carried out without disturbing
the system. Only in quantum mechanics acquisition of
information inevitably brings the risk of altering—of re-
preparation of the state of the system.

The quantum nature of decoherence and the absence
of classical analogs are a source of misconceptions. For
instance, decoherence is sometimes equated with relax-
ation or classical noise that can be introduced by the
environment. Indeed, all of these effects often appear
together and as a consequence of ‘‘openness.’’ The dis-
tinction between them can be briefly summed up: Relax-
ation and noise are caused by the environment perturb-
ing the system, while decoherence and einselection are
caused by the system perturbing the environment.

Within the past few years decoherence and einselec-
tion have become familiar to many. This does not mean
that their implications are universally accepted (see
comments in the April 1993 issue of Physics Today;
d’Espagnat, 1989, 1995; Bub, 1997; Leggett, 1998, 2002;
the exchange of views between Anderson, 2001, and
Adler, 2003; Stapp, 2002). In a field where controversy
has reigned for so long this resistance to a new paradigm
is no surprise.

C. The nature of the resolution and the role of envariance

Our aim is to explain why the quantum universe ap-
pears classical when it is seen ‘‘from within.’’ This ques-
tion can be motivated only in the context of a universe
divided into systems, and must be phrased in the lan-
guage of the correlations between systems. The Schrö-
dinger equation dictates deterministic evolution;
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
uC~ t !&5exp~2iHt/\!uC~0 !& , (1.1)

and, in the absence of systems, the problem of interpre-
tation seems to disappear.

There is simply no need for ‘‘collapse’’ in a universe
with no systems. Our experience of the classical reality
does not apply to the universe as a whole, seen from the
outside, but to the systems within it. Yet, the division
into systems is imperfect. As a consequence, the uni-
verse is a collection of open (interacting) quantum sys-
tems. Since the interpretation problem does not arise in
quantum theory unless interacting systems exist, we
shall also feel free to assume that an environment exists
when looking for a resolution.

Decoherence and einselection fit comfortably in the
context of the many-worlds interpretation in which they
define the ‘‘branches’’ of the universal state vector. De-
coherence makes the many-worlds interpretation com-
plete: It allows one to analyze the universe as it is seen
by an observer, who is also subject to decoherence. Ein-
selection justifies elements of Bohr’s Copenhagen inter-
pretation by drawing the border between the quantum
and the classical. This natural boundary can sometimes
be shifted. Its effectiveness depends on the degree of
isolation and on the manner in which the system is
probed, but it is a very effective quantum-classical bor-
der nevertheless.

Einselection fits either the MWI or the CI framework.
It sets limits on the extent of the quantum jurisdiction,
delineating how much of the universe will appear classi-
cal to observers who monitor it from within, using their
limited capacity to acquire, store, and process informa-
tion. It allows one to understand classicality as an ideali-
zation that holds in the limit of macroscopic open quan-
tum systems.

The environment imposes superselection rules by pre-
serving part of the information that resides in the corre-
lations between the system and the measuring apparatus
(Zurek, 1981, 1982). The observer and the environment
compete for information about the system. The
environment—because of its size and its incessant inter-
action with the system—wins that competition, acquiring
information faster and more completely than the ob-
server. Thus a record useful for the purpose of predic-
tion must be restricted to observables that are already
monitored by the environment. In that case, the ob-
server and the environment no longer compete and de-
coherence becomes unnoticeable. Indeed, typically ob-
servers use the environment as a communication
channel, and monitor it to find out about the system.

The spreading of information about the system
through the environment is ultimately responsible for
the emergence of ‘‘objective reality.’’ The objectivity of a
state can be quantified by the redundancy with which it
is recorded throughout the universe. Intercepting frag-
ments of the environment allows observers to identify
(pointer) states of the system without perturbing it
(Zurek, 1993a, 1998a, 2000; see especially Sec. VII of
this paper for a preview of this new ‘‘environment as a
witness’’ approach to the interpretation of quantum
theory).
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When an effect of a transformation acting on a system
can be undone by a suitable transformation acting on
the environment, so that the joint state of the two re-
mains unchanged, the transformed property of the sys-
tem is said to exhibit ‘‘environment-assisted invariance’’
or envariance (Zurek, 2003b). The observer must obvi-
ously be ignorant of the envariant properties of the sys-
tem. Pure entangled states exhibit envariance. Thus, in
quantum physics, perfect information about the joint
state of the system-environment pair can be used to
prove ignorance of the state of the system.

Envariance offers a new fundamental insight into
what is information and what is ignorance in the quan-
tum world. It leads to Born’s rule for the probabilities
and justifies the use of reduced density matrices as a
description of a part of a larger combined system. Deco-
herence and einselection rely on reduced density matri-
ces. Envariance provides a fundamental resolution of
many of the interpretational issues. It will be discussed
in Sec. VI.D.

D. Existential interpretation and quantum Darwinism

What the observer knows is inseparable from what
the observer is: the physical state of his memory implies
his information about the universe. The reliability of this
information depends on the stability of its correlation
with external observables. In this very immediate sense
decoherence brings about the apparent collapse of the
wave packet: after a decoherence time scale, only the
einselected memory states will exist and retain useful
correlations (Zurek, 1991, 1998a, 1998b; Tegmark, 2000).
The observer described by some specific einselected
state (including a configuration of memory bits) will be
able to access (‘‘recall’’) only that state. The collapse is a
consequence of einselection and of the one-to-one cor-
respondence between the state of the observer’s memory
and of the information encoded in it. Memory is simul-
taneously a description of the recorded information and
part of an ‘‘identity tag,’’ defining the observer as a
physical system. It is as inconsistent to imagine the ob-
server perceiving something other than what is implied
by the stable (einselected) records in his possession as it
is impossible to imagine the same person with a different
DNA. Both cases involve information encoded in a state
of a system inextricably linked with the physical identity
of an individual.

Distinct memory/identity states of the observer
(which are also his ‘‘states of knowledge’’) cannot be
superposed. This censorship is strictly enforced by deco-
herence and the resulting einselection. Distinct memory
states label and inhabit different branches of Everett’s
many-worlds universe. The persistence of correlations
between the records (data in the possession of the ob-
servers) and the recorded states of macroscopic systems
is all that is needed to recover ‘‘familiar reality.’’ In this
manner, the distinction between ontology and
epistemology—between what is and what is known to
be—is dissolved. In short (Zurek, 1994), there can be no
information without representation.
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There is usually no need to trace the collapse of the
wave packet all the way to the observer’s memory. It
suffices that the states of a decohering system quickly
evolve into mixtures of preferred (pointer) states. All
that can be known, in principle, about a system (or even,
introspectively, about an observer by himself) is its
decoherence-resistant identity tag—a description of its
einselected state.

Apart from this essentially negative function as a cen-
sor, the environment also plays a very different role as a
broadcasting agent, relentlessly cloning the information
about the einselected pointer states. This role of the en-
vironment as a witness in determining what exists was
not appreciated until very recently. Over the past two
decades, the study of decoherence has focused on the
effect of the environment on the system. This led to a
multitude of technical advances, which we shall review,
but it also missed one crucial point of paramount con-
ceptual importance: observers monitor systems indi-
rectly, by intercepting small fractions of their environ-
ments (e.g., a fraction of the photons that have been
reflected or emitted by the object of interest). Thus, if an
understanding of why we perceive the quantum universe
as classical is the principal aim, our study should focus
on the information spread throughout the environment.
This leads one away from the models of measurement
inspired by the von Neumann chain (von Neumann,
1932) to studies of information transfer involving condi-
tional dynamics and the resulting branching and ‘‘fan-
out’’ of information throughout the environment
(Zurek, 1983, 1998a, 2000). This view of the role of the
environment, known as ‘‘quantum Darwinism’’ because
of the analogy between the selective amplification of the
information concerning pointer observables and the re-
production which is key to natural selection, is comple-
mentary to the usual image of the environment as a
source of perturbations that destroy the quantum coher-
ence of the system. It suggests that the redundancy of
the imprint of a system in the environment may be a
quantitative measure of its relative objectivity and hence
of the classicality of quantum states. Quantum Darwin-
ism is discussed in Sec. VII of this review.

The benefits of recognizing the role of environment
include not just an operational definition of the objec-
tive existence of the einselected states, but—as is also
detailed in Sec. VI—a clarification of the connection be-
tween quantum amplitudes and probabilities. Einselec-
tion converts arbitrary states into mixtures of well-
defined possibilities. Phases are envariant. Appreciation
of envariance as a symmetry tied to ignorance about the
state of the system was the missing ingredient in the
attempts of no-collapse derivation of Born’s rule and its
probability interpretation. While both envariance and
quantum Darwinism are only beginning to be investi-
gated, the extension of the program of einselection they
offer allows one to understand the emergence of ‘‘clas-
sical reality’’ from the quantum substrate as a funda-
mental consequence of quantum laws and goes far be-
yond the ‘‘for all practical purposes’’ only view of the
role of the environment.
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II. QUANTUM MEASUREMENTS

The need for a transition from the quantum determin-
ism of the global state vector to the classical definiteness
of states of individual systems is traditionally illustrated
by the example of quantum measurements. The out-
come of a generic measurement of the state of a quan-
tum system is not deterministic. In the textbook discus-
sions, this random element is blamed on the ‘‘collapse of
the wave packet,’’ invoked whenever a quantum system
comes into contact with a classical apparatus. In a fully
quantum discussion this issue still arises, in spite of (or
rather because of) the overall deterministic quantum
evolution of the state vector of the universe. As pointed
out by von Neumann (1932), there is no room for a real
collapse in the purely unitary models of measurements.

A. Quantum conditional dynamics

To illustrate the difficulties, consider a quantum sys-
tem S initially in a state uc& interacting with a quantum
apparatus A initially in a state uA0&:

uC0&5uc&uA0&5S (
i

aiusi& D uA0&

→(
i

aiusi&uAi&5uC t&. (2.1)

Above, $uAi&% and $usi&% are states in the Hilbert spaces
of the apparatus and of the system, respectively, and ai
are complex coefficients. The conditional dynamics of
such premeasurement, as the step achieved by Eq. (2.1)
is often called, can be accomplished by means of a uni-
tary Schrödinger evolution. Yet it is not enough to claim
that a measurement has been achieved. Equation (2.1)
leads to an uncomfortable conclusion: uC t& is an EPR-
like entangled state. Operationally, this EPR nature of
the state emerging from the premeasurement can be
made more explicit by rewriting the sum in a different
basis:

uC t&5(
i

aiusi&uAi&5(
i

biuri&uBi&. (2.2)

This freedom of basis choice—basis ambiguity—is guar-
anteed by the principle of superposition. Therefore, if
one were to associate states of the apparatus (or the
observer) with decompositions of uC t& , then even before
inquiring about the specific outcome of the measure-
ment one would have to decide on the decomposition of
uC t&; a change of the basis redefines the measured quan-
tity.

1. Controlled NOT and bit-by-bit measurement

The interaction required to entangle a measured sys-
tem and the measuring apparatus, Eq. (2.1), is a gener-
alization of the basic logical operation known as a ‘‘con-
trolled NOT’’ or a c-NOT. A classical c-NOT changes the
state at of the target when the control is 1, and does
nothing otherwise:
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0cat→0cat ; 1cat→1c¬at . (2.3)

The quantum c-NOT is a straightforward quantum ver-
sion of Eq. (2.3). It was known as a ‘‘bit-by-bit measure-
ment’’ (Zurek, 1981, 1983) and already used to elucidate
the connection between entanglement and premeasure-
ment before it acquired its present name and signifi-
cance in the context of quantum computation (see, for
example, Nielsen and Chuang, 2000). Arbitrary superpo-
sitions of the control bit and of the target bit states are
allowed:

~au0c&1bu1c&)uat&→au0c&uat&1bu1c&u¬at&. (2.4)

Here negation, u¬at&, of a state is basis dependent:

¬~gu0 t&1du1 t&)5gu1 t&1du0 t&. (2.5)

With uA0&5u0 t& , uA1&5u1 t& we have an obvious analogy
between a c-NOT and a premeasurement.

In the classical controlled NOT, the direction of infor-
mation transfer is consistent with the designations of the
two bits. The state of the control remains unchanged
while it influences the target, Eq. (2.3). Classical mea-
surement need not influence the system. Written in the
logical basis $u0&,u1&%, the truth table of the quantum
c-NOT is essentially—save for the possibility of
superpositions—the same as Eq. (2.3). One might have
anticipated that the direction of information transfer
and the designations (control/system and target/
apparatus) of the two qubits would also be unambigu-
ous, as in the classical case. This expectation is incorrect.
In the conjugate basis $u1&,u2&% defined by

u6&5~ u0&6u1&)/A2, (2.6)

the truth table, Eq. (2.3) (as such equations providing a
map from the inputs to the outputs of the logic gates are
known), along with Eq. (2.6), lead to a new complemen-
tary truth table:

u6&u1&→u6&u1&, (2.7)

u6&u2&→u7&u2&. (2.8)

In the complementary basis $u1&,u2&%, the roles of the
control and of the target are reversed. The former target
(basis $u0&, u1&%)—represented by the second ket above—
remains unaffected, while the state of the former control
(the first ket) is conditionally flipped.

In the bit-by-bit case the measurement interaction is

Hint5gu1&^1uSu2&^2uA

5
g

2
u1&^1uS^ @12~ u0&^1u1u1&^0u!#A . (2.9)

Here g is a coupling constant, and the two operators
refer to the system (i.e., to the former control) and to
the apparatus pointer (the former target), respectively. It
is easy to see that the states $u0& ,u1&%S of the system are
unaffected by Hint , since

@Hint , e0u0&^0uS1e1u1&^1uS#50. (2.10)

The measured observable ê5e0u0&^0u1e1u1&^1u is a
constant of motion under Hint . The c-NOT requires in-
teraction time t such that gt5p/2.
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The states $u1& ,u2&%A of the apparatus encode infor-
mation about phases between the logical states. They
have exactly the same ‘‘immunity:’’

@Hint , f1u1&^1uA1f2u2&^2uA#50, (2.11)

where f6 are the eigenvalues of this ‘‘phase observable.’’
Hence, when the apparatus is prepared in a definite
phase state (rather than in a definite pointer/logical
state), it will pass its phase on to the system, as Eqs.
(2.7) and (2.8) show. Indeed, Hint can be written as

Hint5gu1&^1uSu2&^2uA

5
g

2
@12~ u2&^1u1u1&^2u!#S^ u2&^2uA (2.12)

making this immunity obvious.
This basis-dependent direction of information flow in

a quantum c-NOT (or in a premeasurement) is a conse-
quence of complementarity. While the information
about the observable with the eigenstates $u0&,u1&% travels
from the system to the measuring apparatus, in the
complementary $u1&,u2&% basis it seems that the appara-
tus is measured by the system. This observation (Zurek
1998a, 1998b; see also Beckman et al., 2001) clarifies the
sense in which phases are inevitably ‘‘disturbed’’ in mea-
surements. They are not really destroyed, but rather, as
the apparatus measures a certain observable of the sys-
tem, the system simultaneously ‘‘measures’’ phases be-
tween the possible outcome states of the apparatus. This
leads to loss of phase coherence. Phases become ‘‘shared
property,’’ as we shall see in more detail in the discus-
sion of envariance.

The question ‘‘what measures what?’’ (decided by the
direction of the information flow) depends on the initial
states. In the classical practice this ambiguity does not
arise. Einselection limits the set of possible states of the
apparatus to a small subset.

2. Measurements and controlled shifts

The truth table of a whole class of c-NOT-like transfor-
mations that includes general premeasurement, Eq.
(2.1), can be written as

usj&uAk&→usj&uAk1j&. (2.13)

Equation (2.1) follows when k50. One can therefore
model measurements as controlled shifts—c-shifts—or
generalizations of the c-NOT. In the bases $usj&% and
$uAk&%, the direction of information flow appears to be
unambiguous—from the system S to the apparatus A.
However, a complementary basis can be readily defined
(Ivanovic, 1981; Wootters and Fields, 1989):

uBk&5N21/2 (
l50

N21

expS 2pi

N
kl D uAl&. (2.14a)

Above, N is the dimensionality of the Hilbert space. An
analogous transformation can be carried out on the basis
$usi&% of the system, yielding states $urj&%.

Orthogonality of $uAk&% implies

^BluBm&5d lm , (2.15)
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uAk&5N21/2 (
l50

N21

expS 2
2pi

N
kl D uBl&, (2.14b)

the inverse of the transformation of Eq. (2.14a). Hence

uc&5(
l

a luAl&5(
k

bkuBk&, (2.16)

where the coefficients bk are

bk5N21/2 (
l50

N21

expS 2
2pi

N
kl Da l . (2.17)

The Hadamard transform of Eq. (2.6) is a special case of
the more general transformation considered here.

To implement the truth tables involved in premea-
surements, we define observable Â and its conjugate:

Â5 (
k50

N21

kuAk&^Aku, (2.18a)

B̂5 (
l50

N21

luBl&^Blu. (2.18b)

The interaction Hamiltonian

Hint5gŝB̂ (2.19)

is an obvious generalization of Eqs. (2.9) and (2.12),
with g the coupling strength and

ŝ5 (
l50

N21

lusl&^slu. (2.20)

In the $uAk&% basis, B̂ is a shift operator,

B̂5
iN

2p

]

]Â
. (2.21)

To show how Hint works, we compute

exp~2iHintt/\!usj&uAk&

5usj&N21/2 (
l50

N21

exp@2i~ jgt/\12pk/N !l#uBl&.

(2.22)

We now adjust the coupling g and the duration of the
interaction t so that the action i expressed in Planck
units 2p\ is a multiple of 1/N :

i5gt/\5G* 2p/N . (2.23a)

For an integer G, Eq. (2.22) can be readily evaluated:

exp~2iHintt/\!usj&uAk&5usj&uA $k1G* j%N
& . (2.24)

This is a shift of the apparatus state by an amount G* j
proportional to the eigenvalue j of the state of the sys-
tem. G plays the role of gain. The index $k1G* j%N is
evaluated modN, where N is the number of possible out-
comes, that is, the dimensionality of the Hilbert space of
the apparatus pointer A. When G* j.N , the pointer will
just rotate through the initial zero. The truth table for
G51 defines a c-shift, Eq. (2.13), and with k50 leads to
a premeasurement, Eq. (2.1).
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The form of the interaction, Eq. (2.19), in conjunction
with the initial state, decides the direction of informa-
tion transfer. Note that—as was the case with the
c-NOT’s—the observable that commutes with the interac-
tion Hamiltonian will not be perturbed:

@Hint , ŝ#50. (2.25)

ŝ commutes with Hint and is therefore a nondemolition
observable (Braginsky, Vorontsov, and Thorne, 1980;
Caves et al., 1980; Bocko and Onofrio, 1996).

3. Amplification

Amplification has often been regarded as the process
forcing quantum potentialities to become classical real-
ity. An example of it is the extension of the measure-
ment model described above.

Assume the Hilbert space of the apparatus pointer is
large compared with the space spanned by the eigen-
states of the measured observable ŝ :

N5dim~HA!@dim~HS!5n . (2.26)

Then one can increase i to an integer multiple G of
2p/N , Eqs. (2.23a) and (2.24). However, larger i will
lead to redundancy only when the Hilbert space of the
apparatus has many more dimensions than possible out-
comes. Otherwise, only ‘‘wrapping’’ of the same record
will ensue. The simplest example of such wrapping,
(c-NOT)2, is the identity operation. For N@n , however,
one can attain gain:

G5Ngt/2p\ . (2.23b)

The outcomes are now separated by G21 empty eigen-
states of the record observable. In this sense, G@1
achieves redundancy, providing that wrapping of the
record is avoided. This is guaranteed when

nG,N . (2.27)

Amplification is useful in the presence of noise. For
example, it may be difficult to initiate the apparatus in
uA0&, so the initial state may be a superposition:

ual&5(
k

a l~k !uAk&. (2.28a)

Indeed, typically a mixture of such superpositions,

rA
0 5(

i
wiuai&^aiu, (2.28b)

may be the starting point for a premeasurement. Then

usk&^sk8urA5usk&^sk8u(l
wlual&^alu

→usk&^sk8u(l
wlual1Gk&^al1Gk8u,

(2.29)

where ual1Gk& obtains from ual&, Eq. (2.28a), through

ual1Gk&5(
j

a l~ j !uAj1Gk&, (2.30)
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and the simplifying assumption about the coefficients,

a l~ j !5a~ j2l !, (2.31)

has been made. The aim of this simplification is to focus
on the case when the apparatus states are peaked
around a certain value l [e.g., a l(j);exp$2(j
2l)2/2D2%], and where the form of their distribution
over $uAk&% does not depend on l.

A good measurement allows one to distinguish states
of the system. Hence it must satisfy

u^al1Gkual1Gk8&u
25u(

j
a@ j1G~k2k8!#a* ~ j !u2

'dk8,k . (2.32)

States of the system that need to be distinguished should
rotate the pointer of the apparatus to the correlated out-
come states that are approximately orthogonal. When
the coefficients a(k) are peaked around k50 with dis-
persion D, this implies

D!G . (2.33)

In the general case of an initial mixture, Eq. (2.29),
one can evaluate the dispersion of the expectation value
of the record observable Â as

^Â2&2^Â&25TrrA
0 Â22~TrrA

0 Â !2. (2.34)

The outcomes are distinguishable when

^Â2&2^Â&2!G . (2.35)

Interaction with the environment yields a mixture of the
form of Eq. (2.29). Amplification can protect measure-
ment outcomes from noise through redundancy.3

3The above model of amplification is unitary. Yet it contains
seeds of irreversibility. The reversibility of a c-shift is evident:
as the interaction continues, the two systems will eventually
disentangle. For instance, it takes te52p\/(gN) [see Eq.
(2.23b) with G51] to entangle S @dim(HS)5n# with an A
with dim(HA)5N>n pointer states. However, as the interac-
tion continues, A and S disentangle. For a c-shift, this recur-
rence time scale is tRec5Nte52p\/g . It corresponds to a gain
G5N . Thus, for an instant of less than te at t5tRec , the ap-
paratus disentangles from the system, as $k1N* j%N5k . Re-
versibility results in recurrences of the initial state, but for N
@1, they are rare.

For less regular interactions (e.g, involving the environment)
the recurrence time is much longer. In that case, tRec is, in
effect, a Poincaré time: tRec;tPoincaré'N!te . In any case tRec
@te for large N. Undoing entanglement in this manner would
be exceedingly difficult because one would need to know pre-
cisely when to look and because one would need to isolate the
apparatus or the immediate environment from other degrees
of freedom—their environments.

The price of letting the entanglement undo itself by waiting
for an appropriate time interval is at the very least given by the
cost of storing the information based on how long it is neces-
sary to wait. In the special c-shift case this is proportional to
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B. Information transfer in measurements

1. Reduced density matrices and correlations

Information transfer is the objective of the measure-
ment process. Yet quantum measurements have only
rarely been analyzed from that point of view. As a result
of the interaction of the system S with the apparatus A,
their joint state is still pure uC t&, Eq. (2.1), but each of
the subsystems is in a mixture:

rS5TrAuC t&^C tu5 (
i50

N21

uaiu2usi&^siu, (2.36a)

rA5TrSuC t&^C tu5 (
i50

N21

uaiu2uAi&^Aiu. (2.36b)

The partial trace leads to reduced density matrices, here
rS and rA , which are important for what follows. They
describe subsystems to the observer who, before the pre-
measurement, knew pure states of the system and of the
apparatus, but who has access to only one of them after-
wards.

The reduced density matrix is a technical tool of para-
mount importance. It was introduced by Landau (1927)
as the only density matrix that gives rise to the correct
measurement statistics given the usual formalism that
includes Born’s rule for calculating probabilities (see, for
example, p. 107 of Nielsen and Chuang, 2000, for an
insightful discussion). This remark will come to haunt us

log N memory bits. In situations when eigenvalues of the inter-
action Hamiltonian are not commensurate, it will be more like
;log N!'N log N, since the entanglement will get undone only
after a Poincaré time. Both classical and quantum cases can be
analyzed using algorithmic information. For related discus-
sions see Zurek (1989, 1998b), Caves (1994), and Schack and
Caves (1996).

Amplified correlations are hard to contain. The return to
purity after tRec in the manner described above can be hoped
for only when the apparatus or the immediate environment E
(i.e., the environment directly interacting with the system) can-
not ‘‘pass on’’ the information to their more remote environ-
ments E8. The degree of isolation required puts a stringent
limit on the coupling gEE8 between the two environments. Re-
turn to purity can be accomplished in this manner only if tRec
,te852p\/(N8gEE8), where N8 is the dimension of the Hil-
bert space of the environment E8. Hence the two estimates of
tRec translate into gEE8,g/N8 for the regular spectrum and the
much tighter gEE8,g/N!N8 for the random case more relevant
for decoherence.

In short, once information ‘‘leaks’’ into the correlations be-
tween the system and the apparatus or the environment, keep-
ing it from spreading further ranges between very hard and
next to impossible. With the exception of very special cases
(small N, regular spectrum), the strategy of enlarging the sys-
tem, so that it includes the environment—occasionally men-
tioned as an argument against decoherence—is doomed to fail,
unless the universe as a whole is included. This is a question-
able setting (since the observers are inside this ‘‘isolated’’ sys-
tem) and in any case makes the relevant Poincaré time ab-
surdly long.
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later when in Sec. VI we consider the relation between
decoherence and probabilities. In order to derive Born’s
rule it will be important not to assume it in some guise.

Following premeasurement, the information about
the subsystems available to the observer locally de-
creases. This is quantified by the increase of the entro-
pies:

HS52TrrS ln rS52 (
i50

N21

uaiu2 lnuaiu2

52TrrA ln rA5HA . (2.37)

Since the evolution of the whole SA is unitary, the in-
crease of entropies in the subsystems is compensated for
by the buildup of correlations, and the resulting increase
in mutual information:

I~S:A!5HS1HA2HSA522 (
i50

N21

uaiu2 lnuaiu2.

(2.38)

This has been used in quantum theory as a measure of
entanglement (Zurek, 1983; Barnett and Phoenix, 1989).

2. Action per bit

An often raised question concerns the price of infor-
mation in units of some other ‘‘physical currency’’ (Bril-
louin, 1962, 1964; Landauer, 1991). Here we shall estab-
lish that the least action necessary to transfer one bit is
of the order of a fraction of \ for quantum systems with
two-dimensional Hilbert spaces. Information transfer
can be made cheaper on the ‘‘wholesale’’ level, when the
systems involved have large Hilbert spaces.

Consider Eq. (2.1). It evolves the initial product state
of the two subsystems into a superposition of product
states, (( ja jusj&)uA0&→( ja jusj&uAj&. The expectation
value of the action involved is no less than

I5 (
j50

N21

ua ju2 arccosu^A0uAj&u. (2.39)

When $uAj&% are mutually orthogonal, the action is

I5p/2 (2.40)

in Planck (\) units. This estimate can be lowered by
using as the initial uA0& a superposition of the outcomes
uAj& . In general, an interaction of the form

HSA5ig (
k50

N21

usk&^sku (
l50

N21

~ uAk&^Alu2H.c.!, (2.41)

where H.c. is the Hermitian conjugate, saturates the
lower bound given by

I5arcsin A121/N . (2.42)

For a two-dimensional Hilbert space the average action
can be thus brought down to p\/4 (Zurek, 1981, 1983).

As the size of the Hilbert space increases, the action
involved approaches the asymptotic estimate of Eq.
(2.40). The entropy of entanglement can be as large as
log N where N is the dimension of the Hilbert space of
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the smaller of the two systems. Thus the least action per
bit of information decreases with the increase of N:

i5
I

log2 N
'

p

2 log2 N
. (2.43)

This may be one reason why information appears ‘‘free’’
in the macroscopic domain, but expensive (close to
\/bit) in the quantum case of small Hilbert spaces.

C. ‘‘Collapse’’ analog in a classical measurement

Definite outcomes that we perceive appear to be at
odds with the principle of superposition. They can nev-
ertheless also occur in quantum physics when the initial
state of the measured system is—already before the
measurement—in one of the eigenstates of the mea-
sured observable. Then Eq. (2.1) will deterministically
rotate the pointer of the apparatus to the appropriate
record state. The result of such a measurement can be
predicted by an insider—an observer aware of the initial
state of the system. This a priori knowledge can be rep-
resented by the preexisting record uAi&, which is only
corroborated by an additional measurement:

uAi&uA0&us i&→uAi&uAi&us i&. (2.44a)

In classical physics complete information about the
initial state of an isolated system always allows for an
exact prediction of its future state. A well-informed ob-
server will even be able to predict the future of the clas-
sical universe as a whole (‘‘Laplace’s demon’’). Any ele-
ment of surprise (any use of probabilities) must
therefore be blamed on partial ignorance. Thus, when
the information available initially does not include the
exact initial state of the system, the observer can use an
ensemble described by rS—by a list of possible initial
states $us i&% and their probabilities pi . This is the igno-
rance interpretation of probabilities. We shall see in Sec.
VI that—using envariance—one can justify ignorance
about a part of the system by relying on perfect knowl-
edge of the whole.

Through measurement the observer finds out which of
the potential outcomes consistent with his prior (incom-
plete) information actually happens. This act of informa-
tion acquisition changes the physical state of the ob-
server, the state of his memory. The initial memory state
containing a description ArS of an ensemble and a
‘‘blank’’ A0 , uArS&^ArSuuA0&^A0u, is transformed into a
record of a specific outcome: uArS&^ArSuuAi&^Aiu. In
quantum notation this process will be described by such
a discoverer as a random ‘‘collapse:’’

uArS&^ArSuuA0&^A0u(
i

pius i&^s iu

→uArS&^ArSuuAi&^Aiuus i&^s iu. (2.44b)

This is only the description of what happens as reported
by the discoverer. Deterministic representation of this
very same process by Eq. (2.44a) is still possible. In
other words, in classical physics the discoverer can al-
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ways be convinced that the system was in a state us i&
already before he has measured it in accord with Eq.
(2.44b).

This sequence of events as seen by the discoverer
looks like a collapse (see Zurek, 1998a, 1998b). For in-
stance, an insider who knew the state of the system be-
fore the discoverer carried out his measurement need
not notice any change of that state when he makes fur-
ther confirmatory measurements. This property is the
cornerstone of the ‘‘reality’’ of classical states—they
need not ever change as a consequence of measure-
ments. We emphasize, however, that while the state of
the system may remain unchanged, the state of the ob-
server must change to reflect the acquired information.

Last but not least, an outsider—someone who knows
about the measurement, but (in contrast to the insider)
not about the initial state of the system nor (in contrast
to both the insider and the discoverer) about the out-
come of the measurement—will describe the same pro-
cess still differently:

uArS&^ArSuuA0&^A0u(
i

pius i&^s iu

→uArS&^ArSuS (i
piuAi&^Aiuus i&^s iu D . (2.44c)

This view of the outsider, Eq. (2.44c), combines a one-
to-one classical correlation of the states of the system
and the records with the indefiniteness of the outcome.

We have just seen three distinct quantum-looking de-
scriptions of the very same classical process (see Zurek,
1989 and Caves, 1994 for previous studies of the insider-
outsider theme). They differ only in the information
available ab initio to the observer. The information in
the possession of the observer prior to the measurement
determines in turn whether—to the observer—the evo-
lution appears to be (a) a confirmation of the preexisting
data, Eq. (2.44a); (b) a collapse associated with the in-
formation gain, Eq. (2.44b), and with the entropy de-
crease translated into algorithmic randomness of the ac-
quired data (Zurek, 1989, 1998b); or (c) an entropy-
preserving establishment of a correlation, Eq. (2.44c).
All three descriptions are classically compatible, and can
be implemented by the same (deterministic and revers-
ible) dynamics.

In classical physics the insider view always exists, in
principle. In quantum physics it does not. Every ob-
server in a classical universe could, in principle, aspire to
be an ultimate insider. The fundamental contradiction
between every observer’s knowing precisely the state of
the rest of the Universe (including the other observers)
can be swept under the rug (if not really resolved) in a
universe where the states are infinitely precisely deter-
mined and the observer’s records (as a consequence of
the \→0 limit) may have an infinite capacity for infor-
mation storage. However, given a set value of \, the
information storage resources of any finite physical sys-
tem are finite. Hence, in quantum physics, observers re-
main largely ignorant of the detailed state of the uni-



725Wojciech Hubert Zurek: Decoherence, einselection, and the quantum origins of the classical
verse, since there can be no information without
representation (Zurek, 1994).

Classical collapse is described by Eq. (2.44b). The ob-
server discovers the state of the system. From then on,
the state of the system will remain correlated with his
record, so that all future outcomes can be predicted, in
effect by iterating Eq. (2.44a). This disappearance of all
the potential alternatives save for one that becomes a
‘‘reality’’ is the essence of the collapse. There need not
be anything quantum about it.

Einselection in the observer’s memory provides many
of the ingredients of classical collapse in the quantum
context. In the presence of einselection, a one-to-one
correspondence between the state of the observer and
his knowledge about the rest of the universe can be
firmly established, and (at least, in principle) operation-
ally verified. One could measure bits in the observer’s
memory or even the ‘‘imprint’’ of their state on the en-
vironment and determine what he knows without alter-
ing his records—without altering his state. After all, one
can do so with a classical computer. The existential in-
terpretation recognizes that the information possessed
by the observer is reflected in his einselected state, ex-
plaining his perception of a single branch—‘‘his’’ classi-
cal universe.

III. CHAOS AND LOSS OF CORRESPONDENCE

The study of the relationship between the quantum
and the classical has been, for a long time, focused al-
most entirely on measurements. However, the problem
of measurement is difficult to discuss without observers.
And once the observer enters, it is often hard to avoid
its ill-understood anthropic attributes such as conscious-
ness, awareness, and the ability to perceive.

We shall sidestep these ‘‘metaphysical’’ problems and
focus on the information-processing underpinnings of
observership. It is nevertheless fortunate that there is
another problem with the quantum-classical correspon-
dence that leads to interesting questions not motivated
by measurements. As was anticipated by Einstein (1917)
before the advent of modern quantum theory, chaotic
motion presents such a challenge. The full implications
of classical dynamical chaos were understood much
later. The concern about the quantum-classical corre-
spondence in this modern context dates to Berman and
Zaslavsky (1978) and Berry and Balazs (1979) (see
Haake, 1991 and Casati and Chirikov, 1995a, for refer-
ences). It has even led some to question the validity of
quantum theory (Ford and Mantica, 1992).

A. Loss of quantum-classical correspondence

The interplay between quantum interference and cha-
otic exponential instability leads to the rapid loss of
quantum-classical correspondence. Chaos in dynamics is
characterized by the exponential divergence of the clas-
sical trajectories. As a consequence, a small patch rep-
resenting the probability density in phase space is expo-
nentially stretching in unstable directions and
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exponentially compressing in stable directions. The rates
of stretching and compression are given by positive and
negative Lyapunov exponents L i . Hamiltonian evolu-
tion demands that the sum of all the Lyapunov expo-
nents be zero. In fact, they appear in 6L i pairs.

Loss of correspondence in chaotic systems is a conse-
quence of the exponential stretching of the effective
support of the probability distribution in the unstable
direction (say, x) and its exponential narrowing in the
complementary direction (Zurek and Paz, 1994; Zurek,
1998b). As a consequence, the classical probability dis-
tribution will develop structures on the scale

Dp;Dp0 exp~2Lt !. (3.1)

Above, Dp0 is the measure of the initial momentum
spread and L is the net rate of contraction in the direc-
tion of momentum given by the Lyapunov exponents
(but see Boccaletti, Farini, and Arecchi, 1997). In a real
chaotic system, stretching and narrowing of the prob-
ability distribution in both x and p occur simultaneously,
as the initial patch is rotated and folded. Eventually, the
envelope of its effective support will swell to fill in the
available phase space, resulting in a wave packet that is
coherently spread over a spatial region of no less than

Dx;~\/Dp0!exp~Lt !. (3.2)

until it becomes confined by the potential, while the
small-scale structure will continue to descend to ever
smaller scales (Fig. 1). Breakdown of the quantum-
classical correspondence can be understood in two
complementary ways, either as a consequence of small
Dp (see the discussion of the Moyal bracket below) or as
a result of large Dx .

Coherent exponential spreading of the wave packet—
large Dx—must cause problems with correspondence.
This is inevitable, since classical evolution appeals to the
idealization of a point in phase space acted upon by a
force given by the gradient ]xV of the potential V(x)
evaluated at that point. But the quantum wave function
can be coherent over a region larger than the nonlinear-
ity scale x over which the gradient of the potential
changes significantly. x can usually be estimated by

x.A]xV/]xxxV , (3.3)

and is typically of the order of the size L of the system:

L;x . (3.4)

An initially localized state evolving in accord with
Eqs. (3.1) and (3.2) will spread over such scales after

t\.L21 ln
Dp0x

\
. (3.5)

It is then impossible to tell what force is acting upon the
system, since it is not located in any specific x. This es-
timate of what can be thought of as Ehrenfest time, the
time over which a quantum system that has started in a
localized state will continue to be sufficiently localized
for the quantum corrections to the equations of motion
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FIG. 1. Chaotic evolution generated from the same initial Gaussian by the Hamiltonian H5p2/2m2k cos(x2l sin t)1ax2/2. (a)–
(c) Snapshots of the quantum (\50.16) Wigner function; (d) classical probability distribution in phase space. For m51, k50.36,
l53, and a50 –0.01 the Hamiltonian exhibits chaos with the Lyapunov exponent L50.2 (Karkuszewski, Zakrzewski, and Zurek,
2002). Quantum (a) and classical (d) are obtained at the same instant, t520. They exhibit some similarities [i.e., the shape of the
regions of significant probability density, ‘‘ridges’’ in the topographical maps of (a) and (d)], but the difference—the presence of
the interference patterns with W(x ,p) assuming negative values (marked with blue)—is striking. Saturation of the size of the
smallest patches is anticipated already at this early time, and indeed the ridges of the classical probability density are narrower
than in the corresponding quantum features. Saturation is even more visible in (b) taken at t560 and (c), t5100 [note change of
scale from (a) and (d)]. Sharpness of the classical features makes simulations going beyond t520 unreliable, but quantum
simulations can be effectively carried out much further, since the necessary resolution can be anticipated in advance from
Eqs. (3.14)–(3.16) (Color).
obeyed by its expectation values to be negligible (Gott-
fried, 1966), is valid for chaotic systems. Logarithmic de-
pendence is the result of inverting the exponential sen-
sitivity. In the absence of exponential instability (L50),
divergence of trajectories is typically polynomial and
leads to a power-law dependence, t\;(I/\)a, where I is
the classical action. Thus macroscopic (large-I) inte-
grable systems can follow classical dynamics for a very
long time, providing they were initiated in a localized
state. For chaotic systems t\ also becomes infinite in the
limit \→0, but that happens only logarithmically slowly.
As we shall see below, in the context of quantum-
classical correspondence this is too slow for comfort.
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
Another way of describing the root cause of a break-
down of correspondence is to note that after a time scale
of the order of t\ , the quantum wave function of the
system would have spread over all of the available space
and would be forced to fold onto itself. Fragments of the
wave packet arrive at the same location (although with
different momenta, and having followed different
paths). The ensuing evolution depends critically on
whether they have retained phase coherence. When co-
herence persists, a complicated interference event de-
cides the subsequent evolution. And, as can be antici-
pated from the double-slit experiment, there is a big
difference between coherent and incoherent folding in
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the configuration space. This translates into a loss of cor-
respondence, which sets in surprisingly quickly, at t\ .

To find out how quickly, we estimate t\ for an obvi-
ously macroscopic object, Hyperion, a chaotically tum-
bling moon of Saturn (Wisdom, 1985). Hyperion has the
prolate shape of a potato and moves on an eccentric
orbit with a period tO521 days. Interaction between its
gravitational quadrupole and the tidal field of Saturn
leads to chaotic tumbling with Lyapunov time L21

.42 days.
To estimate the time over which the orientation of

Hyperion becomes delocalized, we use a formula (Ber-
man and Zaslavsky, 1978; Berry and Balazs, 1979):

tr5L21 ln
LP

\
5L21 ln

I

\
. (3.6)

Above L and P give the range of values of the coordi-
nates and momenta in phase space of the system. Since
L.x and P.Dp0 , it follows that tr>t\ . On the other
hand, LP.I , the classical action of the system.

The advantage of Eq. (3.6) is its insensitivity to initial
conditions and the ease with which the estimate can be
obtained. For Hyperion, a generous overestimate of the
classical action I can be obtained from its binding energy
EB and its orbital time tO :

I/\.EBtO /\.1077. (3.7)

The above estimate (Zurek, 1998b) is ‘‘astronomically’’
large. However, in the calculation of the loss of corre-
spondence, Eq. (3.6), only the logarithm of I enters.
Thus

tr
Hyper.42 @days# ln 1077.20 @yr# . (3.8)

After approximately 20 yr Hyperion would be in a co-
herent superposition of orientations that differ by 2p.

We conclude that after a relatively short time an ob-
viously macroscopic chaotic system becomes forced into
a flagrantly nonlocal ‘‘Schrödinger-cat’’ state. In the
original discussion (Schrödinger, 1935a, 1935b) an inter-
mediate step in which the decay products of the nucleus
were measured to determine the fate of the cat was es-
sential. Thus it was possible to maintain that the prepos-
terous superposition of the dead and live cat could be
avoided, providing that quantum measurement (with the
collapse it presumably induces) was properly under-
stood.

This cannot be the resolution for chaotic quantum sys-
tems. They can evolve, as the example of Hyperion dem-
onstrates, into states that are nonlocal and, therefore,
extravagantly quantum, simply as a result of exponen-
tially unstable dynamics. Moreover, this happens surpris-
ingly quickly, even for very macroscopic examples. Hy-
perion is not the only chaotic system. There are
asteroids that have chaotically unstable orbits (e.g., Chi-
ron), and even indications that the solar system as a
whole is chaotic (Laskar, 1989; Sussman and Wisdom,
1992). In all of these cases straightforward estimates of
t\ yield answers much smaller than the age of the solar
system. Thus, if unitary evolution of closed subsystems
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
was a complete description of planetary dynamics, plan-
ets would be delocalized along their orbits.

B. Moyal bracket and Liouville flow

Heuristic arguments about the breakdown of
quantum-classical correspondence can be made more
rigorous with the help of the Wigner function. We start
with the von Neumann equation

i\ṙ5@H ,r# . (3.9)

This can be transformed into the equation for the
Wigner function W, which is defined in phase space as

W~x ,p !5
1

2p\ E expS ipy

\ D rS x2
y

2
,x1

y

2 Ddy .

(3.10)

The result is

Ẇ5$H ,W%MB . (3.11)

Here $. . . , . . .%MB stands for the Moyal bracket, the
Wigner transform of the von Neumann bracket (Moyal,
1949).

The Moyal bracket can be expressed in terms of the
Poisson bracket $...,...%, which generates Liouville flow in
classical phase space, by the formula

i\$. . . , . . .%MB5sin~ i\$. . . , . . .%!. (3.12)

When the potential V(x) is analytic, the Moyal bracket
can be expanded (Hillery et al., 1984) in powers of \:

Ẇ5$H ,W%1 (
n>1

\2n~2 !n

22n~2n11 !!
]x

2n11V]p
2n11W .

(3.13)

The first term is just the Poisson bracket. Alone, it
would generate classical motion in phase space. How-
ever, when the evolution is chaotic, quantum corrections
(proportional to the odd-order momentum derivatives
of the Wigner function) will eventually dominate the
right-hand side of Eq. (3.10). This is because the expo-
nential squeezing of the initially regular patch in phase
space (which begins its evolution in the classical regime,
where the Poisson bracket dominates) leads to an expo-
nential explosion of the momentum derivatives. Conse-
quently, after a time logarithmic in \ [Eqs. (3.5) and
(3.6)], the Poisson bracket will cease to be a good esti-
mate of the right-hand side of Eq. (3.13).

The physical reason for the ensuing breakdown of the
quantum-classical correspondence has already been ex-
plained: exponential instability of the chaotic evolution
delocalizes the wave packet. As a result, the force acting
on the system is no longer given by the gradient of the
potential evaluated at the location of the system. It is
not even possible to say where the system is, since it is in
a superposition of many distinct locations. Conse-
quently, the phase-space distribution and even the ex-
pectation values of the observables of the system differ
noticeably when evaluated classically and quantum me-
chanically (Haake, Kuś, and Sharf, 1987; Habib, Shi-
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FIG. 2. Difference between the classical and quantum averages of the dispersion of momentum D25^p2&2^p&2 plotted for (a)
same initial condition, but three different values of \ in the model defined in Fig. 1, with the parameter a50. The instant when the
difference between the classical and quantum averages becomes significant varies with \ in a manner anticipated from Eqs. (3.5)
and (3.6) for the Ehrenfest time, as can be seen in the inset; (b) same value of \, but for four different initial conditions. Inset
appears to indicate that the typical variance difference d varies only logarithmically with decreasing \, although the large error
bars (tied to the large systematic changes of behavior for different initial conditions) preclude one from arriving at a firmer
conclusion. (See Karkuszewski, Zakrzewski, and Zurek, 2002, for further details and discussion.) (Color).
zume, and Zurek, 1998; Karkuszewski, Zakrzewski, and
Zurek, 2002). Moreover, this will happen after an un-
comfortably short time t\ .

C. Symptoms of correspondence loss

The wave packet becomes rapidly delocalized in a
chaotic system, and the correspondence between classi-
cal and quantum is quickly lost. Flagrantly nonlocal
Schrödinger-cat states appear no later than t\ , and this
is the overarching interpretational as well as physical
problem. In the familiar real world we never seem to
encounter such smearing of the wave function even in
the examples of chaotic dynamics where it is predicted
by quantum theory.

1. Expectation values

Measurements usually average out fine phase-space
interference structures, which may be a striking, but ex-
perimentally inaccessible symptom of the breakdown of
correspondence. Thus one might hope that when inter-
ference patterns in the Wigner function are ignored by
looking at the coarse-grained distribution, the quantum
results should be in accord with the classical. This would
not exorcise the ‘‘chaotic cat’’ problem. Moreover, the
breakdown of correspondence can also be seen in the
expectation values of quantities that are smooth in
phase space.

Trajectories diverge exponentially in a chaotic system.
A comparison between expectation values for a single
trajectory and for a delocalized quantum state (which is
how the Ehrenfest theorem mentioned above is usually
stated) would clearly lead to a rapid loss of correspon-
dence. However, one may rightly object to the use of a
single trajectory and argue that both the quantum and
the classical state should be prepared and accessed only
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
through measurements that are subject to Heisenberg
indeterminacy. Still, it should be fair to compare aver-
ages over an evolving Wigner function with an initially
identical classical probability distribution (Haake, Kuś,
and Sharf, 1987; Ballentine, Yang, and Zibin, 1994; Fox
and Elston, 1994a, 1994b; Miller, Sarkar, and Zarum,
1998). These are shown in Fig. 2 for an example of a
driven chaotic system. Clearly, there is reason for con-
cern. Figure 2 (corroborated by other studies—see
Karkuszewski, Zakrzewski, and Zurek, 2002, for refer-
ences) demonstrates that not just the phase-space por-
trait but also the averages diverge at a time ;t\ .

In integrable systems, the rapid loss of correspon-
dence between the quantum and the classical expecta-
tion values may still occur, but only for very special ini-
tial conditions, due to the local instability in phase space.
Indeed, a double-slit experiment is an example of a
regular system in which a local instability (splitting of
the paths) leads to correspondence loss, but only for ju-
diciously selected initial conditions. Thus one may dis-
miss such a breakdown as a consequence of a rare
pathological starting point and argue that the conditions
that lead to discrepancies between classical and quan-
tum behavior exist, but are of measure zero in the clas-
sical limit.

In the chaotic case the loss of correspondence is typi-
cal. As shown in Fig. 2, it happens after a disturbingly
short t\ for generic initial conditions. The time at which
the quantum and classical expectation values diverge in
the example studied here is consistent with the estimates
of t\ , Eq. (3.5), but exhibits a significant scatter. This is
not too surprising—exponents characterizing local insta-
bility vary noticeably with location in phase space.
Hence stretching and contraction in phase space will oc-
cur at a rate that depends on the specific trajectory. The
dependence of a typical magnitude on \ is still not clear.
Emerson and Ballentine (2001a, 2001b) studied coupled
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spins and argued that it is of the order of \, but Fig. 2
suggests it decreases more slowly than that, and that it
may be only logarithmic in \ (Karkuszewski et al., 2002).

2. Structure saturation

Evolution of the Wigner function leads to rapid
buildup of interference fringes. These fringes become
progressively smaller, until saturation, when the wave
packet is spread over the available phase space. At that
time their scales in momentum and position are typically
given by

dp5\/L , (3.14)

dx5\/P , (3.15)

where L(P) defines the range of positions (momenta) of
the effective support of W in phase space.

Hence the smallest structures in the Wigner function
occur (Zurek, 2001) on scales corresponding to an action

a5dxdp5\3\/LP5\2/I , (3.16)

where I.LP is the classical action of the system. Action
a!\ for macroscopic I.

Sub-Planck structure is a kinematic property of quan-
tum states. It helps determine their sensitivity to pertur-
bations and has applications outside quantum chaos or
decoherence. For instance, a Schrödinger-cat state can
be used as a weak force detector (Zurek, 2001), and its
sensitivity is determined by Eqs. (3.14)–(3.16).

Structure saturation on scale a is an important distinc-
tion between the quantum and the classical. In chaotic
systems, the smallest structures in classical probability
density exponentially shrink with time, in accord with
Eq. (3.1) (see Fig. 1). Equation (3.16) has implications
for decoherence, since a controls the sensitivity of sys-
tems as well as of environments (Zurek, 2001; Karkus-
zewski, Jarzynski, and Zurek, 2002). As a result of the
smallness of a, Eq. (3.16), and as anticipated by Peres
(1993), quantum systems are more sensitive to perturba-
tions when their classical counterparts are chaotic (see
also Jalabert and Pastawski, 2001). But in contrast to
classical chaotic systems they are not exponentially sen-
sitive to infinitesimally small perturbations. Rather, the
smallest perturbations that can be effective are set by
Eq. (3.16).

The emergence of Schrödinger-cat states through dy-
namics is a challenge to quantum-classical correspon-
dence. It is not yet clear to what extent one should be
concerned about the discrepancies between quantum
and classical averages. The size of this discrepancy may
or may not be negligible. But in the original
Schrödinger-cat problem, quantum and classical expec-
tation values (for the survival of the cat) were in accord.
In both cases it is ultimately the state of the cat that is
most worrisome.

Note that we have not dealt with dynamical localiza-
tion (Casati and Chirikov, 1995a). This is because it ap-
pears after too long a time (;\21) to be a primary con-
cern in the macroscopic limit and is quite sensitive to
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
small perturbations of the potential (Karkuszewski,
Zakrzewski, and Zurek, 2002).

IV. ENVIRONMENT-INDUCED SUPERSELECTION

The principle of superposition applies only when the
quantum system is closed. When the system is open, in-
teraction with the environment results in an incessant
monitoring of some of its observables. As a result, pure
states turn into mixtures that become rapidly diagonal in
einselected states. These pointer states are chosen with
the help of the interaction Hamiltonian and are inde-
pendent of the initial state of the system. Their predict-
ability is key to the effective classicality (Zurek, 1993a;
Zurek, Habib, and Paz, 1993).

Environments can be external (such as particles of the
air or photons that scatter off, say, the apparatus
pointer) or internal (collections of phonons or other in-
ternal excitations). Often, environmental degrees of
freedom emerge from a split of the original set of de-
grees of freedom into a ‘‘system of interest,’’ which may
be a collective observable (e.g., an order parameter in a
phase transition) and a ‘‘microscopic remainder.’’

The set of einselected states is called the pointer basis
(Zurek, 1981) in recognition of its role in measurements.
The criterion for the einselection of states goes well be-
yond the often repeated characterizations based on the
instantaneous eigenstates of the density matrix. What is
of the essence is the ability of the einselected states to
survive monitoring by the environment. This heuristic
criterion can be made rigorous by quantifying the pre-
dictability of the evolution of the candidate states, or of
the associated observables. Einselected states provide
optimal initial conditions. They can be employed for the
purpose of prediction better than other Hilbert-space
alternatives—they retain correlations in spite of their
immersion in the environment.

Three quantum systems—the measured system S, the
apparatus A, and the environment E—and the correla-
tions between them are the subject of our study. In pre-
measurements S and A interact. Their resulting en-
tanglement transforms into an effectively classical
correlation as a result of the interaction between A and
E.

This SAE triangle helps us to analyze decoherence
and study its consequences. By keeping all three corners
of this triangle in mind, one can avoid confusion and
maintain focus on the correlations between, for ex-
ample, the memory of the observer and the state of the
measured system. The evolution from a quantum en-
tanglement to a classical correlation we are about to dis-
cuss may be the easiest relevant aspect of the quantum-
to-classical transition to define operationally. In the
language of the last part of Sec. II, we are about to
justify the ‘‘outsider’’ point of view, Eq. (2.44c), before
considering the measurement from the vantage point of
the ‘‘discoverer,’’ Eq. (2.44b), and before tackling the
issue of collapse. In spite of this focus on correlations,
we shall often suppress one of the corners of the SAE
triangle to simplify notation. All three parts will, how-
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ever, play a role in formulating questions and in moti-
vating the criteria for classicality.

A. Models of einselection

The simplest case of a single act of decoherence in-
volves just three one-bit systems (Zurek, 1981, 1983).
They are denoted by S, A, and E in an obvious reference
to their roles. The measurement starts with the interac-
tion of the measured system with the apparatus

u↑&uA0&→u↑&uA1&, (4.1a)

u↓&uA0&→u↓&uA0&, (4.1b)

where ^A0uA1&50. For a general state,

~au↑&1bu↓&)uA0&→au↑&uA1&1bu↓&uA0&5uF&. (4.2)

These formulas represents a c-NOT implementation of
the premeasurement discussed in Sec. II.

The basis ambiguity [that is, the ability to rewrite uF&,
Eq. (4.2), in any basis of, say, the system, with the prin-
ciple of superposition guaranteeing the existence of the
corresponding pure states of the apparatus] disappears
when an additional system, E, performs a premeasure-
ment on A:

~au↑&uA1&1bu↓&uA0&)u«0&

→au↑&uA1&u«1&1bu↓&uA0&u«0&5uC& . (4.3)

A collection of three correlated quantum systems is no
longer subject to the basis ambiguity we have pointed
out in connection with the EPR-like state uF&, Eq. (4.2).
This is especially true when states of the environment
are correlated with the simple products of the states of
the apparatus-system combination (Zurek, 1981; Elby
and Bub, 1994). In Eq. (4.3) this can be guaranteed (ir-
respective of the values of a and b) providing that

^«0u«1&50. (4.4)

When this orthogonality condition is satisfied, the state
of the A-S pair is given by a reduced density matrix

rAS5TrEuC&^Cu

5uau2u↑&^↑uuA1&^A1u1ubu2u↓&^↓uuA0&^A0u

(4.5a)

containing only classical correlations.
If the condition of Eq. (4.4) did not hold, that is, if the

orthogonal states of the environment were not corre-
lated with the apparatus in the basis in which the origi-
nal premeasurement was carried out, then the eigen-
states of the reduced density matrix rAS would be sums
of products rather than simply products of states of S
and A. An extreme example of this situation is the pre-
decoherence density matrix of the pure state

uF&^Fu5uau2u↑&^↑uuA1&^A1u1ab* u↑&^↓uuA1&^A0u

1a* bu↓&^↑uuA0&^A1u1ubu2u↓&^↓uuA0&^A0u.

(4.5b)
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The single eigenstate of this density matrix is uF&. When
expanded, uF&^Fu contains terms that are off diagonal
when expressed in any of the natural bases consisting of
the tensor products of states in the two systems. Their
disappearance as a result of tracing over the environ-
ment removes the basis ambiguity. Thus, for example,
the reduced density matrix rAS , Eq. (4.5a), has the same
form as the outsider description of the classical measure-
ment, Eq. (2.44c).

In our simple model, pointer states are easy to char-
acterize. To leave pointer states untouched, the Hamil-
tonian of interaction HAE should have the same struc-
ture as that for the c-NOT, Eqs. (2.9) and (2.10). It should
be a function of the pointer observable, Â
5a0uA0&^A0u1a1uA1&^A1u of the apparatus. Then the
states of the environment will bear an imprint of the
pointer states $uA0&,uA1&%. As noted in Sec. II,

@HAE ,Â#50 (4.6)

immediately implies that Â is a control, and its eigen-
states will be preserved.

1. Decoherence of a single qubit

An example of continuous decoherence is afforded by
two-state apparatus A interacting with an environment
of N other spins (Zurek, 1982). The two apparatus states
are $u⇑&,u⇓&%. For the simplest, yet already interesting ex-
ample, the self-Hamiltonian of the apparatus disappears,
HA50, and the interaction has the form

HAE5~ u⇑&^⇑u2u⇓&^⇓u! ^ (
k

gk~ u↑&^↑u2u↓&^↓u!k .

(4.7)

Under the influence of this Hamiltonian the initial state,

uF~0 !&5~au⇑&1bu⇓&) )
k51

N

~aku↑&k1bku↓&k), (4.8)

evolves into

uF~ t !&5au⇑&uE⇑~ t !&1bu⇓&uE⇓~ t !&; (4.9)

uE⇑~ t !&5 )
k51

N

~akeigktu↑&k1bke2igktu↓&k)5uE⇓~2t !& .

(4.10)

The reduced density matrix is

rA5uau2u⇑&^⇑u1ab* r~ t !u⇑&^⇓u1a* br* ~ t !u⇓&^⇑u

1ubu2u⇓&^⇓u. (4.11)

The coefficient r(t)5^E⇑uE⇓& determines the relative size
of the off-diagonal terms. It is given by

r~ t !5 )
k51

N

@cos 2gkt1i~ uaku22ubku2!sin 2gkt# . (4.12)

For large environments consisting of many (N) spins at
large times the off-diagonal terms are typically small:

ur~ t !u2.22N )
k51

N

@11~ uaku22ubku2!2# . (4.13)
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The density matrix of any two-state system can be
represented by a point in three-dimensional space. In
terms of the coefficients a, b, and r(t), the coordinates
of the point representing it are z5(uau22ubu2), x
5Re(ab* r), and y5Im(ab* r), the real and imaginary
parts of the complex ab* r . When the state is pure, x2

1y21z251. Pure states lie on the surface of the Bloch
sphere (Fig. 3).

Any conceivable (unitary or nonunitary) quantum
evolution can be thought of as a transformation of the
surface of the pure states into the ellipsoid contained
inside the Bloch sphere. Deformation of the Bloch
sphere surface caused by decoherence is a special case of
such general evolutions (Zurek, 1982, 1983; Berry, 1995).
Decoherence does not affect uau or ubu. Hence evolution
due to decoherence alone occurs in the z5const plane.
Such a slice through the Bloch sphere would show the
point representing the state at a fraction ur(t)u of its
maximum distance. The complex r(t) can be expressed
as the sum of the complex phase factors rotating with
the frequencies given by the differences Dv j between
the energy eigenvalues of the interaction Hamiltonian,
weighted with the probabilities of finding them in the
initial state:

r~ t !5(
j51

2N

pj exp~2iDv jt !. (4.14)

The index j denotes the environment part of the energy
eigenstates of the interaction Hamiltonian, Eq. (4.7), for
example: uj&5u↑&1 ^ u↓&2 ^¯^ u↑&N . The corresponding
differences between the energies of the eigenstates u⇑&uj&

FIG. 3. Schematic representation of the effect of decoherence
on a Bloch sphere. When interaction with the environment
singles out pointer states located at the poles of the Bloch
sphere, pure states (which lie on its surface) will evolve to-
wards the vertical axis. This classical core is a set of all the
mixtures of the pointer states.
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and u⇓&uj& are Dv j5^⇑u^juHAEuj&u⇓& . There are 2N dis-
tinct uj&’s, and, barring degeneracies, the same number
of different Dv j’s. Probabilities pj are given by

pj5u^juE~ t50 !&u2, (4.15)

which is in turn easily expressed in terms of the appro-
priate squares of ak and bk .

The evolution of r(t), Eq. (4.14), is a consequence of
the rotations of the complex vectors pk exp(2iDvjt) with
different frequencies. The resultant r(t) will then start
with the amplitude 1 and, as is anticipated by Eq. (4.13),
quickly ‘‘crumble’’ to

^ur~ t !u2&;(
j51

2N

pj
2;22N. (4.16)

In this sense, decoherence is exponentially effective. The
magnitude of the off-diagonal terms decreases exponen-
tially fast, with the physical size N of the environment
effectively coupled to the state of the system.

We note that the effectiveness of einselection depends
on the initial state of the environment. When E is in the
kth eigenstate of HAE , pj5d jk , the coherence in the
system will be retained. This special environment state
is, however, unlikely in realistic circumstances.

2. The classical domain and quantum halo

The geometry of flows induced by decoherence in a
Bloch sphere exhibits characteristics encountered in
general:

(i) A classical set of the einselected pointer states
($u⇑&,u⇓&% in our case). Pointer states are the pure
states least affected by decoherence.

(ii) A classical domain consisting of all the pointer
states and their mixtures. In Fig. 3 this corre-
sponds to the section [21,11] of the z axis.

(iii) The quantum domain, the rest of the volume of
the Bloch sphere, consisting of more general den-
sity matrices.

Visualizing the decoherence-induced decomposition
of Hilbert space may be possible only in the simple case
studied here, but whenever decoherence leads to classi-
cality, the emergence of generalized and often approxi-
mate versions of the elements (i)–(iii) is expected.

As a result of decoherence the part of Hilbert space
outside the classical domain is ruled out by einselection.
The severity of the prohibition on its states varies. One
may measure the nonclassicality of (pure or mixed)
states by quantifying their distance from the classical do-
main with the rate of entropy production and comparing
it to the much lower rate in the classical domain. Classi-
cal pointer states would then be enveloped by a ‘‘quan-
tum halo’’ (Anglin and Zurek, 1996) of nearby, relatively
decoherence-resistant but still somewhat quantum
states, with more flagrantly quantum (and more fragile)
Schrödinger-cat states further away.

By the same token, one can define an einselection-
induced metric in the classical domain, with the distance
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between two pointer states given by the rate of entropy
production of their superposition. This is not the only
way to define a distance. As we shall see in Sec. VII, the
redundancy of the record of a state imprinted on the
environment is a very natural measure of its classicality.
In the course of decoherence, pointer states tend to be
recorded redundantly and can be deduced by intercept-
ing a very small fraction of the environment (Zurek,
2000; Dalvit, Dziarmaga, and Zurek, 2001; Ollivier, Pou-
lin, and Zurek, 2002).

3. Einselection and controlled shifts

Discussion of decoherence can be generalized to the
situation in which the system, the apparatus, and the
environment have many states, and their interactions
are complicated. Here we assume that the system is iso-
lated, and that it interacts with the apparatus in the
c-shift manner discussed in Sec. II. As a result of that
interaction the state of the apparatus becomes entangled
with the state of the system: (( ia iusi&)uA0&
→( ia iusi&uAi& . This state suffers from basis ambiguity:
the entanglement of S and A implies that for any state of
either there exists a corresponding pure state of its part-
ner. Indeed, when the initial state of S is chosen to be
one of the eigenstates of the conjugate basis,

FIG. 4. Information transfer in a c-NOT or a c-shift ‘‘carica-
ture’’ of measurement, decoherence, and decoherence with
noise. Bit-by-bit measurement is shown on the top. This dia-
gram is the fundamental logic circuit used to represent deco-
herence affecting the measuring apparatus. Note that the di-
rection of the information flow in decoherence, from the
decohering apparatus and to the environment, differs from the
information flow associated with noise. In short, as a result of
decoherence, environment is perturbed by the state of the sys-
tem. Noise is, by contrast, perturbation inflicted by the envi-
ronment. Preferred pointer states are selected so as to mini-
mize the effect of the environment—to minimize the number
of c-NOT’s pointing from the environment at the expense of
those pointing towards it.
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exp~2pikl/N !usk&, (4.17)

the c-shift could equally well represent a measurement
of the apparatus (in the basis conjugate to $uAk&%) by
the system. Thus it is not just the basis that is ambigu-
ous, but also the roles of the control (system) and of the
target (apparatus), which can be reversed when the con-
jugate basis is selected. These ambiguities can be re-
moved by recognizing the role of the environment.

Figure 4 captures the essence of an idealized decoher-
ence process that allows the apparatus to be—in spite of
its interaction with the environment—a noiseless classi-
cal communication channel (Schumacher, 1996; Lloyd,
1997). This is possible because the A-E c-shifts do not
disturb the pointer states.

The advantage of this idealization of the decoherence
process as a sequence of c-shifts lies in its simplicity.
However, the actual process of decoherence is usually
continuous (so that it can only be approximately broken
up into discrete c-shifts). Moreover, in contrast to the
c-NOT’s used in quantum logic circuits, the record in-
scribed in the environment is usually distributed over
many degrees of freedom. Last but not least, the observ-
able of the apparatus (or any other open system) may be
subject to noise (and not just decoherence), or its self-
Hamiltonian may rotate instantaneous pointer states
into their superpositions. These very likely complica-
tions will be investigated in specific models below.

Decoherence is caused by a premeasurementlike pro-
cess carried out by the environment E:

uCSA&u«0&5S (
j

a jusj&uAj& D u«0&→(
j

a jusj&uAj&u« j&

5uFSAE& . (4.18)

Decoherence leads to einselection when the states of the
environment u« j& corresponding to different pointer
states become orthogonal:

^« iu« j&5d ij . (4.19)

Then the Schmidt decomposition of the state vector
uFSAE& into composite subsystems SA and E yields prod-
uct states usj&uAj& as partners of the orthogonal environ-
ment states. The decohered density matrix describing
the SA pair is then diagonal in product states:

rSA
D 5(

j
ua ju2usj&^sjuuAj&^Aju5TrEuFSAE&^FSAEu.

(4.20)

For simplicity we shall often omit reference to the object
that does not interact with the environment (here, the
system S). Nevertheless, preservation of the SA correla-
tions is the criterion defining the pointer basis. Invoking
it would eliminate much confusion (see, for example,
discussions in Halliwell, Perez-Mercader, and Zurek,
1994; Venugopalan, 1994, 2000). The density matrix of a
single object in contact with the environment will always
be diagonal in an (instantaneous) Schmidt basis. This
instantaneous diagonality should not be used as the sole
criterion for classicality (although see Zeh, 1973, 1990;
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Albrecht, 1992, 1993). Rather, the ability of certain
states to retain correlations in spite of coupling to the
environment is decisive.

When the interaction with the apparatus has the form

HAE5 (
k ,l ,m

gklm
AE uAk&^Akuu« l&^«mu1H.c., (4.21)

the basis $uAk&% is left unperturbed and any correlation
with the states $uAk&% is preserved. But, by definition,
pointer states preserve correlations in spite of decoher-
ence, so that any observable Â codiagonal with the in-
teraction Hamiltonian will be pointer observable. For
when the interaction is a function of Â , it can be ex-
panded in Â as a power series, so it commutes with Â :

@HAE~Â !,Â#50. (4.22)

The dependence of the interaction Hamiltonian on the
observable is an obvious precondition for the monitor-
ing of that observable by the environment. This admits
the existence of degenerate pointer eigenspaces of Â .

B. Einselection as the selective loss of information

The establishment of a measurementlike correlation
between the apparatus and the environment changes the
density matrix from the premeasurement rSA

P to the de-
cohered rSA

D , Eq. (4.20). For the initially pure uCSA&,
Eq. (4.18), this transition is represented by

rSA
P 5(

i ,j
a ia j* usi&^sjuuAi&^Aju

→(
i

ua iu2usi&^siuuAi&^Aiu5rSA
D . (4.23)

Einselection is accompanied by an increase of entropy,

DH~rSA!5H~rSA
D !2H~rSA

P !>0, (4.24)

and by the disappearance of the ambiguity in what was
measured (Zurek, 1981, 1993a). Thus, before decoher-
ence, the conditional density matrices of the system,
rSuCj&

, are pure for any state uCj& of the apparatus
pointer. They are defined using the unnormalized

r̃SuP j
5TrAP jrSA , (4.25)

where in the simplest case P j5uCj&^Cju projects onto a
pure state of the apparatus.4

4This can be generalized to projections onto multidimen-
sional subspaces of the apparatus. In that case, the purity of
the conditional density matrix will usually be lost during the
trace over the states of the pointer. This is not surprising.
When the observer reads off the pointer of the apparatus only
in a coarse-grained manner, he will forgo part of the informa-
tion about the system. The amplification we have considered
before can prevent some of this loss of resolution due to coarse
graining in the apparatus. Generalizations to density matrices
that are conditioned upon projection-operator-valued mea-
sures (Kraus, 1983) are also possible.
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Normalized rSuP j
can be obtained by using the prob-

ability of the outcome:

rSuP j
5pj

21r̃SuP j
, (4.26)

pj5Trr̃SuP j
.

The conditional density matrix represents the descrip-
tion of the system S available to the observer who knows
that the apparatus A is in a subspace defined by P j .

1. Conditional state, entropy, and purity

Before decoherence, rSuCj&
P is pure for any state uCj&,

~rSuP j

P !25rSuP j

P ;uCj&; (4.27a)

providing the initial premeasurement state, Eq. (4.23),
was pure as well. It follows that

H~rSAuCj&
P !50 ;uCj&. (4.28a)

For this same case given by the initially pure rSA
P of Eq.

(4.23), conditional density matrices obtained from the
decohered rSA

D will be pure if and only if they are con-
ditioned upon the pointer states $uAk&%:

~rSuCj&
D !25rSuCj&

P 5usk&^sku⇔uCj&5uAj& ; (4.27b)

H~rSuAj&
D !5H~rSuAj&

P !. (4.28b)

This last equation is valid even when the initial states of
the system and of the apparatus are not pure. Thus only
in the pointer basis will the predecoherence strength of
the SA correlation be maintained. In all other bases

Tr~rSuCj&
D !2,TrrSuCj&

D ; uCj&¹$uAj&%, (4.27c)

H~rSuCj&
P !,H~rSuCj&

D !; uCj&¹$uAj&%. (4.28c)

In particular, in the basis $uBj&% conjugate to the pointer
states $uAj&%, Eq. (2.14), there is no correlation left with
the state of the system. That is,

rSuBj&
D 5N21(

k
usk&^sku51/N , (4.29)

where 1 is a unit density matrix. Consequently

~rSuBj&
D !25rSuBj&

/N , (4.27d)

H~rSuBj&
D !5H~rSuBj&

P !2ln N52ln N . (4.28d)

Note that, initially, the conditional density matrices were
also pure in the conjugate (and any other) basis, pro-
vided that the initial state was the pure entangled pro-
jection operator rSA

P 5uCSA&^CSAu, Eq. (4.23).

2. Mutual information and discord

Selective loss of information everywhere except in the
pointer states is the essence of einselection. It is re-
flected in the change of the mutual information which
starts from
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IP~S:A!5H~rS
P!1H~rA

P !2H~rS,A
P !

522(
i

ua iu2 lnua iu2. (4.30a)

As a result of einselection, for initially pure cases, this
decreases to at most, half its initial value:

ID~S:A!5H~rS
D!1H~rA

D!2H~rS,A
D !

52(
i

ua iu2 lnua iu2. (4.30b)

This level is reached when the pointer basis coincides
with the Schmidt basis of uCSA&. The decrease in mutual
information is due to the increase of the joint entropy
H(rS,A):

DI~S:A!5IP~S:A!2ID~S:A!

5H~rS,A
D !2H~rS,A

P !5DH~rS,A!. (4.31)

Classically, an equivalent definition of the mutual infor-
mation obtains from the asymmetric formula

JA~S:A!5H~rS!2H~rSuA!, (4.32)

with the help of the conditional entropy H(rSuA).
Above, the subscript A indicates the member of the cor-
related pair that will be the source of the information
about its partner. A symmetric counterpart of the above
equation, JS(S:A)5H(rA)2H(rAuS), can also be writ-
ten.

In the quantum case, the definition of Eq. (4.32) is so
far incomplete, since a quantum analog of the classical
conditional information has not yet been specified. In-
deed, Eqs. (4.30a) and (4.32) jointly imply that in the
case of entanglement a quantum conditional entropy
H(rSuA) would have to be negative. For in that case,

H~rSuA!5(
i

ua iu2 lnua iu2,0 (4.33)

would be required to allow for I(S:A)5JA(S:A). Vari-
ous quantum redefinitions of I(S:A) or H(rSuA) have
been proposed to address this (Lieb, 1975; Schumacher
and Nielsen, 1996; Cerf and Adami, 1997; Lloyd, 1997).
We shall simply regard this fact as an illustration of the
strength of the quantum correlations (i.e., entangle-
ment) that allow I(S:A) to violate the inequality

I~S:A!<min~HS ,HA!. (4.34)

This inequality follows directly from Eq. (4.32) and the
non-negativity of classical conditional entropy (see, for
example, Cover and Thomas, 1991).

Decoherence decreases I(S:A) to this allowed level
(Zurek, 1983). Moreover, now the conditional entropy
can be defined in the classical pointer basis as the aver-
age of partial entropies computed from the conditional
rSuAi&

D over the probabilities of different outcomes:

H~rSuA!5(
i

p uAi&
H~rSuAi &D !. (4.35)
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Prior to decoherence, the use of probabilities would not
have been legal.

For the case considered here, Eq. (4.18), the condi-
tional entropy H(rSuA)50. In the pointer basis there is a
perfect correlation between the system and the appara-
tus, providing that the premeasurement Schmidt basis
and the pointer basis coincide. Indeed, it is tempting to
define a good apparatus or a classical correlation by in-
sisting on such a coincidence.

The difficulties with conditional entropy and mutual
information are a symptom of the quantum nature of the
problem. The trouble with H(rSuA) arises for states that
exhibit quantum correlations—entanglement of uCSA&
being an extreme example—and thus do not admit an
interpretation based on probabilities. A useful sufficient
condition for the classicality of correlations is then the
existence of an apparatus basis that allows quantum ver-
sions of the two classically identical expressions for the
mutual information to coincide: I(S:A)5JA(S:A)
(Zurek, 2000, 2003a; Ollivier and Zurek, 2002; Vedral,
2003). Equivalently, the discord

dIA~SuA!5I~S:A!2JA~S:A! (4.36)

must vanish. Unless dIA(SuA)50, probabilities for the
distinct apparatus pointer states cannot exist.

We end this subsection with part summary, part antici-
patory remarks. Pointer states retain undiminished cor-
relations with the measured system S, or with any other
system, including observers. The loss of information
caused by decoherence is given by Eq. (4.31). This loss is
precisely such as to lift conditional information from the
paradoxical (negative) values, Eq. (4.33), to the classi-
cally allowed level. This is equal to the information
gained by the observer when he consults the apparatus
pointer. This is no accident—the environment has ‘‘mea-
sured’’ (become correlated with) the apparatus in the
very same pointer basis at which observers have to ac-
cess A to take advantage of the remaining (classical)
correlation between the pointer and the system. Only
when observers and the environment monitor codiago-
nal observables do they not get in each other’s way.

In the idealized case, the preferred basis was distin-
guished by its ability to retain perfect correlations with
the system in spite of decoherence. This remark will
serve as a guide in other situations. It will lead to a
criterion—the predictability sieve—used to identify pre-
ferred states in less idealized circumstances. For ex-
ample, when the self-Hamiltonian of the system is non-
trivial, or when the commutation relation, Eq. (4.22),
does not hold exactly for any observable of S, we shall
seek states that are best in retaining correlations with
the other systems.

C. Decoherence, entanglement, dephasing, and noise

In the symbolic representation of Fig. 4, noise is the
process in which the environment acts as a control, in-
scribing information about its state on the state of the
system, which assumes the role of the target. However,
the direction of the information flow in c-NOT’s and
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c-shifts depends on the choice of initial states. Control
and target switch roles when, for a given interaction
Hamiltonian, one prepares the input of the c-NOT in the
basis conjugate to the logical pointer states. Einselected
states correspond to the set of states that, when used in
c-NOT’s or c-shifts, minimizes the effect of interactions
directed from the environment to the system.

Einselection is caused by the premeasurement carried
out by the environment on the pointer states. Decoher-
ence follows from Heisenberg’s indeterminacy. Pointer
observable is measured by the environment. Therefore
the complementary observable must become at least as
indeterminate as is demanded by Heisenberg’s principle.
As the environment and the systems entangle through
an interaction that favors a set of pointer states, their
phases become indeterminate [see Eq. (4.29) and the
discussion of envariance in Sec. VI]. Decoherence can
be thought of as the resulting loss of phase relations.

Observers can be ignorant of phases for reasons that
do not lead to an imprint of the state of the system on
the environment. Classical noise can cause such dephas-
ing when the observer does not know the time-
dependent classical perturbation Hamiltonian respon-
sible for this unitary, but unknown, evolution. For
example, in the predecoherence state vector, Eq. (4.18),
random-phase noise will cause a transition:

uCSA&5S (
j

a jusj&uAj& D→(
j

a j exp~ if j
~n !!usj&uAj&

5uCSA
~n !&. (4.37)

A dephasing Hamiltonian acting either on the system or
on the apparatus can lead to such an effect. In this sec-
ond case its form could be

Hd
~n !5(

j
ḟ j

~n !~ t !uAj&^Aju. (4.38)

In contrast to interactions causing premeasurements, en-
tanglement, and decoherence, Hd cannot influence the
nature or the degree of the SA correlations. Hd does not
imprint the states of S or A anywhere else in the uni-
verse. For each individual realization n of the phase
noise [each selection of $f j

(n)(t)% in Eq. (4.37)] the state
uFSA

(n)& remains pure. Given only $f j
(n)% one could re-

store the predephasing state on a case-by-case basis.
However, in the absence of such detailed information,
one is often forced to represent SA by the density ma-
trix averaged over the ensemble of noise realizations:

r̄SA5^uCSA&^CSAu&

5(
j

ua ju2usj&^sjuuAj&^Aju

1(
j ,k

(
n

ei@f j
~n !

2fk
~n !

#a jakusj&^skuuAj&^Aku.

(4.39)

In this phase-averaged density matrix off-diagonal terms
will be suppressed and may even completely disappear.
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Nevertheless, each member of the ensemble may exist in
a state as pure as it was before dephasing. Nuclear mag-
netic resonance (NMR) offers examples of dephasing
(which can be reversed using spin echo). Dephasing is a
loss of phase coherence between members of the en-
semble due to differences in the noise in phases each
member experiences. It does not result in an informa-
tion transfer to the environment.

Dephasing cannot be used to justify the existence of a
preferred basis in individual quantum systems. Never-
theless, the ensemble as a whole may obey the same
master equation as do individual systems entangling
with the environment. Indeed, many of the symptoms
exhibited by, e.g., the expectation values for a single de-
cohering system can be reproduced by ensemble aver-
ages in this setting. In spite of the light shed on this issue
by the discussion of simple cases (Wootters and Zurek,
1979; Stern, Aharonov, and Imry, 1989), more remains to
be understood, perhaps by considering the implications
of envariance (see Sec. VI).

Noise is an even more familiar and less subtle effect
represented by transitions that break the one-to-one cor-
respondence in Eq. (4.39). Noise in the apparatus would
cause a random rotation of states uAj& . It could be mod-
eled by a collection of Hamiltonians similar to Hd

(n) but
not codiagonal with the observable of interest. Then,
after an ensemble average similar to Eq. (4.39), the one-
to-one correspondence between S and A would be lost.
However, as before, the evolution is unitary for each n,
and the unperturbed state could be reconstructed from
information the observer could have in advance.

Hence, in the case of dephasing or noise, information
about the cause obtained either in advance, or after-
wards, suffices to undo the effect. Decoherence relies on
entangling interactions [although, strictly speaking, it
need not involve entanglement (Eisert and Plenio,
2002)]. Thus neither prior nor posterior knowledge of
the state of the environment is enough. Transfer of in-
formation about a decohering system to the environ-
ment is essential, and plays a key role in the interpreta-
tion.

We note that, while the nomenclature used here
seems the most sensible to this author and is widely
used, it is unfortunately not universal. For example, in
the context of quantum computation ‘‘decoherence’’ is
sometimes used to describe any process that can cause
errors (but see related discussion in Nielsen and
Chuang, 2000).

D. Predictability sieve and einselection

The evolution of a quantum system prepared in a clas-
sical state should emulate classical evolution that can be
idealized as a ‘‘trajectory’’—a predictable sequence of
objectively existing states. For a purely unitary evolu-
tion, all of the states in the Hilbert space retain their
purity and are therefore equally predictable. However,
in the presence of an interaction with the environment, a
generic superposition representing correlated states of
the system and of the apparatus will decay into a mix-
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ture diagonal in pointer states, Eq. (4.23). Only when
the predecoherence state of SA is a product of a single
apparatus pointer state uAi& with the corresponding out-
come state of the system (or a mixture of such product
states) does decoherence have no effect:

rSA
P 5usi&^siuuAi&^Aiu5rSA

D . (4.40)

A correlation of a pointer state with any state of an
isolated system is untouched by the environment. By the
same token, when the observer prepares A in the
pointer state uAi&, he can count on its remaining pure.
One can even think of usi& as the record of the pointer
state of A. Einselected states are predictable: they pre-
serve correlations and hence are effectively classical.

In the above idealized cases, the predictability of
some states follows directly from the structure of the
relevant Hamiltonians (Zurek, 1981). A correlation with
a subspace associated with a projection operator PA will
be immune to decoherence providing that

@HA1HAE ,PA#50. (4.41)

In more realistic cases it is difficult to demand the exact
conservation guaranteed by such a commutation condi-
tion. Looking for approximate conservation may still be
a good strategy. The various densities used in hydrody-
namics are one obvious choice (see, e.g., Gell-Mann and
Hartle, 1990, 1993).

In general, it is useful to invoke a more fundamental
predictability criterion (Zurek, 1993a). One can measure
the loss of predictability caused by evolution for every
pure state uC& by von Neumann entropy or some other
measure of predictability such as the purity:

§C~ t !5TrrC
2 ~ t !. (4.42)

In either case, predictability is a function of time and a
functional of the initial state as rC(0)5uC&^Cu. Pointer
states are obtained by maximizing the predictability
functional over uC&. When decoherence leads to classi-
cality, good pointer states exist, and the answer is robust.

A predictability sieve sifts all of Hilbert space, order-
ing states according to their predictability. The top of the
list will be the most classical. This point of view allows
for unification of the simple definition of the pointer
states in terms of the commutation relation, Eq. (4.41),
with the more general criteria required to discuss classi-
cality in other situations. The eigenstates of the exact
pointer observable are selected by the sieve. Equation
(4.41) guarantees that they will retain their purity in
spite of the environment and are (somewhat trivially)
predictable.

The predictability sieve can be generalized to situa-
tions where the initial states are mixed (Paraoanu and
Scutera, 1998; Paraoanu, 2002). Often whole subspaces
emerge from the predictability sieve, naturally leading
to decoherence-free subspaces (see, for example, Lidar
et al., 1999) and can be adapted to yield ‘‘noiseless sub-
systems’’ (which are a non-Abelian generalization of
pointer states; see, for example, Knill, Laflamme, and
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Viola, 2000; Zanardi, 2001). However, calculations are in
general quite difficult even for the initial pure-state
cases.

The idea of the sieve selecting candidates for the clas-
sical states is one decade old, but still only partly ex-
plored. We shall see it in action below. We have outlined
two criteria for sifting through the Hilbert space in
search of classicality; von Neumann entropy and purity
define, after all, two distinct functionals. Entropy is ar-
guably an obvious information-theoretic measure of pre-
dictability loss. Purity is much easier to compute. It is
often used as a ‘‘cheap substitute’’ and has a physical
significance of its own. It seems unlikely that pointer
states selected by the predictability and purity sieves
could differ substantially. After all,

2Trr ln r5Trr$~12r!2~12r!2/21¯ , (4.43)

so that one can expect the most predictable states to also
remain the purest (Zurek, 1993a). However, the expan-
sion, Eq. (4.43), is very slowly convergent. Therefore a
more mathematically satisfying treatment of the differ-
ences between the states selected by these two criteria
would be desirable, especially in cases where (as we
shall see in the next section for the harmonic oscillator)
the preferred states are coherent (Zurek, Habib, and
Paz, 1993), and hence the classical domain forms a rela-
tively broad ‘‘mesa’’ in Hilbert space.

The possible discrepancy between the states selected
by sieves based on predictability and those based on pu-
rity raises a more general question. Will all the sensible
criteria yield identical answers? After all, one can imag-
ine other reasonable criteria for classicality, such as the
yet-to-be-explored ‘‘distinguishability sieve’’ of Schuma-
cher (1999), which picks out states whose descendants
are most distinguishable in spite of decoherence. More-
over, as we shall see in Sec. VII (also, Zurek, 2000), one
can ascribe classicality to the states that are most redun-
dantly recorded by the environment. The menu of vari-
ous classicality criteria already contains several posi-
tions, and more may be added in the future. There is no
a priori reason to expect that all of these criteria will
lead to identical sets of preferred states. It is neverthe-
less reasonable to hope that, in the macroscopic limit in
which classicality is indeed expected, differences be-
tween various sieves should be negligible. The same sta-
bility in the selection of the classical domain is expected
with respect to changes of, say, the time of evolution
from the initial pure state. Reasonable changes of such
details within the time interval in which einselection is
expected to be effective should lead to more or less simi-
lar preferred states, and certainly to preferred states
contained within each other’s ‘‘quantum halo’’ (Anglin
and Zurek, 1996). As noted above, this seems to be the
case in the examples explored to date. It remains to be
seen whether all criteria will agree in other situations of
interest.

V. EINSELECTION IN PHASE SPACE

Einselection in phase space is a special, yet very im-
portant, topic. It should lead to phase-space points and
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trajectories and to classical (Newtonian) dynamics. The
special role of position in classical physics can be traced
to the nature of interactions that depend on distance
(Zurek, 1981, 1982, 1991) and therefore commute with
position [see Eq. (4.22)]. Evolution of open systems in-
cludes, however, the flow in phase space induced by the
self-Hamiltonian. Consequently a set of preferred states
turns out to be a compromise, localized in both position
and momentum, localized in phase space.

Einselection is responsible for the classical structure
of phase space. States selected by the predictability sieve
become phase-space ‘‘points,’’ and their time-ordered
sequences turn into trajectories. In underdamped, clas-
sically regular systems one can recover this phase-space
structure along with (almost) reversible evolution. In
chaotic systems there is a price to be paid for classicality:
combination of decoherence with the exponential diver-
gence of classical trajectories (which is the defining fea-
ture of chaos) leads to entropy production at a rate
given—in the classical limit—by the sum of positive
Lyapunov exponents. Thus the second law of thermody-
namics can emerge from the interplay of classical dy-
namics and quantum decoherence, with entropy produc-
tion caused by information ‘‘leaking’’ into the
environment (Zurek and Paz, 1994, 1995a; Zurek,
1998b; Paz and Zurek, 2001).

A. Quantum Brownian motion

The quantum Brownian motion model consists of an
environment E—a collection of harmonic oscillators (co-
ordinates qn , masses mn , frequencies vn , and coupling
constants cn)—interacting with the system S (coordinate
x), with a mass M and a potential V(x). We shall often
consider harmonic V(x)5MV2x2/2 so that the whole
SE is linear and one can obtain an exact solution. This
assumption will be relaxed later.

The Lagrangian of the system-environment entity is

L~x ,qn!5LS~x !1LSE~x ,$qn%!; (5.1)

the system alone has the Lagrangian

LS~x !5
M

2
ẋ22V~x !5

M

2
~ ẋ22V2x2!. (5.2)

The effect of the environment is modeled by the sum of
the Lagrangians of individual oscillators and of the
system-environment interaction terms:

LSE5(
n

mn

2 F q̇n
22vn

2 S qn2
cnx

mnvn
2 D 2G . (5.3)

This Lagrangian takes into account the renormalization
of the potential energy of the Brownian particle. The
interaction depends (linearly) on the position x of the
harmonic oscillator. Hence we expect x to be an instan-
taneous pointer observable. In combination with the
harmonic evolution this leads to Gaussian pointer states,
well localized in both x and p. An important character-
istic of the model is the spectral density of the environ-
ment:
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C~v!5(
n

cn
2

2mnvn
d~v2vn!. (5.4)

The effect of the environment can be expressed
through the propagator J acting on the reduced rS :

rS~x ,x8,t !5E dx0dx08J~x ,x8,tux0 ,x08 ,t0!rS~x0 ,x08 ,t0!.

(5.5)

We focus on the case in which the system and the envi-
ronment are initially statistically independent, so that
their density matrices start from a product state:

rSE5rSrE . (5.6)

This is a restrictive assumption. One can try to justify it
as an idealization of a measurement that correlates S
with the observer and destroys correlations of S with E,
but that is only an approximation, since realistic mea-
surements leave partial correlations with the environ-
ment intact. Fortunately, such preexisting correlations
lead to only minor differences in the salient features of
the subsequent evolution of the system (Anglin, Paz,
and Zurek, 1997; Romero and Paz, 1997).

The evolution of the whole rSE can be represented as

rSE~x ,q ,x8,q8,t !

5E dx0dx08dq0dq08rSE~x0 ,q0 ,x08 ,q08 ,t0!

3K~x ,q ,t ,x0 ,q0!K* ~x8,q8,t ,x08 ,q08!. (5.7)

Above, we suppress the sum over the indices of the in-
dividual environment oscillators. The evolution operator
K(x ,q ,t ,x0 ,q0) can be expressed as a path integral

K~x ,q ,t ,x0 ,q0!5E DxDq expS i

\
I@x ,q# D , (5.8)

where I@x ,q# is the action functional that depends on
the trajectories x and q. The integration must satisfy the
boundary conditions

x~0 !5x0 ; x~ t !5x ; q~0 !5q0 ; q~ t !5q . (5.9)

The expression for the propagator of the density matrix
can now be written in terms of actions corresponding to
the two Lagrangians, Eqs. (5.1)–(5.3):

J~x ,x8,tux0 ,x08 ,t0!

5E DxDx8 expS i

\
~IS@x#2IS@x8# ! D

3E dqdq0dq08rE~q0 ,q08!

3E DqDq8 expS i

h
~ISE@x ,q#2ISE@x8,q8# ! D .

(5.10)

The separability of the initial conditions, Eq. (5.6), was
used to make the propagator depend only on the initial
conditions of the environment. Collecting all terms con-
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taining integrals over E in the above expression leads to
the influence functional (Feynman and Vernon, 1963)

F~x ,x8!5E dqdq0dq08rE~q0 ,q08!

3E DqDq8 expS i

\
~ISE@x ,q#2ISE@x8,q8# ! D .

(5.11)

Influence functional can be evaluated explicitly for
specific models of the initial density matrix of the envi-
ronment. An environment in thermal equilibrium pro-
vides a useful and tractable model for the initial state.
The density matrix of the nth mode of the thermal en-
vironment is

rEn
~q ,q8!5

mnvn

2p\ sinhS \vn

kBT D
3exp2H mnvn

2p\ sinhS \vn

kBT D
3F ~qn

21qn8
2!coshS \vn

kBT D22qnqn8 G J .

(5.12)

The influence functional F can be written as (Grabert,
Schramm, and Ingold, 1988)

i ln F~x ,x8!5E
0

t
ds~x2x8!~s !E

0

s
du@h~s2s8!~x1x8!~s8!

2in~s2s8!~x2x8!~s8!# , (5.13)

where n(s) and h(s) are known as the dissipation and
noise kernels, respectively, and are defined in terms of
the spectral density:

n~s !5E
0

`

dvC~v!coth~\vb/2!cos~vs !; (5.14)

h~s !5E
0

`

dvC~v!sin~vs !. (5.15)

With the assumption of thermal equilibrium at kBT
51/b , and in the harmonic-oscillator case V(x)
5MV2x2/2, the integrand of Eq. (5.10) for the propaga-
tor is Gaussian. The integral can be computed exactly
and should also have a Gaussian form. The result can be
conveniently written in terms of the diagonal and off-
diagonal coordinates of the density matrix in the posi-
tion representation, X5x1x8,Y5x2x8:

J~X ,Y ,tuX0 ,Y0 ,t0!

5
b3

2p

exp@ i~b1XY1b2X0Y2b3XY02b4X0Y0!#

exp~a11Y
212a12YY01a22Y0

2!
.

(5.16)
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The time-dependent coefficients bk and aij are com-
puted from the noise and dissipation kernels, which re-
flect properties of the environment. They obtain from
the solutions of the equation

ü~s !1V2u~s !12E
0

s
dsh~s2s8!u~s8!50, (5.17)

where V is the ‘‘bare frequency’’ of the oscillator. Two
such solutions that satisfy the boundary conditions
u1(0)5u2(t)51 and u1(t)5u2(0)50 can be used for
this purpose. They yield the coefficients of the Gaussian
propagator through

b1~2 !~ t !5u̇2~1 !~ t !/2, b3~4 !~ t !5u̇2~1 !~0 !/2, (5.18a)

aij~ t !5
1

11d ij
E

0

t
dsE

0

t
ds8ui~s !uj~s8!n~s2s8!.

(5.18b)

The master equation can now be obtained by taking
the time derivative of Eq. (5.5), which in effect reduces
to the computation of the derivative of the propagator,
Eq. (5.16), above:

J̇5$ḃ3 /b31iḃ1XY1iḃ2X0Y2iḃ3XY02iḃ4X0Y0

2 ȧ11Y
22 ȧ12YY02 ȧ22Y0

2%J . (5.19)

The time derivative of rS can be obtained by multiplying
the operator on the right-hand side by an initial density
matrix and integrating over the initial coordinates
X0 ,Y0 . Given the form of Eq. (5.19), one may expect
that this procedure will yield an integro-differential
(nonlocal in time) evolution operator for rS . However,
the time dependence of the evolution operator disap-
pears as a result of the two identities satisfied by the
propagator:

Y0J5S b1

b3
Y1

i

b3
]XD J , (5.20a)

X0J5F2
b1

b2
X2

i

b2
]Y2iS 2a11

b2
1

a12b1

b2b3
DY

1
a12

b2b3
]XGJ . (5.20b)

After the appropriate substitutions, the resulting equa-
tion with renormalized Hamiltonian Hren has the form

ṙS~x ,x8,t !52
i

\
^xu@Hren~ t !,rS#ux8&2@g~ t !~x2x8!

3~]x1]x8!2D~ t !~x2x8!2#rS~x ,x8,t !

2if~ t !~x2x8!~]x1]x8!rS~x ,x8,t !.

(5.21)

The calculations leading to this master equation are
nontrivial. They involve the use of relations between the
coefficients bk and aij . The final result leads to explicit
formulae for these coefficients:

Ṽ2~ t !/25b1ḃ2 /b22ḃ1 , (5.22a)
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FIG. 5. Time-dependent coefficients of the
perturbative master equation for quantum
Brownian motion. The parameters used in
these plots (where the time is measured in
units of V21) are g/V50.05, G/V5100,
kBT/\V510, 1, and 0.1. Plots on the right
show the initial portion of the plots on the
left—the initial transient—illustrating its in-
dependence of temperature (although higher
temperatures produce higher final values of
the coefficients). Plots on the right show that
the final values of the coefficients strongly de-
pend on temperature, and that anomalous dif-
fusion is of importance only for very low tem-
peratures.
g~ t !52b12ḃ2/2b2 , (5.23a)

D~ t !5 ȧ1124a11b11 ȧ12b1 /b3

2ḃ2~2a111a12b1 /b3!/b2 , (5.24a)

2f~ t !5 ȧ12 /b32ḃ2a12 /~b2b3!24a11 . (5.25a)

The fact that the exact master equation, Eq. (5.21), is
local in time for an arbitrary spectrum of the environ-
ment is remarkable. This was demonstrated by Hu, Paz,
and Zhang (1992) following discussions carried out un-
der more restrictive assumptions by Caldeira and Leg-
gett (1983); Haake and Reibold (1985); Grabert,
Schramm, and Ingold (1988); and Unruh and Zurek
(1989). It is the linearity of the problem that allows one
to anticipate the (Gaussian) form of the propagator.

The above derivation of the exact master equation
used the method of Paz (1994; see also Paz and Zurek,
2001). Explicit formulas for the time-dependent coeffi-
cients can be obtained when one focuses on the pertur-
bative master equation. The formulas can be derived ab
initio (see Paz and Zurek, 2001) but can also be obtained
from the above results by finding a perturbative solution
to Eq. (5.17) and then substituting it in Eqs. (5.22a)–
(5.25a). The resulting master equation in the operator
form is

ṙS52
i

\
@HS1MṼ~ t !2x2/2,rS#2

ig~ t !

\
@x ,$p ,rS%#

2D~ t !@x ,@x ,rS##2
f~ t !

\
@x ,@p ,rS## . (5.26)

Coefficients such as the frequency renormalization Ṽ,
the relaxation coefficient g(t), and the normal and
anomalous diffusion coefficients D(t) and f(t) are given
by

Ṽ2~ t !52
2
M E

0

t
ds cos~Vs !h~s !, (5.22b)
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g~ t !5
2

MV E
0

t
ds sin~Vs !h~s !, (5.23b)

D~ t !5
1
\ E

0

t
ds cos~Vs !n~s !, (5.24b)

f~ t !52
1

MV E
0

t
ds sin~Vs !h~s !. (5.25b)

These coefficients can be made even more explicit
when a convenient specific model is adopted for the
spectral density:

C~v!52Mg0

v

p

G2

G21v2 . (5.27)

Above, g0 characterizes the strength of the interaction,
and G is the high-frequency cutoff. Then

Ṽ252
2g0G3

G21V2 F12S cos Vt2
V

G
sin Vt D e2GtG ;

(5.22c)

g~ t !5
g0G2

G21V2 F12S cos Vt2
G

V
sin Vt D e2GtG .

(5.23c)

Note that both of these coefficients are initially zero.
They grow to their asymptotic values on a time scale set
by the inverse of the cutoff frequency G.

The two diffusion coefficients can also be studied, but
it is more convenient to evaluate them numerically. In
Fig. 5 we show their behavior. The normal diffusion co-
efficient quickly settles into its long-time asymptotic
value:

D`5Mg0V\21 coth~\Vb/2!G2/~G21V2!. (5.28)

The anomalous diffusion coefficient f(t) also ap-
proaches its asymptotic value. For high temperature it is
suppressed by a cutoff G with respect to D` , but the
approach to f` is more gradual, algebraic rather than
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exponential. Environments with different spectral con-
tent exhibit different behavior (Hu, Paz, and Zhang,
1992; Paz, Habib, and Zurek, 1993; Paz, 1994; Anglin,
Paz, and Zurek, 1997).

B. Decoherence in quantum Brownian motion

The coefficients of the master equation we have just
derived can be computed under a variety of different
assumptions. The two obvious characteristics of the en-
vironment that one can change are its temperature T
and its spectral density C(v). In the case of high tem-
peratures, D(t) tends to a temperature-dependent con-
stant and dominates over f(t). Indeed, in this case all of
the coefficients settle to asymptotic values after an initial
transient. Thus

ṙS52
i

\
@Hren ,rS#2g~x2x8!~]x2]x8!rS

2
2MgkBT

\2 ~x2x8!2rS . (5.29)

This master equation for r(x ,x8) obtains in the unreal-
istic but convenient limit known as the high-temperature
approximation, which is valid when kBT is much higher
than all the other relevant energy scales, including the
energy content of the initial state and the frequency cut-
off in C(v) (see Caldeira and Leggett, 1983). However,
when these restrictive conditions hold, Eq. (5.29) can be
written for an arbitrary V(x). To see why, we give a
derivation patterned on that of Hu, Paz, and Zhang
(1993).

We start with the propagator, Eq. (5.5), rS(x ,x8,t)
5J(x ,x8,tux0 ,x08 ,t0)rS(x0 ,x08 ,t0), which we shall treat
as if it were an equation for a state vector of the two-
dimensional system with coordinates x,x8. The propaga-
tor is then given by the high-temperature version of Eq.
(5.10):

J~x ,x8,tux0 ,x08 ,t0!

5E DxDx8 expS i

\
$IR~x !2IR~x8!% D

3e2Mg~*0
t ds@xẋ2x8ẋ81xẋ82x8ẋ#1@2kBT/\2#@x2x8#2!.

(5.30)

The term in the exponent can be interpreted as the ef-
fective Lagrangian of a two-dimensional system:

Leff~x ,x8!5Mẋ2/22VR~x !2Mẋ82/21VR~x8!

1g~x2x8!~ ẋ1 ẋ8!

1i
2MgkBT

\2 ~x2x8!2. (5.31)

One can readily obtain the corresponding Hamiltonian,

Heff5 ẋ]Leff /] ẋ1 ẋ8]Leff /] ẋ82Leff . (5.32)

Conjugate momenta p5px5Mẋ1g(x2x8) and p8
5px852Mẋ81g(x2x8) are used to express the kinetic
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term of Heff . After evaluating ẋ and ẋ8 in terms of p and
p8 in the expression for Heff one obtains

Heff5@ ṗ2g~x2x8!#2/2M2@p82g~x2x8!#2/2M

1V~x !2V~x8!2i2MgkBT~x82x !2/\2.

(5.33)

This expression yields the operator that generates the
evolution of the density matrix, Eq. (5.29).

The coefficients of Eq. (5.21) approach their high-
temperature values quickly (see Fig. 5). Already for T
well below what the rigorous derivation would demand,
the high-temperature limit appears to be an excellent
approximation. The discrepancy is manifested by symp-
toms such as some of the diagonal terms of rS(x8,x)
assuming negative values when the evolution starts from
an initial state that is so sharply localized in position as
to have kinetic energy in excess of the values allowed by
the high-temperature approximation. However, this is
limited to the initial instant of order 1/G, and is known to
be essentially unphysical for other reasons (Unruh and
Zurek, 1989; Ambegoakar, 1991; Anglin, Paz, and
Zurek, 1997; Romero and Paz, 1997). This short-time
anomaly is closely tied to the fact that Eq. (5.33) (and,
indeed, many of the exact or approximate master equa-
tions derived to date) does not have the Lindblad form
(Kossakowski, 1973; Lindblad, 1976; see also Gorini,
Kossakowski, and Sudarshan, 1976; Alicki and Lendi,
1987) of a dynamical semigroup.

The high-temperature master equation (5.29) is a
good approximation in a wider range of circumstances
than the one for which it was derived (Feynman and
Vernon, 1963; Dekker, 1977; Caldeira and Leggett,
1983). Moreover, our key qualitative conclusion—rapid
decoherence in the macroscopic limit—does not cru-
cially depend on the approximations leading to Eq.
(5.29). We shall therefore use it in our further studies.

1. Decoherence time scale

In the macroscopic limit [that is, when \ is small com-
pared to other quantities with dimensions of action, such
as A2MkBT^(x2x8)2& in the last term] the high-
temperature master equation is dominated by

] trS~x ,x8,t !52gH ~x2x8!

lT
J 2

rS~x ,x8,t !. (5.34)

Above,

lT5
\

A2MkBT
(5.35)

is the thermal de Broglie wavelength. Thus the density
matrix loses off-diagonal terms in position representa-
tion:

rS~x ,x8,t !5rS~x ,x8,0!e2gt~x2x8/lT!2
, (5.36)

while the diagonal (x5x8) remains untouched.
Quantum coherence decays exponentially at a rate

given by the relaxation rate times the square of the dis-
tance, measured in units of thermal de Broglie wave-
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length (Zurek, 1984a). Position is the instantaneous
pointer observable. If Eq. (5.36) was always valid, eigen-
states of position would attain classical status.

The importance of position can be traced to the na-
ture of the interaction Hamiltonian between the system
and the environment. According to Eq. (5.3)

HSE5x(
n

cnqn . (5.37)

This form of HSE is motivated by physics (Zurek, 1982,
1991). Interactions depend on the distance. However,
had we endeavored to find a situation in which a differ-
ent form of the interaction Hamiltonian—say, a
momentum-dependent interaction—was justified, the
form and consequently the predictions of the master
equation would have been analogous to Eq. (5.36), but
with a substitution of the relevant observable monitored
by the environment for x. Such situations may be experi-
mentally accessible (Poyatos, Cirac, and Zoller, 1996),
providing a test of one of the key ideas of einselection:
the relation between the form of interaction and the pre-
ferred basis.

The effect of the evolution, Eqs. (5.34)–(5.36), on the
density matrix in the position representation is easy to
envisage. Consider a superposition of two minimum-
uncertainty Gaussians. Off-diagonal peaks represent co-
herence. They decay on a decoherence time scale tD , or
with a decoherence rate (Zurek, 1984a, 1991)

tD
215gS x2x8

lT
D 2

. (5.38)

The thermal de Broglie wavelength lT is microscopic for
massive bodies and for the environment at reasonable
temperatures. For a mass of 1 g at room temperature
and for the separation x82x51 cm, Eq. (5.38) predicts a
decoherence rate approximately 1040 times faster than
relaxation. Even the cosmic microwave background suf-
fices to cause rapid loss of quantum coherence in objects
as small as dust grains (Joos and Zeh, 1985). These esti-
mates for the rates of decoherence and relaxation
should be taken with a grain of salt. Often the assump-
tions that have led to the simple high-temperature mas-
ter equation, Eq. (5.29), are not valid (Gallis and Flem-
ing, 1990; Gallis, 1992; Anglin, Paz, and Zurek, 1997).
For example, the decoherence rate cannot be faster than
the inverse of the spectral cutoff in Eq. (5.27), nor than
the rate with which the superposition is created. More-
over, for large separations the quadratic dependence of
the decoherence rate may saturate (Gallis and Fleming,
1990; Anglin, Paz, and Zurek, 1997), as seen in the simu-
lated decoherence experiments of Cheng and Raymer
(1999). Nevertheless, in the macroscopic domain deco-
herence of widely delocalized Schrödinger-cat states will
occur very much faster than relaxation, which proceeds
at the rate given by g.

2. Phase-space view of decoherence

A useful alternative way of illustrating decoherence is
afforded by the Wigner function representation
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
W~x ,p !5
1

2p\ E
2`

1`

dye ~ ipy/\!rS x1
y

2
,x2

y

2 D . (5.39)

The evolution equation followed by the Wigner function
obtains through the Wigner transform of the corre-
sponding master equation. In the high-temperature
limit, Eq. (5.29) (valid for general potentials) yields

] tW5$Hren ,W%MB12g]p~pW !1D]ppW . (5.40)

The first term, the Moyal bracket, is the Wigner trans-
form of the von Neumann equation (see Sec. III). In the
linear case it reduces to the Poisson bracket. The second
term is responsible for relaxation. The last diffusive term
is responsible for decoherence.

Diffusion in momentum occurs at the rate set by D
52MgkBT . Its origin can be traced to the continuous
measurement of the position of the system by the envi-
ronment. In accord with Heisenberg indeterminacy,
measurement of the position results in an increase of the
uncertainty in the momentum (see Sec. IV).

Decoherence in phase space can be explained through
the example of a superposition of two Gaussian wave
packets. The Wigner function in this case is given by

W~x ,p !5G~x1x0 ,p !1G~x2x0 ,p !1~p\!21

3exp~2p2j2/\22x2/j2!cos~Dxp/\!,

(5.41)

where

G~x6x0 ,p2p0!5
e2~x7x0!2/j22~p2p0!2j2/\2

p\
. (5.42)

We have assumed that the Gaussians are not moving
(p050).

The oscillatory term in Eq. (5.41) is the signature of
superposition. The frequency of the oscillations is pro-
portional to the distance between the peaks. When the
separation is only in position x, this frequency is

f5Dx/\52x0 /\ . (5.43)

Ridges and valleys of the interference pattern are paral-
lel to the separation between the two peaks. This, and
the fact that \ appears in the interference term in W, is
important for the phase-space derivation of the decoher-
ence time. We focus on the dominant effect and direct
our attention to the last term of Eq. (5.40). Its effect on
a rapidly oscillating interference term will be very differ-
ent from its effect on the two Gaussians. The interfer-
ence term is dominated by the cosine:

Wint;cosS Dx

\
p D . (5.44)

This is an eigenfunction of the diffusion operator. The
decoherence time scale emerges (Zurek, 1991) from the
corresponding eigenvalue

Ẇint'2$DDx2/\2%3Wint . (5.45)

We have recovered the formula for tD , Eq. (5.38), from
a different-looking argument. Equation (5.40) has no ex-
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FIG. 6. Evolution of the Wigner function of a
decohering harmonic oscillator. Note the dif-
ference between the rate at which the inter-
ference term disappears for the initial super-
position of two minimal uncertainty
Gaussians in position and in momentum.
plicit dependence on \ for linear potentials (in the non-
linear case \ enters through the Moyal bracket). Yet the
decoherence time scale contains \ explicitly. \ enters
through Eq. (5.43), that is, through its role in determin-
ing the frequency of the interference pattern Wint .

The evolution of a pure initial state of the type con-
sidered here is shown in Fig. 6. There we illustrate the
evolution of the Wigner function for two initial pure
states: superposition of two positions and superposition
of two momenta. There is a noticeable difference be-
tween these two cases in the rate at which the interfer-
ence term disappears. This was anticipated. The interac-
tion in Eq. (5.3) is a function of x. Therefore x is
monitored by the environment directly, and the superpo-
sition of positions decoheres almost instantly. By
contrast, the superposition of momenta is initially in-
sensitive to monitoring by the environment—the corre-
sponding initial state is already well localized in the ob-
servable singled out by the interaction. However, a su-
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
perposition of momenta leads to a superposition of
positions, and hence to decoherence, albeit on a dynami-
cal (rather than tD) time scale.

An intriguing example of a long-lived superposition of
two seemingly distant Gaussians was pointed out by
Braun, Braun, and Haake (2000) in the context of super-
radiance. As they note, the relevant decohering interac-
tion cannot distinguish between some such superposi-
tions, leading to a Schrödinger-cat pointer subspace.

C. Predictability sieve in phase space

Decoherence rapidly destroys nonlocal superposi-
tions. Obviously, states that survive must be localized.
However, they cannot be localized to a point in x, since
this would imply—by Heisenberg’s indeterminacy—an
infinite range of momenta and hence of velocities. As a
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result, a wave function localized too well at one instant
would become very nonlocal a moment later.

Einselected pointer states minimize the damage done
by decoherence over the time scale of interest (usually
associated with predictability or with dynamics). They
can be found through the application of a predictability
sieve as outlined at the end of Sec. IV. To implement it,
we compute entropy increase or purity loss for all ini-
tially pure states in the Hilbert space of the system un-
der the cumulative evolution caused by the self-
Hamiltonian and by the interaction with the
environment. It would be a tall order to carry out the
requisite calculations for an arbitrary quantum system
interacting with a general environment. We focus on an
exactly solvable case.

In the high-temperature limit the master equations
(5.26) and (5.29) can be expressed in the operator form

ṙ5
1
i\

@Hren ,r#1
g

i\
@$p ,x%,r#2

hkBT

\2 @x ,@x ,r##

2
ig

\
~@x ,rp#2@p ,rx# !. (5.46)

Above, h52Mg is the viscosity. Only the last two terms
can change entropy. Terms of the form

ṙ5@Ô ,r# , (5.47)

where Ô is the Hermitian, leave the purity §5Trr2 and
the von Neumann entropy H52Trr ln r unaffected.
This follows from the cyclic property of the trace:

d

dt
TrrN5 (

k51

N

~Trrk21@Ô ,r#rN2k!50. (5.48)

Constancy of Trr2 is obvious, while for Trr ln r it follows
when the logarithm is expanded in powers of r.

Equation (5.46) leads to the loss of purity at the rate
(Zurek, 1993a)

d

dt
Trr252

4hkBT

\2 Tr@r2x22~rx !2#12gTrr2. (5.49)

The second term increases purity—or decreases
entropy—as the system is damped from an initial highly
mixed state. For the predictability sieve this term is usu-
ally unimportant, since for a vast majority of initially
pure states its effect will be negligible when compared to
the first decoherence-related term. Thus, in the case of
pure initial states,

d

dt
Trr252

4hkBT

\2 ~^x2&2^x&2!. (5.50)

Therefore the instantaneous loss of purity is minimized
for perfectly localized states (Zurek, 1993a). The second
term of Eq. (5.49) allows for equilibrium. Nevertheless,
early on, and for very localized states, its presence
causes an (unphysical) increase of purity to above unity.
This is a well-known artifact of the high-temperature
approximation [see discussion following Eq. (5.33)].

To find the most predictable states relevant for dy-
namics, we consider the increase in entropy over an os-
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
cillation period. For a harmonic oscillator with mass M
and frequency V, one can compute the purity loss aver-
aged over t52p/V:

D§u0
2p/V522D@Dx21Dp2/~MV!2# . (5.51)

Above, Dx and Dp are dispersions of the state at the
initial time. By Heisenberg indeterminacy, DxDp>\/2.
The loss of purity will be smallest when

Dx25\/2MV , Dp25\MV/2. (5.52)

Coherent quantum states are selected by the predictabil-
ity sieve in an underdamped harmonic oscillator (Zurek,
1993a; Zurek, Habib, and Paz, 1993; Tegmark and Sha-
piro, 1994; Gallis, 1996; Wiseman and Vaccaro, 1998;
Paraoanu, 1999, 2002). Rotation induced by the self-
Hamiltonian turns preference for states localized in po-
sition into preference for localization in phase space.
This is illustrated in Fig. 7.

We conclude that for an underdamped harmonic os-
cillator coherent Gaussians are the best quantum theory
has to offer as an approximation to a classical point.
Similar localization in phase space should be obtained in
the reversible classical limit in which the familiar symp-
toms of the openness of the system, such as the finite
relaxation rate g5h/2M , become vanishingly small.
This limit can be attained for large mass M→` , while
the viscosity h remains fixed and sufficiently large to
assure localization (Zurek, 1991, 1993a). This is, of
course, not the only possible situation. Haake and Walls
(1987) discussed the overdamped case, in which pointer
states are still localized, but become relatively narrower
in position. On the other hand, an ‘‘adiabatic’’ environ-
ment with high-frequency cutoff large compared to the
level spacing in the system enforces einselection in en-
ergy eigenstates (Paz and Zurek, 1999).

FIG. 7. Predictability sieve in action. The plot shows purity
Trr2 for mixtures that have evolved from initial minimum-
uncertainty wave packets with different squeeze parameters s
in an underdamped harmonic oscillator with g/v51024. Co-
herent states, which have the same spread in position as in
momentum, s51, are clearly most predictable.
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D. Classical limit in phase space

There are three strategies that allow one to simulta-
neously recover the classical phase-space structure and
the classical equations of motion from quantum dynam-
ics and decoherence.

1. Mathematical approach (\→0)

This mathematical classical limit could not be imple-
mented without decoherence, since the oscillatory terms
associated with interference do not have an analytic
\→0 limit (see, for example, Peres, 1993). However, in
the presence of the environment, the relevant terms in
the master equations increase as O(\22) and make the
nonanalytic manifestations of interference disappear.
Thus phase-space distributions can always be repre-
sented by localized coherent state points, or by distribu-
tions over the basis consisting of such points.

This strategy is easiest to implement starting from the
phase-space formulation. It follows from Eq. (5.45) that
the interference term in Eq. (5.41) will decay (Paz,
Habib, and Zurek, 1993) over the time interval Dt as

Wint;expS 2Dt
DDx2

\2 D cosS Dx

\
p D . (5.53)

As long as Dt is large compared to the decoherence time
scale tD.\2/DDx2, oscillatory contributions to the
Wigner function W(x ,p) should disappear as \→0. Si-
multaneously, Gaussians representing likely locations of
the system become narrower, approaching Dirac d func-
tions in phase space. For instance, in Eq. (5.42),

lim
\→0

G~x2x0 ,p2p0!5d~x2x0 ,p2p0!, (5.54)

providing that half-widths of the coherent states in x and
p decrease to zero as \→0. This would be assured when,
for instance, in Eqs. (5.41) and (5.42),

j2;\ . (5.55)

Thus individual coherent-state Gaussians approach
phase-space points. This behavior indicates that in a
macroscopic open system nothing but probability distri-
butions over localized phase-space points can survive in
the \→0 limit for any time of dynamical or predictive
significance. [Coherence between immediately adjacent
points separated only by ;j, Eq. (5.55), can last longer.
This is no threat to the classical limit. Small-scale coher-
ence is a part of a quantum halo of the classical pointer
states (Anglin and Zurek, 1996).]

The mathematical classical limit implemented by let-
ting \→0 becomes possible in the presence of decoher-
ence. It is tempting to carry this strategy to its logical
conclusion and represent every probability density in
phase space in the point(er) basis of narrowing coherent
states. Such a program is beyond the scope of this re-
view, but the reader should by now be convinced that it
is possible. Indeed, Perelomov (1986) showed that a
general quantum state could be represented in a sparse
basis of coherent states that occupy the sites of a regular
lattice, providing that the volume per coherent state
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
point was no more than (2p\)d in the d-dimensional
configuration space. In the presence of decoherence
arising from a coordinate-dependent interaction, evolu-
tion of a general quantum superposition should be, after
a few decoherence times, well approximated by a prob-
ability distribution over such Gaussian points.

2. Physical approach: The macroscopic limit

The possibility of the \→0 classical limit in the pres-
ence of decoherence is of interest. But \51.054 59
310227 erg s. Therefore a physically more reasonable
approach increases the size of the object, and, hence, its
susceptibility to decoherence. This strategy can be
implemented starting with Eq. (5.40). Reversible dy-
namics obtains as g→0 while D52MgkBT5hkBT in-
creases.

The decrease of g and the simultaneous increase of
hkBT can be anticipated with the increase of the size
and mass. Assume that the density of the object is inde-
pendent of its size R, and that the environment quanta
scatter from its surface (as would photons or air mol-
ecules). Then M;R3 and h;R2. Hence

h;O~R2!→` , (5.56)

g5h/2M;O~1/R !→0, (5.57)

as R→` . Localization in phase space and reversibility
can be simultaneously achieved in a macroscopic limit.

The existence of a macroscopic classical limit in
simple cases was pointed out some time ago (Zurek,
1984a, 1991; Gell-Mann and Hartle, 1993). We shall ana-
lyze it in the next section in a more complicated chaotic
setting, where reversibility can no longer be taken for
granted. In the harmonic-oscillator case, approximate
reversibility is effectively guaranteed, since the action
associated with the 1-s contour of the Gaussian state
increases with time at the rate (Zurek, Habib, and Paz,
1993)

İ5g
kBT

\V
. (5.58)

Action I is a measure of the lack of information about
phase-space location. Hence its rate of increase is a mea-
sure of the rate of predictability loss. The trajectory is a
limit of the ‘‘tube’’ swept through phase space by the
moving contour representing the instantaneous uncer-
tainty of the observer about the state of the system. Evo-
lution is approximately deterministic when the area of
this contour is nearly constant. In accord with Eqs.
(5.56) and (5.57) İ tends to zero in the reversible mac-
roscopic limit:

İ;O~1/R !. (5.59)

The existence of an approximately reversible trajectory-
like thin tube provides an assurance that, having local-
ized the system within a regular phase-space volume at
t50, we can expect to find it later inside the Liouville-
transported contour of nearly the same measure. Similar
conclusions follow for integrable systems.
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3. Ignorance inspires confidence in classicality

Dynamical reversibility can be achieved with einselec-
tion in the macroscopic limit. Moreover, İ/I or other
measures of predictability loss decrease with the in-
crease of I. This is especially dramatic when quantified
in terms of the von Neumann entropy, that, for Gaussian
states, increases at the rate (Zurek, Habib, and Paz,
1993)

Ḣ5 İ ln
I11
I21

. (5.60a)

The resulting Ḣ is infinite for pure coherent states (I
51), but quickly decreases with increasing I. Similarly,
the rate of purity loss for Gaussians is

§̇5 İ/I2. (5.60b)

Again, it tapers off for more mixed states.
This behavior is reassuring. It leads us to conclude

that irreversibility quantified through, say, von Neumann
entropy production, Eq. (5.60a), will approach Ḣ
'2 İ/I , vanishing in the limit of large I. When, in the
spirit of the macroscopic limit, we do not insist on the
maximal resolution allowed by quantum indeterminacy,
the subsequent predictability losses measured by the in-
crease of entropy or through the loss of purity will di-
minish. Illusions of reversibility, determinism, and exact
classical predictability become easier to maintain in the
presence of ignorance about the initial state!

To think about phase-space points one may not even
need to invoke a specific quantum state. Rather, a point
can be regarded as the limit of an abstract recursive pro-
cedure in which the phase-space coordinates of the sys-
tem are determined better and better in a succession of
increasingly accurate measurements. One may be
tempted to extrapolate this limiting process ad infinit-
essimum, which would lead beyond Heisenberg’s inde-
terminacy principle and to a false conclusion that ideal-
ized points and trajectories exist objectively, and that the
insider view of Sec. II can always be justified. While in
our quantum universe this conclusion is wrong, and the
extrapolation described above illegal, the presence,
within Hilbert space, of localized wave packets near the
minimum-uncertainty end of such imagined sequences
of measurements is reassuring. Ultimately, the ability to
represent motion in terms of points and their time-
ordered sequences (trajectories) is the essence of classi-
cal mechanics.

E. Decoherence, chaos, and the second law

The breakdown of correspondence in this chaotic set-
ting was described in Sec. III. It is anticipated to occur in
all nonlinear systems, since stretching of the wave
packet by the dynamics is a generic feature, absent only
from a harmonic oscillator. However, the exponential in-
stability of chaotic dynamics implies rapid loss of
quantum-classical correspondence after the Ehrenfest
time, t\5L21 ln xDp/\. Here L is the Lyapunov expo-
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nent, while x5AVx /Vxxx characterizes the dominant
scale of nonlinearities in the potential V(x), and Dp
gives the coherence scale in the initial wave packet. The
above estimate, Eq. (3.5), depends on the initial condi-
tions. It is smaller than, but typically close to, tr
5L21 ln I/\, Eq. (3.6), where I is the characteristic ac-
tion of the system. By contrast, phase-space patches of
regular systems undergo stretching with a power of time.
Consequently, loss of correspondence occurs only over a
much longer tr;(I/\)a, which depends polynomially on
\.

1. Restoration of correspondence

Exponential instability spreads the wave packet to a
paradoxical extent at the rate given by the positive
Lyapunov exponents L1

(i) . Einselection attempts to en-
force localization in phase space by tapering off interfer-
ence terms at a rate given by the inverse of the decoher-
ence time scale, tD5g21(lT /Dx)2. The two processes
reach status quo when the coherence length ,c of the
wave packet makes their rates comparable, that is,

tDL1.1. (5.61)

This yields an equation for the steady-state coherence
length and for the corresponding momentum dispersion:

,c.lTAL1/2g ; (5.62)

sc5\/,c5A2D/L1. (5.63)

Above, we have quoted results (Zurek and Paz, 1994)
that follow from a more rigorous derivation of the co-
herence length ,c than the rough and ready approach
that led to Eq. (5.61). They embody the same physical
argument, but seek asymptotic behavior of the Wigner
function that evolves according to the equation

Ẇ5$H ,W%1 (
n>1

\2n~2 !n

22n~2n11 !!
]x

2n11V]p
2n11W

1D]p
2W . (5.64)

The classical Liouville evolution generated by the Pois-
son bracket ceases to be a good approximation of the
decohering quantum evolution when the leading quan-
tum correction becomes comparable to the classical
force:

\2

24
VxxxWppp'

\2

24
Vx

x2

Wp

sc
2 . (5.65)

The term VxWp represents the classical force in the
Poisson bracket. Quantum corrections are small when

scx@\ . (5.66)

Equivalently, the Moyal bracket generates approxi-
mately Liouville flow when the coherence length satis-
fies

,c!x . (5.67)

This last inequality has an obvious interpretation: it is a
condition for localization to within a region ,c that is
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FIG. 8. Snapshots of a chaotic system with a double-well potential: H5p2/2m1Ax42Bx21Cx cos(ft). In the example discussed
here m51, A50.5, B510, f56.07 and C510, yielding the Lyapunov exponent L'0.45 (see Habib, Shizume, and Zurek, 1998).
All figures were obtained after approximately eight periods of the driving force. The evolution started from the same minimum-
uncertainty Gaussian and proceeded according to (a) the quantum Moyal bracket, (b) the Poisson bracket, and (c) the Moyal
bracket with decoherence [constant D50.025 in Eq. (5.64)]. In the quantum cases \50.1, which corresponds to the area of the
rectangle in the image of the Wigner function above. Interference fringes are clearly visible in (a), and the Wigner function shown
there is only vaguely reminiscent of the classical probability distribution in (b). Even modest decoherence @D50.25 used to get (c)
corresponds to coherence length ,c50.3] dramatically improves the correspondence between the quantum and the classical. The
remaining interference fringes appear on relatively large scales, which implies small-scale quantum coherence (Color).
small compared to the scale x of the nonlinearities of the
potential. When this condition holds, classical force will
dominate over quantum corrections.

Restoration of correspondence is illustrated in Fig. 8
where Wigner functions are compared with classical
probability distributions in a chaotic system. The differ-
ence between the classical and quantum expectation val-
ues in the same chaotic system is shown in Fig. 9. Even
relatively weak decoherence suppresses the discrepancy,
helping reestablish the correspondence: D50.025 trans-
lates through Eq. (5.62) into coherence over ,c.0.3, not
much smaller than the nonlinearity scale x.1 for the
investigated Hamiltonian of Fig. 8.

2. Entropy production

Irreversibility is the price for the restoration of
quantum-classical correspondence in chaotic dynamics.
It can be quantified through the entropy production
rate. The simplest argument recognizes that decoher-
ence restricts spatial coherence to ,c . Consequently, as
the exponential instability stretches the size L(i) of the
distribution in directions corresponding to the positive
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
Lyapunov exponents L1
(i) , with L(i);exp@L1

(i)t#, the
squeezing mandated by the Liouville theorem in the
complementary directions corresponding to L2

(i) will halt
at sc

(i) , Eq. (5.63). In this limit, the number of pure
states needed to represent the resulting mixture in-
creases exponentially:

N ~ i !.L ~ i !/,c
~ i ! (5.68)

in each dimension. The least number of pure states over-
lapped by W will then be N5P iN

(i). This implies

Ḣ.] t ln N.(
i

L1
~ i ! . (5.69)

This estimate for the entropy production rate be-
comes accurate as the width of the Wigner function
reaches saturation at sc

(i) . When a patch in phase space
corresponding to the initial W is regular and smooth on
scales large compared to sc

(i) , evolution will start nearly
reversibly (Zurek and Paz, 1994). However, as squeezing
brings the extent of the effective support of W close to
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FIG. 8. (Continued.)
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
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sc
(i) , diffusion bounds from below the size of the small-

est features of W. Stretching in the unstable directions
continues unabated. As a consequence, the volume of
the support of W will grow exponentially, resulting in an
entropy production rate set by Eq. (5.69), that is, by the
sum of the classical Lyapunov exponents. Yet, it has an
obviously quantum origin in decoherence. This quantum
origin may be apparent initially, since the rate of Eq.
(5.69) will be approached from above when the initial
state is nonlocal. On the other hand, in a multidimen-
sional system different Lyapunov exponents may begin
to contribute to entropy production at different instants
[since the saturation condition, Eq. (5.61), may not be
met simultaneously for all L1

(i)]. Then the entropy pro-
duction rate can accelerate, before subsiding as a conse-
quence of approaching equilibrium.

The time scales on which this estimate of entropy pro-
duction applies are still subject to investigation (Zurek
and Paz, 1995a; Zurek, 1998b; Monteoliva and Paz,
2000) and even controversy (Casati and Chirikov, 1995b;
Zurek and Paz, 1995b). The instant when Eq. (5.69) be-
comes a good approximation corresponds to the mo-
ment when the exponentially unstable evolution forces
the Wigner function to develop small phase-space struc-
tures on the scale of the effective decoherence-imposed
coarse graining, Eq. (5.63). Equation (5.69) will be a
good approximation until the time tEQ at which equilib-
rium sets in. Both t\ and tEQ have a logarithmic depen-
dence on the corresponding (initial and equilibrium)
phase-space volumes I0 and IEQ , so the validity of Eq.
(5.69) will be limited to tEQ2t\.L21 ln IEQ /I0 .

There is a simple and conceptually appealing way to
extend the interval over which entropy is produced at
the rate given by Eq. (5.69). Imagine an observer moni-

FIG. 9. Classical and quantum expectation values of position
^x& as a function of time for an example of Fig. 8. Evolution
started from a minimum-uncertainty Gaussian. Noticeable dis-
crepancies between the quantum and classical averages appear
on a time scale consistent with the Ehrenfest time t\ . Deco-
herence, even in modest doses, dramatically decreases differ-
ences between the expectation values (Color).
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toring a decohering chaotic system, recording its state at
time intervals small compared to L21, but large com-
pared to the decoherence time scale. One can show
(Zurek, 1998b) that the average increase in the size of
the algorithmically compressed records of measurement
of a decohering chaotic system (that is, the algorithmic
randomness of the acquired data; see, for example,
Cover and Thomas, 1991) is given by Eq. (5.69). This
conclusion holds, providing that the effect of the col-
lapses of the wave packet caused by the repeated mea-
surements is negligible, i.e., the observer is ‘‘skillful.’’ A
possible strategy that the skillful observer may adopt is
that of indirect measurements, of monitoring a fraction
of the environment responsible for decoherence to de-
termine the state of the system. As we shall see in more
detail in the following sections of the paper, this is a very
natural strategy, often employed by observers.

A classical analog of Eq. (5.69) was obtained by Kol-
mogorov (1960) and Sinai (1960) starting from very dif-
ferent, mathematical arguments that in effect relied on
an arbitrary but fixed coarse graining imposed on phase
space (see Wehrl, 1978). Decoherence leads to a similar-
looking quantum result in a very different fashion: Ef-
fective ‘‘coarse graining’’ is imposed by coupling to the
environment, but only in the sense implied by einselec-
tion. Its graininess (resolution) is set by the accuracy of
the monitoring environment. This is especially obvious
when the indirect monitoring strategy mentioned imme-
diately above is adopted by the observers. Preferred
states will be partly localized in x and p, but (in contrast
to the harmonic-oscillator case with its coherent states)
details of this environment-imposed coarse graining will
likely depend on phase-space location, the precise na-
ture of the coupling to the environment, etc. Yet, in the
appropriate limit, Eqs. (5.66) and (5.67), the asymptotic
entropy production rate defined with the help of the al-
gorithmic contribution discussed above [i.e., in the man-
ner of physical entropy, that is, the sum of the measure
of ignorance given by the von Newmann entropy and
the algorithmic randomness of the records, Zurek
(1989)] does not depend on the strength or nature of the
coupling, but is instead given by the sum of the positive
Lyapunov exponents.

von Neumann entropy production consistent with the
above discussion has now been seen in numerical studies
of decohering chaotic systems (Shiokawa and Hu, 1995;
Furuya, Nemes, and Pellegrino, 1998; Schack, 1998;
Miller and Sarkar, 1999; Monteoliva and Paz, 2000). Ex-
tensions to situations in which relaxation matters, as well
as in the opposite direction to where decoherence is
relatively gentle have also been discussed (Brun, Per-
cival, and Schack, 1996; Miller, Sarkar, and Zarum, 1998;
Pattanayak, 2000). A related development is the experi-
mental study of the Loschmidt echo using NMR tech-
niques (Levstein, Usaj, and Pastawski, 1998; Levstein
et al., 2000; Jalabert and Pastawski, 2001), which sheds
new light on the irreversibility in decohering complex
dynamical systems. We shall return briefly to this subject
in Sec. VIII.
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3. Quantum predictability horizon

The cross section I of the trajectorylike tube contain-
ing the state of the harmonic oscillator in phase space
increases only slowly, Eq. (5.58), at a rate which—once
the limiting Gaussian is reached—does not depend on I.
By contrast, in chaotic quantum systems this rate is

İ.I(
i

L1
~ i ! . (5.70)

A fixed rate of entropy production implies an exponen-
tial increase of the cross section of the tube of, say, the
1-s contour containing points consistent with the initial
conditions. Phase-space support expands exponentially.

This quantum view of chaotic evolution can be com-
pared with the classical deterministic chaos. In both
cases, in the appropriate classical limit, which may in-
volve either mathematical \→0, or a macroscopic limit,
the future state of the system can, in principle, be pre-
dicted to a set accuracy for an arbitrarily long time.
However, such predictability can be accomplished only
when the initial conditions are given with the resolution
that increases exponentially with the time interval over
which the predictions are to be valid. Given the fixed
value of \, there is therefore a quantum predictability
horizon after which the Wigner function of the system
starting from an initial minimum-uncertainty Gaussian
becomes stretched to a size of the order of the charac-
teristic dimensions of the system (Zurek, 1998b). The
ability to predict the location of the system in phase
space is then lost after t;t\ , Eq. (3.5), regardless of
whether evolution is generated by the Poisson or Moyal
bracket or, indeed, whether the system is closed or open.

The case of regular systems is closer to that of a har-
monic oscillator. The rate at which the cross section of
the phase-space trajectory tube increases, consistent
with the initial patch in phase space, will asymptote to
İ.const.

Ḣ5 İ/I;1/t . (5.71)

Thus initial conditions allow one to predict the future of
a regular system for time intervals that are exponentially
longer than those in the chaotic case. The rate of en-
tropy production of an open quantum system is there-
fore a very good indicator of its dynamics, as was con-
jectured some time ago (Zurek and Paz, 1995a), and as
seems borne out in the numerical simulations (Shiokawa
and Hu, 1995; Miller, Sarkar, and Zarum, 1998; Miller
and Sarkar, 1999; Monteoliva and Paz, 2000).

VI. EINSELECTION AND MEASUREMENTS

It is often said that quantum states play only an epis-
temological role, describing the observer’s knowledge
about past measurement outcomes that have prepared
the system (Jammer, 1974; d’Espagnat, 1976, 1995; Fuchs
and Peres, 2000). In particular—and this is a key argu-
ment against their objective existence (against their on-
tological status)—it is impossible to determine what the
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
state of an isolated quantum system is without prior in-
formation about the observables used to prepare it.
Measurements of observables that do not commute with
this original set will inevitably create a different state.

The continuous monitoring of the einselected observ-
ables by the environment allows pointer states to exist in
much the same way as do classical states. This ontologi-
cal role of the einselected quantum states can be justi-
fied operationally, by showing that in the presence of
einselection one can find out what the quantum state is,
without inevitably re-preparing it by the measurement.
Thus einselected quantum states are no longer just epis-
temological. In a system monitored by the environment,
what is the einselected states coincides with what is
known to be—what is recorded by the environment
(Zurek, 1993a, 1993b, 1998a).

The conflict between the quantum and the classical
was originally noted and discussed almost exclusively in
the context of quantum measurements.5 Here I shall
consider measurements, and, more to the point, acquisi-
tion of information in quantum theory from the point of
view of decoherence and einselection.

A. Objective existence of einselected states

To demonstrate the objective existence of einselected
states we now develop an operational definition of exis-
tence and show how, in an open system, one can find out
what the state was and is, rather than just prepare it.
This point has been made before (Zurek, 1993a, 1998a),
but this is the first time I shall discuss it in more detail.

The objective existence of states can be defined op-
erationally by considering two observers. The first of
them is the record keeper R. He prepares the states with
the original measurement and will use his records to de-
termine if they were disturbed by measurements carried
out by other observers, e.g., the spy S. The goal of S is to
discover the state of the system without perturbing it.
When an observer can consistently determine the state
of a system without changing it, that state, by our opera-
tional definition, will be said to exist objectively.

In the absence of einselection the situation of S is
hopeless: R prepares states by measuring sets of com-
muting observables. Unless S picks, by sheer luck, the
same observables in the case of each state, his measure-
ments will re-prepare the states of the system. Thus,
when R remeasures using the original observables, he
will likely find answers different from his records of pre-
paratory measurements. The spy S will ‘‘get caught’’ be-
cause it is impossible to find out an initially unknown
state of an isolated quantum system.

5See, for example, Bohr, 1928; Mott, 1929; von Neumann,
1932; Dirac, 1947; Zeh, 1971, 1973, 1993; d’Espagnat, 1976,
1995; Zurek, 1981, 1982, 1983, 1991, 1993a 1993b, 1998a;
Omnès, 1992, 1994; Elby, 1993, 1998; Donald, 1995; Butterfield,
1996; Giulini et al., 1996; Bub, 1997; Bacciagaluppi and
Hemmo, 1998; Healey, 1998; Healey and Hellman, 1998; Saun-
ders, 1998.
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In the presence of environmental monitoring the na-
ture of the game between R and S is dramatically al-
tered. Now it is no longer possible for R to prepare an
arbitrary pure state that will persist or predictably
evolve without losing purity. Only einselected states that
are already monitored by the environment, that are se-
lected by the predictability sieve, will survive. By the
same token, S is no longer clueless about the observ-
ables he can measure without leaving incriminating evi-
dence. For example, he can independently prepare and
test the survival of various states in the same environ-
ment to establish which states are einselected, and then
measure appropriate pointer observables. Better yet, S
can forgo direct measurements of the system and gather
information indirectly, by monitoring the environment.

This last strategy may seem contrived, but indirect
measurements—acquisition of information about the
system by examining fragments of the environment that
have interacted with it—is in fact more or less the only
strategy employed by observers. Our eyes, for example,
intercept only a small fraction of the photons that scatter
from various objects. The rest of the photons constitute
the environment, which retains at least as complete a
record of the same einselected observables as we can
obtain (Zurek, 1993a, 1998a).

The environment E acts as a persistent observer, domi-
nating the game with frequent questions, always about
the same observables, compelling both R and S to focus
on the einselected states. Moreover, E can be persuaded
to share its records of the system. This accessibility of
the einselected states is not a violation of the basic te-
nets of quantum physics. Rather, it is a consequence of
the fact that the data required to turn a quantum state
into an ontological entity, an einselected pointer state,
are abundantly supplied by the environment.

We emphasize the operational nature of this criterion
for existence. There may, in principle, be a pure state of
the universe including the environment, the observer,
and the measured system. While this may matter to
some (Zeh, 2000), real observers are forced to perceive
the universe the way we do: We are a part of the uni-
verse, observing it from within. Hence, for us,
environment-induced superselection specifies what exists.

Predictability emerges as a key criterion of existence.
The only states R can rely on to store information are
the pointer states. They are also the obvious choice for S
to measure. Such measurements can be accomplished
without danger of re-preparation. Einselected states are
insensitive to measurement of the pointer observables—
they have already been measured by the environment.
Therefore additional projections Pi onto the einselected
basis will not perturb the density matrix (Zurek, 1993a);
it will be the same before and after the measurement:

rafter
D 5(

i
Pirbefore

D Pi . (6.1)

Correlations with the einselected states will be left intact
(Zurek, 1981, 1982).

Superselection for the observable Â5( il iPi with es-
sentially arbitrary nondegenerate eigenvalues l i and
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eigenspaces Pi can be expressed (Bogolubov et al., 1990)
through Eq. (6.1). Einselection attains this, guaranteeing
the diagonality of density matrices in the projectors Pi
corresponding to pointer states. These are sometimes
called decoherence-free subspaces when they are degen-
erate (compare also the non-Abelian case of noiseless
subsystems discussed in quantum computation; see Za-
nardi and Rasetti, 1997; Duan and Guo, 1998; Zanardi,
1998, 2001; Lidar, Bacon, and Whaley, 1999; Blanchard
and Olkiewicz, 2000; Knill, Laflamme, and Viola, 2000).

B. Measurements and memories

The memory of a measuring device or of an observer
can be modeled as an open quantum apparatus A, inter-
acting with S through a Hamiltonian explicitly propor-
tional to the measured observable6 ŝ :

Hint52gŝB̂; ŝ
]

]Â
. (6.2)

von Neumann (1932) considered an apparatus isolated
from the environment. At the instant of the interaction
between the apparatus and the measured system this is a
convenient assumption. For us it suffices to assume that,
at that instant, the interaction Hamiltonian between the
system and the apparatus dominates. This can be accom-
plished by taking the coupling g in Eq. (6.2) to be g(t)
;d(t2t0). Premeasurement happens at t0 :

S (
i

a iusi& D uA0&→(
i

a iusi&uAi& . (6.3)

In practice the action is usually large enough to accom-
plish amplification. As we have seen in Sec. II, all this
can be done without an appeal to the environment.

For a real apparatus, interaction with the environment
is inevitable. Idealized effectively classical memory will
retain correlations, but will be subject to einselection.
Only the einselected memory states (rather than their
superpositions) will be useful for (or, for that matter,
accessible to) the observer. The decoherence time scale
is very short compared to the time after which memory
states are typically consulted (i.e., copied or used in in-
formation processing), which is in turn much shorter
than the relaxation time scale, on which memory ‘‘for-
gets.’’

Decoherence leads to classical correlation,

6The observable ŝ of the system and B̂ of the apparatus
memory need not be discrete with a simple spectrum as was
previously assumed. Even when ŝ has a complicated spectrum,
the outcome of the measurement can be recorded in the eigen-
states of the memory observable Â , the conjugate of B̂ , Eq.
(2.21). For the case of discrete ŝ the necessary calculations that
attain premeasurement—the quantum correlation that is the
first step in the creation of the record—were already carried
out in Sec. II. For the other situations they are quite similar. In
either case, they follow the general outline of von Neumann’s
(1932) discussion.
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rSA
P 5(

i ,j
a ia j* usi&^sjuuAi&^Aju

→(
i

ua iu2usi&^siuuAi&^Aiu5rSA
D , (6.4)

following an entangling premeasurement. The left-hand
side of Eq. (6.4) coincides with Eq. (2.44c), the outsider’s
view of the classical measurement. We shall see how and
to what extent its other aspects, including the insider’s
Eq. (2.44a) and the discoverer’s Eq. (2.44b), can be un-
derstood through einselection.

C. Axioms of quantum measurement theory

Our goal is to establish whether the above model can
fulfill the requirements expected from measurement in
textbooks (which are, essentially without exception,
written in the spirit of the Copenhagen interpretation).
There are several equivalent textbook formulations of
the axioms of quantum theory. We shall (approximately)
follow Farhi, Goldstone, and Gutmann (1989) and posit
them as follows:

(i) The states of a quantum system S are associated
with the vectors uc&, which are the elements of
the Hilbert space HS that describes S.

(ii) The states evolve according to i\uċ&5Huc&,
where H is Hermitian.

(iii a) Every observable O is associated with a Hermit-
ian operator Ô .

(iii b) The only possible outcome of a measurement of
O is an eigenvalue oi of Ô .

(iv) Immediately after a measurement that yields the
value oi the system is in the eigenstate uoi& of Ô .

(v) If the system is in a normalized state uc&, then a
measurement of Ô will yield the value oi with the
probability pi5u^oiuc&u2.

The first two axioms make no reference to measure-
ments. They state the formalism of the theory. Axioms
(iii)–(v) are, on the other hand, at the heart of the
present discussion. In spirit, they go back to Bohr and
Born. In letter, they follow von Neumann (1932) and
Dirac (1947). The two key issues are the projection pos-
tulate, implied by a combination of (iv) with (iii b), and
the probability interpretation, axiom (v).

To establish (iii b), (iv), and (v) we shall interpret in
operational terms statements such as ‘‘the system is in
the eigenstate’’ and ‘‘measurement will yield value
. . . with the probability . . . ’’ by specifying what these

statements mean for the sequences of records made and
maintained by an idealized, but physical memory.

We note that the above Copenhagen-like axioms pre-
sume the existence of quantum systems and of classical
measuring devices. This (unstated) axiom (ø) comple-
ments axioms (i)–(v). Our version of axiom (ø) posits
that the universe consist of quantum systems, and asserts
that a composite system can be described by a tensor
product of the Hilbert spaces of the constituent systems.
Some quantum systems can be measured, and others can
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
be used as measuring devices and/or memories and as
quantum environments that interact with either or both.

Axioms (iii)–(v) contain many idealizations. For in-
stance, in real life or in laboratory practice measure-
ments have errors (and hence can yield outcomes other
than the eigenvalues oi). Moreover, only rarely do they
prepare the system in the eigenstate of the observable
they are designed to measure. Furthermore, coherent
states—often an outcome of measurements, e.g., in
quantum optics—form an overcomplete basis. Thus
their detection does not correspond to a measurement
of a Hermitian observable. Last but not least, the mea-
sured quantity may be inferred from some other quan-
tity (e.g., beam deflection in the Stern-Gerlach experi-
ment). Yet, we shall not go beyond the idealizations of
(i)–(v) above. Our goal is to describe measurements in a
quantum theory without collapse, to use axioms (ø), (i),
and (ii) to understand the origin of the other axioms.
Nonideal measurements are a fact of life incidental to
this goal.

1. Observables are Hermitian—axiom (iii a)

In the model of measurement considered here the ob-
servables are Hermitian as a consequence of an assumed
premeasurement interaction, e.g., Eq. (2.24). In particu-
lar, Hint is a product of the to-be-measured observable
of the system and of the ‘‘shift operator’’ in the pointer
of the apparatus or in the record state of the memory.
Interactions involving non-Hermitian operators (e.g.,
Hint;a†b1ab†) may, however, also be considered.

It is tempting to speculate that one could dispose of
the observables [and hence of the postulate (iii a)] alto-
gether in the formulation of the axioms of quantum
theory. The only ingredients necessary to describe mea-
surements are then the effectively classical, but ulti-
mately quantum, apparatus and the measured system.
Observables emerge as a derived concept, as a useful
idealization, ultimately based on the structure of the
Hamiltonians. Their utility relies on the conservation
laws, which relate the outcomes of several measure-
ments. The most basic of these laws states that the sys-
tem that did not (have time to) evolve will be found in
the same state when it is remeasured. This is the content
of axiom (iv). Other conservation laws are also reflected
in the patterns of correlation in the measurement
records, which must in turn arise from the underlying
symmetries of the Hamiltonians.

Einselection should be included in this program, as it
decides which observables are accessible and useful—
which are effectively classical. It is conceivable that the
fundamental superselection may also emerge in this
manner (see Zeh, 1970 and Zurek, 1982, for early specu-
lations; see Giulini, Kiefer, and Zeh, 1995; Kiefer, 1996,
and Giulini, 2000, for the present status of this idea).

2. Eigenvalues as outcomes—axiom (iii b)

This axiom is the first part of the collapse postulate.
Given einselection, axiom (iii b) is easy to justify: we
need to show that only the records inscribed in the ein-
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selected states of the apparatus pointer can be read off,
and that, in a well-designed measurement, they correlate
with the eigenstates (and therefore, eigenvalues) of the
measured observable ŝ .

With Dirac (1947) and von Neumann (1932) we as-
sume that the apparatus is built so that it satisfies the
obvious truth table when the eigenstates of the mea-
sured observable are at the input:

usi&uA0&→usi&uAi&. (6.5)

To assure this one can implement the interaction in ac-
cord with Eq. (6.2) and the relevant discussion in Sec. II.
This is not to say that there are no other ways: Aha-
ronov, Anandan, and Vaidman (1993); Braginski and
Khalili (1996); and Unruh (1994) have all considered
‘‘adiabatic measurements’’ that correlate the apparatus
with the discrete energy eigenstates of the measured sys-
tem, nearly independently of the structure of Hint .

The truth table of Eq. (6.5) does not require collapse;
for any initial usi& it represents a classical measurement
in quantum notation in the sense of Sec. II. However,
Eq. (6.5) typically leads to a superposition of outcomes.
This is the ‘‘measurement problem.’’ To address it, we
assume that the record states $uAi&% are einselected. This
has two related consequences: (i) Following the mea-
surement, the joint density matrix of the system and the
apparatus decoheres, Eq. (6.3), so that it satisfies the
superselection condition, Eq. (6.1), for Pi5uAi&^Aiu. (ii)
Einselection restricts states that can be read off as if
they were classical to pointer states.

Indeed, following decoherence only the pointer states
$uAi&% of the memory can be measured without dimin-
ishing the correlation with the states of the system.
Without decoherence, as we have seen in Sec. II, one
could use the entanglement between S and A to end up
with almost arbitrary superposition states of either and
hence to violate the letter and the spirit of axiom (iii b).

Outcomes are restricted to the eigenvalues of mea-
sured observables because of einselection. Axiom (iii b)
is then a consequence of the effective classicality of the
pointer states, the only ones that can be found out with-
out being disturbed. They can be consulted repeatedly
and remain unaffected under the joint scrutiny of the
observers and of the environment (Zurek, 1981, 1993a,
1998a).

3. Immediate repeatability, axiom (iv)

This axiom supplies the second half of the collapse
postulate. It asserts that in the absence of (the time for)
evolution the quantum system will remain in the same
state, and its remeasurement will lead to the same out-
come. Hence, once the system is found out to be in a
certain state, it really is there. As in Eq. (2.44b) the
observer perceives potential options collapse to a single
actual outcome. [The association of axiom (iv) with the
collapse advocated here seems obvious, but it is not
common. Rather, some form of our axiom (iii b) is usu-
ally regarded as the sole collapse postulate.]
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Immediate repeatability for Hermitian observables
with discrete spectra is straightforward to justify on the
basis of the Schrödinger evolution generated by Hint of
Eq. (6.2) alone, although its implications depend on
whether the premeasurement is followed by einselec-
tion. Everett (1957a, 1957b) used the ‘‘no-decoherence’’
version as a foundation of his relative-state interpreta-
tion. On the other hand, without decoherence and ein-
selection one could postpone the choice of what was
actually recorded by taking advantage of the entangle-
ment between the system and the apparatus and the re-
sulting basis ambiguity, as is evident on the right-hand
side of Eq. (6.3). For instance, a measurement carried
out on the apparatus in a basis different from $uAi&%
would also exhibit a one-to-one correlation with the sys-
tem: ( ia iusi&uAi&5(kbkurk&uBk&. This flexibility to re-
write wave functions in different bases comes at the
price of relaxing the demand that the outcome states
$urk&% be orthogonal (so that there would be no associ-
ated Hermitian observable). However, as was already
noted, coherent states associated with a non-Hermitian
annihilation operator can also be an outcome of a mea-
surement. Therefore [and in spite of the strict interpre-
tation of axiom (iii a)] this is not a very serious restric-
tion.

In the presence of einselection the basis ambiguity
disappears. Immediate repeatability would apply only to
the records made in the einselected states. Other appa-
ratus observables lose correlation with the state of the
system on the decoherence time scale. In the effectively
classical limit it is natural to demand repeatability ex-
tending beyond that very brief moment. This demand
makes the role of einselection in establishing axiom (iv)
evident. Indeed, such repeatability is, albeit in a more
general context, the motivation for the predictability
sieve.

4. Probabilities, einselection, and records

Density matrix alone, without the preferred set of
states, does not suffice as a foundation for a probability
interpretation. For, any mixed-state density matrix rS
can be decomposed into sums of density matrices that
add up to the same resultant rS , but need not share the
same eigenstates. For example, consider rS

a and rS
b , rep-

resenting two different preparations (i.e., involving the
measurement of two distinct, noncommuting observ-
ables) of two ensembles, each with multiple copies of a
system S. When they are randomly mixed in proportions
pa and pb, the resulting density matrix

rS
a∨b5parS

a1pbrS
b

is the complete description of the unified ensemble (see
Schrödinger, 1936; Jaynes, 1957).

Unless @rS
a ,rS

b#50, the eigenstates of rS
a∨b do not co-

incide with the eigenstates of the components. This fea-
ture makes it difficult to regard any density matrix in
terms of probabilities and ignorance. Such ambiguity
would be especially troubling if it arose in the descrip-
tion of an observer (or, for that matter, of any classical
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system). The ignorance interpretation, i.e., the idea that
probabilities are the observer’s way of dealing with un-
certainty about the outcome which we have briefly ex-
plored in the discussion of the insider-outsider di-
chotomy, Eqs. (2.44), requires at the very least that the
set of events (‘‘the sample space’’) exists independently
of the information at hand, that is, independently of pa

and pb in the example above. Eigenstates of the density
matrix do not supply such events, since the additional
loss of information associated with mixing of the en-
sembles alters the candidate events.

Basis ambiguity would be disastrous for record states.
Density matrices describing a joint state of the memory
A and of the system S

rAS
a∨b5parAS

a 1pbrAS
b

would have to be considered. In the absence of einselec-
tion the eigenstates of such rAS

a∨b need not even be asso-
ciated with a fixed set of record states of the presumably
classical A. Indeed, in general rAS

a∨b has a nonzero
discord,7 and its eigenstates are entangled (even when
the above rAS

a∨b is separable, and can be expressed as a
mixture of matrices that have no entangled eigenstates).
This would imply an ambiguity of what the record states
are precluding a probability interpretation of measure-
ment outcomes.

The observer may nevertheless have records of a sys-
tem that is in the ambiguous situation described above.
Thus

rAS
a∨b5(

k
wkuAk&^Aku~pk

arSk

a 1pk
brSk

b !

7As we have seen in Sec. IV, Eqs. (4.30)–(4.36), discord
dIA(SuA)5I(S:A)2JA(S:A) is a measure of the ‘‘quantum-
ness’’ of correlations. It should disappear as a result of the
classical equivalence of two definitions of the mutual informa-
tion, but is in general positive for quantum correlations, in-
cluding, in particular, predecoherence rSA . Discord is asym-
metric, dIA(SuA)ÞdIS(AuS). The vanishing of dIA(SuA) [i.e.,
of the discord in the direction exploring the classicality of the
states of A, on which H(rSuA) in the asymmetric JA(S:A), Eq.
(4.32), is conditioned] is necessary for the classicality of the
measurement outcome (Ollivier and Zurek, 2002; Zurek, 2000,
2003a). dIA(SuA) can disappear as a result of decoherence in
the einselected basis of the apparatus. Following einselection it
is then possible to ascribe probabilities to the pointer states. In
perfect measurements of Hermitian observables discord van-
ishes ‘‘both ways’’: dIA(SuA)5dIS(AuS)50 for the pointer
basis and for the eigenbasis of the measured observable corre-
lated with it. Nevertheless, it is possible to encounter situations
when vanishing of the discord in one direction is not accompa-
nied by its vanishing ‘‘in reverse.’’ Such correlations are ‘‘clas-
sical one way’’ (Zurek, 2003a).

This asymmetry between classical A and quantum S arises
from the einselection. Classical record states are not arbitrary
superpositions. The observer accesses his memory in the basis
in which it is monitored by the environment. The information
stored is effectively classical because it is being widely dissemi-
nated. States of the observer’s memory exist objectively; they
can be determined through their imprints in the environment.
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is admissible for an effectively classical A correlated
with a quantum S. Now the discord dAI(SuA)50.

Mixing of ensembles of pairs of correlated systems,
one of which is subject to einselection, does not lead to
the ambiguities discussed above. The discord dA(SuA)
disappears in the einselected basis of A, and the eigen-
values of the density matrices can behave as classical
probabilities associated with events with the records.
The menu of possible events, in the sample space, e.g.,
records in memory, is fixed by einselection. Whether one
can really justify this interpretation of the eigenvalues of
the reduced density matrix is a separate question we are
about to address.

D. Probabilities from envariance

The view of the emergence of the classical based on
environment-induced superselection has been occasion-
ally described as ‘‘for all practical purposes only’’ (see,
for example, Bell, 1990), to be contrasted with the more
fundamental (if nonexistent) solutions of the problem
one could imagine (i.e., by modifying quantum theory;
see Bell, 1987, 1990). This attitude can be traced in part
to the reliance of einselection on reduced density matri-
ces. For even when explanations of all aspects of the
effectively classical behavior are accepted in the frame-
work of, say, Everett’s many-worlds interpretation, and
after the operational approach to the objectivity and
perception of unique outcomes based on the existential
interpretation explained earlier is adopted, one major
gap remains: Born’s rule—axiom (v) connecting prob-
abilities with amplitudes, pk5ucku2—has to be postu-
lated in addition to axioms (ø)–(ii). True, one can show
that within the framework of einselection Born’s rule
emerges naturally (Zurek, 1998a). Decoherence is, how-
ever, based on reduced density matrices. Since their in-
troduction by Landau (1927), it is known that a partial
trace leading to reduced density matrices is predicated
on Born’s rule (see Nielsen and Chuang, 2000, for a dis-
cussion). Thus derivations of Born’s rule that employ
reduced density matrices are open to the charge of cir-
cularity (Zeh, 1997). Moreover, repeated attempts to
justify pk5ucku2 within the no-collapse many-worlds in-
terpretation (Everett, 1957a, 1957b; DeWitt, 1970; De
Witt and Graham, 1973; Geroch, 1984) have failed (see,
for example, Stein, 1984; Kent, 1990; Squires, 1990). The
problem is their circularity. An appeal to the connection
(especially in certain limiting procedures) between the
smallness of the amplitude and the vanishing of the
probabilities has to be made to establish that the relative
frequencies of events averaged over branches of the uni-
versal state vector are consistent with Born’s rule. In
particular, one must a claim that ‘‘maverick’’ branches of
the MWI state vector that have ‘‘wrong’’ relative fre-
quencies have a vanishing probability because their
Hilbert-space measures are small. This is circular, as
noted even by the proponents (DeWitt, 1970).

My aim here is to look at the origin of ignorance,
information, and, therefore, probabilities from a very
quantum and fundamental perspective. Rather than fo-
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cus on probabilities for an individual isolated system I
shall—in the spirit of einselection, but without employ-
ing its usual tools such as trace or reduced density
matrices—consider what the observer can (and cannot)
know about a system entangled with its environment.
Within this context I shall demonstrate that Born’s rule
follows from the very quantum fact that one can know
precisely the state of the composite system and yet be
provably ignorant of the state of its components. This is
due to environment-assisted invariance or envariance, a
hitherto unrecognized symmetry I am about to describe.

Envariance of pure states is a symmetery conspicu-
ously missing from classical physics. It allows one to de-
fine ignorance as a consequence of invariance, and thus
to understand the origin of Born’s rule, the probabilities,
and ultimately the origin of information through argu-
ments based on assumptions different from Gleason’s
(1957) famous theorem. Rather, it is based on the Ma-
chian idea of the relativity of quantum states, suggested
by this author two decades ago (see p. 772 of Wheeler
and Zurek, 1983), but not developed until now. Envari-
ance (Zurek, 2003b) addresses the question of the mean-
ing of these probabilities by defining ‘‘ignorance’’ and
leads to correct relative frequencies.

1. Envariance

Environment-assisted invariance is a symmetry exhib-
ited by a system S correlated with another system
(which we shall call the environment E). When a state of
the composite SE can be transformed by uS acting solely
on the Hilbert space HS, but the effect of this transfor-
mation can be undone with an appropriate uE acting
only on HE, so that the joint state ucSE& remains unal-
tered, so that

uEuSucSE&5uEuhSE&5ucSE . (6.6)

Such a ucSE& is envariant under uS . The generalization
to mixed rSE is obvious, but we shall find it easier to
assume that SE has been purified in the usual fashion,
i.e., by enlarging the environment.

Envariance is best elucidated by considering an ex-
ample, an entangled state of S and E. It can be expressed
in the Schmidt basis as

ucSE&5(
k

akusk&u«k&, (6.7)

where ak are complex, while $usk&% and $u«k&% are ortho-
normal. For ucSE& (and hence, given our above remark
about purification, for any system correlated with the
environment) it is easy to demonstrate the following.

Lemma 6.1: Unitary transformations codiagonal with
the Schmidt basis of ucSE& leave it envariant.

The proof relies on the form of such transformations:

uS
$usk&%

5(
k

eiskusk&^sku, (6.8)

where sk is a phase. Hence
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uS
$usk&%ucSE&5(

k
akeiskusk&u«k& (6.9)

can be undone by

uE
$u«k&%

5(
k

eieku«k&^«ku, (6.10)

providing that ek52plk2sk for some integer lk . QED.
Thus phases associated with the Schmidt basis are en-

variant. We shall see below that they are the only envari-
ant property of entangled states. The transformations
defined by Eq. (6.8) are rather specific—they share
(Schmidt) eigenstates. Still, their existence leads us to

Theorem 6.1: A local description of the system S en-
tangled with a causally disconnected environment E
must not depend on the phases of the coefficients ak in
the Schmidt decomposition of ucSE& .

It follows that all the measurable properties of S are
completely specified by the list of pairs $uaku;usk&%. A
different way of establishing this phase envariance theo-
rem appeals even more directly to causality. Phases of
ucSE& can be arbitrarily changed by acting on E alone
[e.g, by the local Hamiltonian with eigenstates u«k&, gen-
erating evolution of the form of Eq. (6.9)]. But causality
prevents faster-than-light communication. Hence no
measurable property of S can be effected by acting on E.
Clearly, there is an intimate connection between envari-
ance and causality. Independence of the local state of S
from the phases of the Schmidt coefficients ak follows
from envariance alone, but it could be also established
through an appeal to causality. The situation is similar as
with ‘‘no cloning theorem.’’ It was proved using linearity
of quantum theory, but one could have also inferred im-
possibility of cloning an unknown quantum state from
special-relativistic causality. The proof based on linearity
is ‘‘less expensive,’’ as it does not require ingredients
that go beyond quantum theory.

Phase envariance theorem will turn out to be the crux
of our argument. It relies on an input—entanglement
and envariance—which has not been employed to date
in discussions of the origin of probabilities. In particular,
this input is different and more ‘‘physical’’ than that of
the successful derivation of Born’s rules by Gleason
(1957).

We also note that information contained in the ‘‘data-
base’’ $uaku;usk&% implied by Theorem 6.1 is the same as
in the reduced density matrix of the system rS . Al-
though we do not yet know the probabilities of various
usk&, the preferred basis of S has been singled out;
Schmidt states (sometimes regarded as instantaneous
pointer states; see, for example, Albrecht, 1992, 1993)
play a special role as the eigenstates of envariant trans-
formations. Moreover, probabilities can depend on uaku
(but not on the phases). We still do not know that pk
5uaku2.

The causality argument we could have used to estab-
lish Theorem 6.1 applies of course to arbitrary transfor-
mations one could perform on E. However, such trans-
formations would in general not be envariant (i.e., could
not be undone by acting on S alone). Indeed, this is one
way to see that causality is a more potent ingredient
than envariance. In particular, all envariant transforma-
tion have a fairly restricted form as follows.
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Lemma 6.2: All of the unitary envariant transforma-
tions of ucSE& have Schmidt eigenstates.

The proof relies on the fact that other unitary trans-
formations would rotate the Schmidt basis, usk&→u s̃k&.
The rotated basis becomes a new ‘‘Schmidt,’’ and this
fact cannot be affected by unitary transformations of E,
by state rotations in the environment. But a state that
has a different Schmidt decomposition from the original
ucSE& is different. Hence a unitary transformation must
be codiagonal with the Schmidt basis of cSE to leave it
envariant. QED.

2. Born’s rule from envariance

When absolute values of some of the coefficients in
Eq. (6.7) are equal, any orthonormal basis is Schmidt in
the corresponding subspace of HS. This implies envari-
ance of a more general nature, e.g., under a swap:

uS~k↔j !5eifkjusk&^sju1H.c. (6.11)

A swap can be generated by a phase rotation, Eq. (6.8),
but in a basis complementary to the one swapped. Its
envariance does not contradict Lemma 6.2, as any ortho-
normal basis in this case is also Schmidt. So when uaku
5ua ju, the effect of a swap on the system can be undone
by an obvious counterswap in the environment:

uS~k↔j !5e2i~fkj1fk2f j12plkj!u«k&^« ju1H.c. (6.12)

A swap can be applied to states that do not have equal
absolute values of the coefficients, but in that case it is
no longer envariant. Partial swaps can also be generated,
for example, by underrotating or by a uS

$uri&% , Eq. (6.8),
but with the eigenstates $uri&% intermediate between
those of the swapped and the complementary (Had-
amard) basis. A swap followed by a counterswap ex-
changes coefficients of the swapped states in the
Schmidt expansion, Eq. (6.7). Hence, cSE is envariant
under swaps uS(j↔k) only when uaku5ua ju.

States of correlated classical systems can also exhibit
something akin to envariance under a classical version
of swaps. For instance, a correlated state of a system and
an apparatus described by rSA;usk&^skuuAk&^Aku
1usj&^sjuuAj&^Aju can be swapped and counterswapped.
The corresponding transformations would be still given
by, in effect, Eqs. (6.11) and (6.12), but without phases,
and swaps could no longer be generated by rotations
around the complementary basis. This situation corre-
sponds to the outsider’s view of the measurement pro-
cess, Eq. (2.44c). The outsider can be aware of the cor-
relation between the system and the apparatus, but
ignorant of their individual states. This connection be-
tween ignorance and envariance will be exploited below.

Envariance based on ignorance may be found in the
classical setting, but envariance of pure states is purely
quantum. Observers can know perfectly the quantum
joint state of SE, yet be provably ignorant of S. Consider
a measurement carried out on the state vector of SE
from the point of view of envariance:
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
uA0& (
k51

N

usk&u«k&→ (
k51

N

uAk&usk&u«k&;uFSAE&. (6.13)

Above, we have assumed that the absolute values of the
coefficients are equal (and omitted them for notational
simplicity). We have also ignored phases (which need
not be equal) since by the phase envariance theorem
they will not influence the state (and hence, the prob-
abilities) associated with S.

Before the measurement the observer with access to S
cannot notice swaps in the states [such as Eq. (6.13)]
with equal absolute values of the Schmidt coefficients.
This follows from the envariance of the premeasurement
ucSE& under swaps, Eq. (6.11).

One could argue this point in more detail by compar-
ing what happens for two very different input states: an
entangled ucSE& with equal absolute values of Schmidt
coefficients and a product state:

uwSE&5usJ&u«J&.

When the observer knows he is dealing with wSE , he
knows the system is in the state usJ&, and can predict the
outcome of the corresponding measurement on S. The
Schrödinger equation or just the resulting truth table,
Eq. (6.5), implies with certainty that his state—the fu-
ture state of his memory—will be uAJ&. Moreover, swaps
involving usJ& are not envariant for wSE . They just swap
the outcomes [i.e., when uS(J↔L) precedes the mea-
surement, memory will end up in uAL&].

By contrast,

ucSE&; (
k51

N

eifkusk&u«k&

is envariant under swaps. This allows the observer (who
knows the joint state of SE exactly) to conclude that the
probabilities of all the envariantly swappable outcomes
must be the same. The observer cannot predict his
memory state after the measurement of S because he
knows too much: the exact combined state of SE.

For completeness, we note that when there are system
states that are absent from the above sum, i.e., states
that appear with zero amplitude, they cannot be envari-
antly swapped with the states present in the sum. Of
course, the observer can predict with certainty that he
will not detect any of the corresponding zero-amplitude
outcomes. For, following the measurement that corre-
lates memory of the observer with the basis $usk&} of the
system, there will be simply no terms describing ob-
server with the record of such nonexistent states of S.
This argument about the ignorance of the observer con-
cerning his future state, concerning the outcome of the
measurement he is about to perform, is based on his
perfect knowledge of a joint state of SE.

Probabilities refer to the guess the observer makes on
the basis of his information before the measurement
about the state of his memory—the future outcome—
after the measurement. Since the left-hand side of Eq.
(6.13) is envariant under swaps of the system states, the
probabilities of all the states must be equal. Thus, by
normalization,



756 Wojciech Hubert Zurek: Decoherence, einselection, and the quantum origins of the classical
pk51/N . (6.14)

Moreover, the probability of n mutually exclusive events
that all appear in Eq. (6.13) with equal coefficients must
be

pk1∨k2∨¯∨kn
5n/N . (6.15)

This concludes the discussion of the equal probability
case. Our case rests on the independence of the state of
S entangled with E from the phases of the coefficients in
the Schmidt representation, the phase envariance theo-
rem 6.1, which in the case of equal coefficients, Eq.
(6.13), allows envariant swapping, and yields Eqs. (6.14)
and (6.15).

After a measurement the situation changes. In accord
with our preceding discussion we interpret the presence
of the term uAk& in Eq. (6.13) as evidence that an out-
come usk& can be (or indeed has been—the language
here is somewhat dependent on the interpretation) re-
corded. Conversely, the absence of some uAk8& in the
sum above implies that the outcome usk8& cannot occur.
After a measurement the memory of the observer who
has detected usk& will contain the record uAk&. Further
measurements of the same observable on the same sys-
tem will confirm that S is in indeed in the state usk& .

This postmeasurement state is still envariant, but only
under swaps that involve jointly the state of the system
and the correlated state of the memory:

uAS~k↔j !5eifkjusk ,Ak&^sj ,Aju1H.c. (6.16)

Thus if another observer (‘‘Wigner’s friend’’) was getting
ready to find out, either by direct measurement of S or
by communicating with observer A, the outcome of A’s
measurement, he would be (on the basis of envariance)
provably ignorant of the outcome A has detected, but
could be certain of the AS correlation. We shall employ
this joint envariance in the discussion of the case of un-
equal probabilities immediately below.

Note that our reasoning does not really appeal to the
information lost in the environment in the sense in
which this phrase is often used. Perfect knowledge of the
combined state of the system and the environment is the
basis of the argument for the ignorance of S alone. For
entangled SE, perfect knowledge of SE is incompatible
with perfect knowledge of S. This is really a conse-
quence of indeterminacy; joint observables with en-
tangled eigenstates such as cSE simply do not commute
(as the reader is invited to verify) with the observables
of the system alone. Hence ignorance associated with
envariance is ultimately mandated by Heisenberg inde-
terminacy.

The case of unequal coefficients can be reduced to the
case of equal coefficients. This can be done in several
ways, of which we choose one that makes use of the
preceding discussion of the envariance of the postmea-
surement state. We start with

uFSAE&; (
k51

N

akuAk&usk&u«k&, (6.17)
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where ak;Amk and mk is a natural number (and, by
Theorem 6.1, we drop the phases). To get an envariant
state we increase the resolution, of A by assuming that

uAk&5 (
jk51

mk

uajk
&/Amk . (6.18)

An increase of resolution is a standard trick, used in
classical probability theory ‘‘to even the odds.’’ Note
that we assume that basis states such as uAk& are normal-
ized (as they must be in a Hilbert space). This leads to

uFSAE&; (
k51

N

Amk

(
jk51

mk

uajk
&

Amk

usk&u«k&. (6.19)

We now assume that A and E interact (e.g., through a
c-shift of Sec. II, with a truth table uajk

&u«k&→uajk
&uejk

&
where $uejk

&% are all orthonormal). After simplifying and
rearranging terms we get a sum, over a new fine-grained
index, with the states of S that remain the same within
coarse-grained cells, with the cell size measured by mk :

uF̃SAE&; (
k51

N

usk&S (
jk51

mk

uajk
&uejk

& D 5(
j51

M

usk~ j !&uaj&uej& .

(6.20)

Above, M5(k51
N mk , k(j)51 for j<m1 , k(j)52 for

m1,j<m11m2 , etc. The above state is envariant under
combined swaps:

uSA~ j↔j8!5exp~ if jj8!usk~ j ! ,aj&^aj8 ,sk~ j8!u1h.c.

Suppose that an additional observer measures SA in the
obviously swappable joint basis. By our equal-
coefficients argument, Eq. (6.14), we get

p(sk(j) ,aj)51/M .

But the observer can ignore states aj . Then the prob-
ability of different Schmidt states of S is, by Eq. (6.15),

p~sk!5mk /M5uaku2. (6.21)

This is Born’s rule.
The case with coefficients that do not lead to com-

mensurate probabilities can be treated by assuming con-
tinuity of probabilities as a function of the amplitudes,
and taking appropriate (and obvious) limits. This can be
physically motivated: One would not expect probabili-
ties to change drastically depending on infinitesimal
changes of state. One can also extend the strategy out-
lined above to deal with probabilities (and probability
densities) in cases such as us(x)&, i.e., when the index of
the state vector changes continuously. This can be ac-
complished by discretizing it [so that the measurement
of Eq. (6.17) correlates different apparatus states with
small intervals of x] and then repeating the strategy of
Eqs. (6.17)–(6.21). The wave function s(x) should be
sufficiently smooth for this strategy to succeed.

We note that the increase of resolution we have ex-
ploited, Eqs. (6.18)–(6.21), need not be physically imple-
mented for the argument to proceed. The very possibil-
ity of carrying out these steps within the quantum



757Wojciech Hubert Zurek: Decoherence, einselection, and the quantum origins of the classical
formalism forces one to adopt Born’s rule. For example,
if the apparatus did not have the requisite extra resolu-
tion, Eq. (6.18), the interaction of the environment with
a still different ‘‘counterweight’’ system C that yields

uCSAEC&5 (
k51

N

Amkusk&uAk&u«k&uCk& (6.22)

would lead one to Born’s rule through steps similar to
these that we have invoked before, providing that $uCk&%
has the requisite resolution, uCk&5( jk51

mk ucjk
&/Amk . An

interaction resulting in a correlation, Eq. (6.22), can oc-
cur between E and C, and happen far from the system of
interest or from the apparatus. Thus it will not influence
the probabilities of the outcomes of measurements car-
ried out on S or of the records made by A. Yet, the fact
that it can happen leads us to the desired conclusion.

3. Relative frequencies from envariance

Relative frequency is a common theme in studies that
aim to elucidate the physical meaning of probabilities in
quantum theory (Everett, 1957a, 1957b; Hartle, 1968;
DeWitt, 1970; Graham, 1970; Farhi, Goldstone, and
Gutmann, 1989; Aharonov and Reznik, 2002). In par-
ticular, in the context of the no-collapse many-worlds
interpretation relative frequency seems to offer the best
hope of arriving at Born’s rule and elucidating its physi-
cal significance. Yet, it is generally acknowledged that
the MWI derivations offered to date have failed to at-
tain this goal (Kent, 1990).

We postpone a brief discussion of these efforts to the
next section, and describe an approach to relative fre-
quencies based on envariance. Consider an ensemble of
many (N) distinguishable systems prepared in the same
initial state:

usS&5au0&1bu1&. (6.23)

We focus on the two-state case to simplify the notation.
We also assume that uau2 and ubu2 are commensurate, so
that the state vector of the whole ensemble of correlated
triplets SAE after the requisite increases of resolution
[see Eqs. (6.18)–(6.20) above] is given by

uFSAE
N &;S (

j51

m

u0&uaj&uej&1 (
j5m11

M

u1&uaj&uej& D ^ N
,

(6.24)

save for the obvious normalization. This state is envari-
ant under swaps of the joint states us ,aj&, as they appear
with the same (absolute value) of the amplitude in Eq.
(6.24). (By Theorem 6.1 we can omit phases.)

After the exponentiation is carried out, and the result-
ing product states are sorted by the number of 0’s and 1’s
in the records, we can calculate the number of terms
with exactly n 0’s: nN(n)5(n

N)mn(M2m)N2n. To get
the probability, we normalize:

pN~n !5S N
n D mn~M2m !N2n

MN 5S N
n D uau2nubu2~N2n !.

(6.25)
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This is the distribution one would expect from Born’s
rule. To establish the connection with relative frequen-
cies we appeal to the de Moivre–Laplace theorem
(Gnedenko, 1982), which allows one to approximate
above pN(n) with a Gaussian:

pN~n !.
1

A2pNuabu
expH 2

1

2Fn2Nuau2

ANuabu
G 2J . (6.26)

This last step requires large N, but our previous discus-
sion including Eq. (6.25) is valid for arbitrary N. Indeed,
Eq. (6.21) can be regarded as the N51 case.

Nevertheless, for large N the relative frequency is
sharply peaked around the expected ^n&5Nuau2. In-
deed, in the limit N→` the appropriately rescaled
pN(n) tends to a Dirac d(v2uau2) in the relative fre-
quency v5n/N. This justifies the relative-frequency in-
terpretation of the squares of amplitudes as probabilities
in the MWI context. Maverick universes with different
relative frequencies exist, but have a vanishing probabil-
ity (and not just a vanishing Hilbert-space measure) for
large N.

Our derivation of the physical significance of the
probabilities, while it led to relative frequencies, was
based on a very different set of assumptions than previ-
ous derivations. The key idea behind it is the connection
between symmetry (envariance) and ignorance (impos-
sibility of knowing something). The unusual feature of
our argument is that this ignorance (for an individual
system S) is demonstrated by appealing to the perfect
knowledge of the larger joint system that includes S as a
subsystem.

We emphasize that one could not carry out the basic
step of our argument—the proof of the independence of
the likelihoods from the phases of the Schmidt expan-
sion coefficients—for an equal-amplitude pure state of a
single, isolated system. The problem with uc&
5N21/2(k

N exp(ifk)uk& is the accessibility of the phases.
Consider, for instance, uc&;u0&1u1&2u2& and
uc8&;u2&1u1&2u0&. In the absence of decoherence the
swapping of k’s is detectable. Interference measure-
ments (i.e., measurements of the observables with
phase-dependent eigenstates u1&1u2&, u1&2u2&, etc.) would
have revealed the difference between uc& and uc8&. In-
deed, given an ensemble of identical pure states an ob-
server will simply determine what they are. Loss of
phase coherence is essential to allow for the shuffling of
the states and coefficients.

Note that in our derivation the environment and ein-
selection play an additional, more subtle role. Once a
measurement has taken place, i.e., a correlation with the
apparatus or with the memory of the observer has been
established, one would hope that the records would re-
tain validity over a long time, well beyond the decoher-
ence time scale. This is a precondition for axiom (iv).
Thus a collapse from a multitude of possibilities to a
single reality can be confirmed by subsequent measure-
ments only in the einselected pointer basis.

4. Other approaches to probabilities

Gnedenko (1982), in his classic textbook, lists three
classical approaches to probability:
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(a) Definitions that appeal to the relative frequency
of occurrence of events in a large number of trials.

(b) Definitions of probability as a measure of the cer-
tainty of the observer.

(c) Definitions that reduce probability to the more
primitive notion of equal likelihood.

In the quantum setting, the relative-frequency ap-
proach has been to date the most popular, especially in
the context of the no-collapse many-worlds interpreta-
tion (Everett, 1957a, 1957b; DeWitt, 1970; Graham,
1970). Counting the number of ‘‘clicks’’ seems most di-
rectly tied to the experimental manifestations of prob-
ability. Yet, the Everett interpretation versions were
generally found lacking (Kent, 1990; Squires, 1990),
since they relied on circular reasoning, invoking, without
physical justification, an abstract measure of Hilbert
space to obtain a physical measure (frequency). Some of
the criticisms seem relevant also for the versions of this
approach that allow for the measurement postulates (iii)
and (iv) (Hartle, 1968; Farhi, Goldstone, and Guttmann,
1989). Nevertheless, for the infinite ensembles consid-
ered in the above references (where, in effect, the
Hilbert-space measure of the many-worlds interpreta-
tion branches that violate relative-frequency predictions
is zero) the eigenvalues of the frequency operator acting
on a large or infinite ensemble of identical states will be
consistent with the (Born formula) prescription for
probabilities.

However, the infinite size of the ensemble necessary
to prove this point is troubling (and unphysical) and tak-
ing the limit starting from a finite case is difficult to jus-
tify (Stein, 1984; Kent, 1990; Squires, 1990). Moreover,
the frequency operator is a collective observable of the
whole ensemble. It may be possible to relate observables
defined for such an infinite ensemble supersystem to the
states of individual subsystems, but the frequency opera-
tor does not do this. This is well illustrated by the gedan-
ken experiment envisaged by Farhi et al. (1989). To pro-
vide a physical implementation of the frequency
operator they consider a version of the Stern-Gerlach
experiment where all the spins are attached to a com-
mon lattice. Thus during the passage through the inho-
mogeneity of the magnetic field, the center of mass of
the whole lattice is deflected by an angle proportional to
the projection of the net magnetic moment associated
with the spins on the direction defined by the field gra-
dient. The deflection is proportional to the eigenvalue of
the frequency operator, which is then a collective
observable—states of individual spins remain in super-
positions, uncorrelated with anything outside. This diffi-
culty can be addressed with the help of decoherence
(Zurek, 1998a), but using decoherence without justifying
Born’s formula first is fraught with the danger of circu-
larity.

The measure of certainty seems to be a rather vague
concept. Yet Cox (1946) has demonstrated that Boolean
logic leads, after the addition of a few reasonable as-
sumptions, to the definition of probabilities that, in a
sense, appear as an extension of the logical truth values.
However, the rules of symbolic logic that underlie Cox’s
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
theorems are classical. One can adopt this approach
(Zurek, 1998a) to probabilities in quantum physics only
after decoherence intervenes, restoring the validity of
the distributive law, which is not valid in quantum phys-
ics (Birkhoff and von Neumann, 1936).

One can carry out the equal-likelihood approach in
the context of decoherence (Zurek, 1998a). The prob-
lems are, as pointed out before, the use of the trace and
the dangers of circularity. An attempt to pursue a strat-
egy akin to equal likelihood in the quantum setting at
the level of the pure states of individual systems has also
been made by Deutsch in his (unpublished) ‘‘signaling’’
approach to probabilities. The key idea is to consider a
source of pure states, and to find out when the permu-
tations of a set of basis states can be detected, and there-
fore, used for communication. When permutations are
undetectable, the probabilities of the permuted set of
states are declared equal. The problem with this idea (or
with its more formal version described by DeWitt, 1998)
is that it works only for superpositions that have all the
coefficients identical, including their phases. Thus, as we
have already noted, for closed systems, phases matter
and there is no invariance under swapping. In a recent
paper Deutsch (1999) adopted a different approach
based on decision theory. The basic argument focuses
again on individual states of quantum systems, but, as
noted in the critical comment by Barnum et al. (2000),
seems to appeal to some of the aspects of decision
theory that depend on probabilities. In my view, it also
leaves the problem of phase dependence of the coeffi-
cients unaddressed.

Among other approaches, the recent work of Gott-
fried (2000) shows that in a discrete quantum system
coupled with a continuous quantum system Born’s for-
mula follows from the demand that the continuous sys-
tem should follow classical mechanics in the appropriate
limit. A somewhat different strategy, with a focus on the
coincidences of the expected magnitude of fluctuations,
was proposed by Aharonov and Reznik (2002).

In comparison with all of the above strategies, ‘‘prob-
abilities from envariance’’ is the most radically quantum,
in that it ultimately relies on entanglement (which is still
sometimes regarded as ‘‘a paradox,’’ and ‘‘to be ex-
plained’’; I have used it as an explanation). This may be
the reason why it has not been discovered until now. The
insight offered by envariance into the nature of igno-
rance and information sheds new light on probabilities
in physics. The (very quantum) ability to prove the ig-
norance of a part of a system by appealing to perfect
knowledge of the whole may resolve some of the diffi-
culties of the classical approaches.

VII. ENVIRONMENT AS A WITNESS

The emergence of classicality can be viewed either as
a consequence of the widespread dissemination of the
information about the pointer states through the envi-
ronment, or as a result of the censorship imposed by
decoherence. So far I have focused on this second view,
defining existence as persistence—predictability in spite
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of the environmental monitoring. The predictability
sieve is a way of discovering states that are classical in
this sense (Zurek, 1993a, 1993b; Zurek, Habib, and Paz,
1993; Gallis, 1996).

A complementary approach focuses not on the sys-
tem, but on the records of its state spread throughout
the environment. Instead of seeking the least-perturbed
states one can ask what states of the system are easiest
to discover by looking at the environment. Thus the en-
vironment is no longer just a source of decoherence, but
acquires the role of a communication channel with basis-
dependent noise that is minimized by the preferred
pointer states.

This approach can be motivated by the old dilemma:
On one hand, quantum states of isolated systems are
purely ‘‘epistemic’’ (see, for example, Peres, 1993; Fuchs
and Peres, 2000). Quantum cryptography (Bennett and
DiVincenzo, 2000; Nielsen and Chuang, 2000, and refer-
ences therein) uses this impossibility of determining the
unknown state of an isolated quantum system. On the
other hand, classical reality seems to be made up of
quantum building blocks: States of macroscopic systems
exist objectively; they can be determined by many ob-
servers independently, without being destroyed or re-
prepared. So the question arises: How can objective
existence—the ‘‘reality’’ of the classical states—emerge
from purely epistemic wave functions?

There is not much one can do about this in the case of
a single state of an isolated quantum system. But open
systems are subject to einselection and can bridge the
chasm dividing their epistemic and ontic roles. The most
direct way to see this arises from the recognition of the
fact that we never directly observe any system. Rather,
we discover states of macroscopic systems from the im-
prints they make on the environment: A small fraction
of the photon environment intercepted by our eyes is
often all that is needed. States that are recorded most
redundantly in the rest of the universe (Zurek, 1983,
1998a, 2000) are also the easiest to discover. They can be
found out indirectly, from multiple copies of the evi-
dence imprinted in the environment, without a threat to
their existence. Such states exist and are real; they can
be found out without being destroyed as if they were
really classical.

Environmental monitoring creates an ensemble of
‘‘witness states’’ in the subsystems of the environment
that allows one to invoke some of the methods of the
statistical interpretation (Ballentine, 1970) while sub-
verting its ideology—to work with an ensemble of objec-
tive evidence of a state of a single system. From this
ensemble of witness states one can infer the state of the
quantum system that has led to such ‘‘advertising.’’ This
can be done without disrupting the einselected states.

The predictability sieve selects states that entangle
least with the environment. Questions about predictabil-
ity simultaneously lead to states that are most redun-
dantly recorded in the environment. Indeed, this idea is
the essence of the ‘‘quantum Darwinism’’ we alluded to
in the Introduction. The einselected pointer states are
not only best at surviving the environment, they also
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
broadcast information about themselves spreading out
their ‘‘copies’’ throughout the rest of the universe. Am-
plified information is easiest to amplify. This leads to
analogies with ‘‘fitness’’ in the Darwinian sense, and sug-
gests looking at einselection as a sort of natural selec-
tion.

A. Quantum Darwinism

Consider the ‘‘bit-by-byte’’ example of Sec. IV. Spin
system S is correlated with the environment:

ucSE&5au↑&u00 . . . 0&1bu↓&u11 . . . 1&

5au↑&uE↑&1bu↓&uE↓&. (7.1)

The basis $u↑&,u↓&% of S is singled out by the redundancy
of the record. This can be illustrated by rewriting the
same ucSE&,

ucSE&5u(&~au00 . . . 0&1bu11 . . . 1&)A2

1u ^ &~au00 . . . 0&2bu11 . . . 1&)/A2

5~ u(&uE(&1u ^ &uE^&)/A2, (7.2)

in terms of the Hadamard transformed $u(&,u^&%.
One can find out whether S is u↑& or u↓& from a small

subset of the environment bits. By contrast, states
$u(&,u^&% cannot be easily inferred from the environ-
ment. States $uE(& ,uE^&% are typically not even orthogo-
nal, ^E(uE^&5uau22ubu2. And even when uau22ubu250,
the record in the environment is fragile. Only one rela-
tive phase distinguishes uE(& from uE^& in that case, in
contrast with multiple records of the pointer states in
uE↑& and uE↓&. Remarks that elaborate this observation
follow. They correspond to several distinct measures of
the analogs of the Darwinian fitness of the states.

1. Consensus and algorithmic simplicity

From the state vector ucSE&, Eqs. (7.1) and (7.2), the
observer can find the state of the quantum system just
by looking at the environment. To accomplish this, the
total N of the environment bits can be divided into
samples of n bits each, with 1!n!N . These samples
can then be measured using observables that are the
same within each sample, but that differ between
samples. They may correspond, for example, to different
antipodal points in the Bloch spheres of the environ-
ment bits. In the basis $u0&,u1&% (or bases closely aligned
with it) the record inferred from the bits of information
scattered in the environment will be easiest to come by.
Thus, starting from the environment part of ucSE&, Eq.
(7.1), the observer can find out, with no prior knowl-
edge, the state of the system. Redundancy of the record
in the environment allows for a trial-and-error indirect
approach while leaving the system untouched.

In particular, measurement of n environment bits in a
Hadamard transform of the basis $u0&,u1&%, Eq. (7.2),
yields a random-looking sequence of outcomes (i.e.,
$u1&1 ,u2&2 ,. . . ,u2&n%). This record is algorithmically
random. Its algorithmic complexity is of the order of its
length (Li and Vitànyi, 1993):
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K~^Enu1 ,2&!.n . (7.3)

By contrast, the algorithmic complexity of the measure-
ment outcomes in the $u0&,u1&% basis will be small:

K~^Enu0,1&!!n , (7.4)

since the outcomes will be either 00 . . . 0 or 11 . . . 1. The
observer seeking the preferred states of the system by
looking at the environment should then search for the
minimal record size and thus, for the maximum redun-
dancy in the environmental record. States of the system
that are recorded redundantly in the environment must
have survived repeated instances of environment moni-
toring, and are obviously robust and predictable.

The predictability we have utilized before to devise a
sieve to select preferred states is used here again, but in
a different guise. Rather than search for predictable sets
of states of the system, we are now looking for the
records of the states of the system in the environment.
Sequences of states of environment subsystems corre-
lated with pointer states are mutually predictable and
hence, collectively algorithmically simple. States that are
predictable in spite of interactions with the environment
are also easiest to predict from their impact on its state.

The state of the form of Eq. (7.1) can serve as an
example of amplification. The generation of redundancy
through amplification brings about the objective exis-
tence of the otherwise subjective quantum states. States
u↑& and u↓& of the system can be determined reliably from
a small fraction of the environment. By contrast, to de-
termine whether the system was in a state u(& or u^& one
would need to detect all of the environment. Objectivity
can be defined as the ability of many observers to reach
consensus independently. Such consensus concerning
states u↑& and u↓& is easily established—many (;N/n)
observers can independently measure fragments of the
environment.

2. Action distance

One measure of the robustness of environmental
records is the action distance (Zurek, 1998a). It is given
by the total action necessary to undo the distinction be-
tween the states of the environment corresponding to
different states of the system, subject to the constraints
arising from the fact that the environment consists of
subsystems. Thus to obliterate the difference between
uE↑& and uE↓& in Eq. (7.1), one needs to ‘‘flip’’ one by one
N subsystems of the environment. That implies an ac-
tion, i.e., the least total angle by which a state must be
rotated, see Sec. II.B, of

D~ uE↑&,uE↓&)5N Fp2 •\G . (7.5)

By contrast a flip of phase of just one bit will reverse the
correspondence between the states of the system and
those of the environment superpositions that make up
uE(& and uE^& in Eq. (7.2). Hence

D~ uE(&,uE^&)51Fp2 •\G . (7.6)
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Given a fixed division of the environment into sub-
systems the action distance is a metric on the Hilbert
space (Zurek, 1998a). That is,

D~ uc&,uc&)50, (7.7)

D~ uc&,uw&)5D~ uw&,uc&)>0, (7.8)

and the triangle inequality

D~ uc&,uw&)1D~ uw&,ug&)>D~ uc&,ug&) (7.9)

are all satisfied.
In defining D it is essential to restrict rotations to the

subspaces of the subsystems of the whole Hilbert space,
and to insist that the unitary operations used in defining
distance act on these subspaces. It is possible to relax
constraints on such unitary operations by allowing, for
example, pairwise or even more complex interactions
between subsystems. Clearly, in the absence of any re-
strictions the action required to rotate any uc& into any
uw& would be no more than (p/2)\. Thus the constraints
imposed by the natural division of the Hilbert space of
the environment into subsystems play an essential role.
The preferred states of the system can be sought by ex-
tremizing the action distance between the corresponding
record states of the environment. In simple cases [e.g.,
see ‘‘bit-by-byte,’’ Eq. (4.7), and below] the action dis-
tance criterion for preferred states coincides with the
predictability sieve definition (Zurek, 1998a).

3. Redundancy and mutual information

The most direct measure of the reliability of the envi-
ronment as a witness is the information-theoretic redun-
dancy of einselection itself. When the environment
monitors the system (see Fig. 4), the information about
its state will spread to more and more subsystems of the
environment. This can be represented by the state vec-
tor ucSE& , Eq. (7.1), with increasingly long sequences of
0’s and 1’s in the record states. The record size, the num-
ber N of the subsystems of the environment involved,
does not affect the density matrix of the system S. Yet, it
obviously changes the accessibility and robustness of the
information analogs of the Darwinian fitness. As an il-
lustration, let us consider c-shifts. One subsystem of the
environment (say, E1) with the dimension of the Hilbert
space no less than that of the system,

dimHE1
>dimHS,

suffices to eradicate the off-diagonal elements of rS in
the control basis. On the other hand, when N subsystems
of the environment correlate with the same set of states
of S, the information about these states is simulta-
neously accessible more widely. While rS is no longer
changing, spreading of the information makes the exis-
tence of the pointer states of S more objective—they are
easier to discover without being perturbed.

Information-theoretic redundancy is defined as the
difference between the least number of bits needed to
uniquely specify the message and the actual size of the
encoded message. Extra bits allow for detection and cor-
rection of errors (Cover and Thomas, 1991). In our case,
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the message is the state of the system, and the channel is
the environment. The information about the system will
often spread over all of the Hilbert space HE, which is
enormous compared to HS. The redundancy of the
record of the pointer observables of selected systems
can also be huge. Moreover, typical environments con-
sist of obvious subsystems (i.e., photons, atoms, etc.). It
is then useful to define the redundancy of the record by
the number of times the information about the system
has been copied, or by how many times it can be inde-
pendently extracted from the environment.

In the simple example of Eq. (7.1) such a redundancy
ratio R for the $u↑&,u↓&% basis will be given by N, the num-
ber of environment bits perfectly correlated with the ob-
viously preferred basis of the system. More generally,
but in the same case of perfect correlation, we obtain

R5
ln~dimHE!
ln~dimHS!

5logdim HSdimHE5N , (7.10)

where HE is the Hilbert space of the environment per-
fectly correlated with the pointer states of the system.

On the other hand, with respect to the $u(&,u^&% basis,
the redundancy ratio for ucSE& of Eq. (7.2) is only ;1
(see also Zurek, 1983, 2000). Redundancy measures the
number of errors that can obliterate the difference be-
tween two records, and in this basis one phase flip is
clearly enough. This basis dependence of redundancy
suggests an alternative strategy to seeking preferred
states.

To define R in general we can start with mutual infor-
mation between the subsystems of the environment Ek
and the system S. As we have already seen in Sec. IV,
the definition of mutual information in quantum me-
chanics is not straightforward. The basis-independent
formula

Ik5I~S:Ek!5H~S!1H~Ek!2H~S,Ek! (7.11)

is simple to evaluate [although it does have some strange
features; see Eqs. (4.30)–(4.36)]. In the present context
it involves the joint density matrix

rSEk
5TrE/Ek

rSE , (7.12)

where the trace is carried out over all of the environ-
ment except for its singled-out fragment Ek . In the ex-
ample of Eq. (7.1), for any of the environment bits,

rSEk
5uau2u↑&^↑uu0&^0u1ubu2u↓&^↓uu1&^1u.

Given the partitioning of the environment into sub-
systems, the redundancy ratio can be defined as

RI~$ ^ HEk
%!5(

k
I~S:Ek!/H~S!. (7.13)

When R is maximized over all of the possible partitions,

RI max5 max
$ ^ HEk

%

R$ ^ HEk
% (7.14)

is obtained. Roughly speaking, RI max is the total num-
ber of copies of the information about (the optimal basis
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of) S that exist in E. The maximal redundancy ratio
RI max is of course basis independent.

The information defined through the symmetric Ik ,
Eq. (7.11), is in general inaccessible to observers who
interrogate the environment one subsystem at a time
(Zurek, 2003a). It therefore makes sense to consider the
basis-dependent locally accessible information and de-
fine the corresponding redundancy ratio RJ using

Jk5J~S:Ek!5H~S!1H~Ek!2@H~S!1H~EkuS!# .
(7.15)

The conditional entropy must be computed in a specific
basis of the system [see Eq. (4.32)]. All of the other
steps that have led to the definition of RI max can now be
repeated using Jk . In the end, a basis dependent

RJ~$us&%)5RJ~ ^ HEk
! (7.16)

is obtained. RJ($us&%) quantifies the mutual information
between the collection of subsystems HEk

of the environ-
ment and the basis $us&% of the system. We note that the
condition of nonoverlapping partitions guarantees that
all of the corresponding measurements commute, and
that the information can indeed be extracted indepen-
dently from each environment fragment Ek .

The preferred basis of S can now be defined by maxi-
mizing RJ($us&%) with respect to the selection of $us&%:

RJ max5 max
$us&%;$ ^ HEk

%

RJ~$us&%). (7.17)

This maximum can be sought either by varying the basis
of the system only or (as is indicated above) by varying
both the basis and the partition of the environment.

It remains to be seen whether and under what circum-
stances the pointer basis ‘‘stands out’’ through its defini-
tion in terms of RJ. The criterion for a well-defined set
of pointer states $up&% would be

RJ max5RJ~$up&%)@RJ~$us&%), (7.18)

where $us&% are typical superpositions of states belonging
to different pointer eigenstates.

This definition of preferred states directly employs the
notion of multiplicity of records available in the environ-
ment. Since J<I, it follows that

RJ max<RI max . (7.19)

The important feature of either version of R that makes
them useful for our purpose is their independence on
H(S). The dependence on H(S) is in effect normalized
out of R. R characterizes the fan-out of information
about the preferred basis throughout the environment,
without reference to what is known about the system.
The usual redundancy (in bits) is then ;R•H(S), al-
though other implementations of this program (Ollivier,
Poulin, and Zurek, 2002) employ different measures of
redundancy, which may be even more accurate than the
redundancy ratio we have described above. Indeed,
what is important here is the general idea of measuring
the classicality of quantum states through the number of
copies they imprint throughout the universe. This is a
very Darwinian approach. We define classicality related
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to einselection in ways reminiscent of ‘‘fitness’’ in natu-
ral selection: states that spawn most of the (information-
theoretic) progeny are the most classical.

4. Redundancy ratio rate

The rate of change of redundancy is of interest as
another measure of ‘‘fitness,’’ perhaps closest to the defi-
nitions of fitness used in modeling natural selection. Re-
dundancy can increase either as a result of interactions
between the system and the environment, or because the
environment already correlated with S is passing on the
information to more distant environments. In this sec-
ond case ‘‘genetic information’’ is passed on by the
‘‘progeny’’ of the original state. Even an observer con-
sulting the environment becomes a part of such a more-
distant environment. The redundancy rate is defined as

Ṙ5
d

dt
R. (7.20)

Either basis-dependent or basis-independent versions of
Ṙ may be of interest.

In general, it may not be easy to compute either R or
Ṙ exactly. This is nevertheless possible in models [such
as those leading to Eqs. (7.1) and (7.2)]. The simplest
illustrative example corresponds to the c-NOT model of
decoherence in Fig. 4. One can imagine that the con-
secutive record bits get correlated with the two branches
(corresponding to u0& and u1& in the control) at discrete
moments of time. R(t) would then be the total number
of c-NOT’s that have acted over time t, and Ṙ is the num-
ber of new c-NOT’s added per unit time.

The redundancy rate measures information flow from
the system to the environment. Note that, after the first
c-NOT in the example of Eqs. (7.1) and (7.2), RI will
jump immediately from 0 to 2 bits, while the basis spe-
cific RJ will increase from 0 to 1. In our model this
initial discrepancy [which reflects quantum discord, Eq.
(4.36), between I and J] will disappear after the second
c-NOT.

Finally, we note that R and, especially, Ṙ can be used
to introduce new predictability criteria: The states (or
the observables) that are being recorded most redun-
dantly are the obvious candidates for the objective
states, and therefore for the classical states.

B. Observers and the existential interpretation

von Neumann (1932), London and Bauer (1939), and
Wigner (1963) have all appealed to the special role of
the conscious observer. Consciousness was absolved
from following unitary evolution, and thus, could col-
lapse the wave packet. Quantum formalism has led us to
a different view that nevertheless allows for a compat-
ible conclusion. In essence, macroscopic systems are
open, and their evolution is almost never unitary.
Records maintained by the observers are subject to ein-
selection. In a binary alphabet decoherence will allow
for only the two logical states and prohibit their super-
positions (Zurek, 1991). For human observers, neurons
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conform to this binary convention, and the decoherence
times are short (Tegmark, 2000). Thus, even if a cell of
the observer entangles through a premeasurement with
a pure quantum state, the record will become effectively
classical almost instantly. As a result, it will be impos-
sible to ‘‘read it off’’ in any basis except for the einse-
lected one. This censorship of records is the key differ-
ence between the existential interpretation and Everett’s
original many-worlds interpretation.

Decoherence treats the observer as any other macro-
scopic quantum system. There is, however, one feature
distinguishing observers from the rest of the universe:
They are aware of the content of their memory. Here we
are using ‘‘aware’’ in a down-to-earth sense: Quite sim-
ply, observers know what they know. Their information-
processing machinery (which must underlie higher func-
tions of the mind such as ‘‘consciousness’’) can readily
consult the contents of their memory.

The information stored in memory comes with strings
attached. The physical state of the observer is described
in part by the data in his records. There is no informa-
tion without representation. The information the ob-
server has could be, in principle, deduced from his physi-
cal state. The observer is, in part, information.
Moreover, this information encoded in states of macro-
scopic quantum systems (neurons) is by no means secret.
As a result of the lack of isolation, the environment,
having redundant copies of the relevant data, knows in
detail everything the observer knows. Configurations of
neurons in our brains, while at present undecipherable,
are, in principle, as objective and as widely accessible as
the information about the states of other macroscopic
objects.

The observer is what he knows. In the unlikely case of
a flagrantly quantum input the physical state of the ob-
server’s memory will decohere, resulting almost instantly
in the einselected alternatives, each of them represent-
ing simultaneously both the observer and his memory.
The ‘‘advertising’’ of this state throughout the environ-
ment makes it effectively objective.

An observer perceiving the universe from within is in
a very different position than an experimental physicist
studying a state vector of a quantum system. In a labo-
ratory, the Hilbert space of the investigated system is
typically tiny. Such systems can be isolated, so that often
the information loss to the environment can be pre-
vented. Then the evolution is unitary. The experimental-
ist can know everything there is to know about it.

Common criticisms of the approach advocated in this
paper are based on an unjustified extrapolation of the
above laboratory situation to the case of the observer
who is a part of the universe. Critics of decoherence
often note that the differences between the laboratory
example above and the case of the rest of the universe
are merely quantitative: the system under investigation
is bigger, etc. So why cannot one analyze, they ask, in-
teractions of the observer and the rest of the universe as
before, for a small isolated quantum system?

In the context of the existential interpretation the
analogy with the laboratory is, in effect, turned upside
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down: For, now the observer (or the apparatus, or any-
thing effectively classical) is continuously monitored by
the rest of the universe. Its state is repeatedly forced
into the einselected states, and very well (very redun-
dantly) known to the rest of the universe.

The higher functions of observers, e.g., consciousness,
etc., may be at present poorly understood, but it is safe
to assume that they reflect physical processes in the
information-processing hardware of the brain. Hence
mental processes are in effect objective, since they must
reflect conditional quantum dynamics of open system—
observer’s network of neurons—and, hence leave an in-
delible imprint on the environment. The observer has no
chance of perceiving either his memory, or any other
macroscopic part of the universe in some arbitrary su-
perposition. Moreover, the memory capacity of observ-
ers is miniscule compared to the information content of
the universe. So, while observers may know the exact
state of the laboratory systems, their records of the uni-
verse will be very fragmentary. By contrast, the universe
has enough memory capacity to acquire and maintain
detailed records of the states of macroscopic systems
and their histories. Thus, indeed, it appears that con-
sciousness does not follow a unitary quantum evolution,
as the conditional dynamics that implements such
‘‘higher functions’’ must be subject to decoherence and
einselection (see also Tegmark, 2000). As promised, we
have in a sense recovered postulates of von Neumann,
London and Bauer, and Wigner, and we have done that
without involing any ‘‘extraphysical’’ postulates.

C. Events, records, and histories

Suppose that instead of a monotonous record se-
quence in the environment basis corresponding to the
pointer states of the system $u↑&,u↓&% implied by Eq. (7.1)
the observer looking at the environment detects

000 . . . 0111 . . . 1000 . . . 0111 . . . .

Given the appropriate additional assumptions, such se-
quences consisting of long stretches of record 0’s and 1’s
justify inference of the history of the system. Let us fur-
ther assume that the observer’s records come from inter-
cepting a small fragment of the environment. Other ob-
servers will then be able to consult their independently
accessible environmental records, and will infer (more
or less) the same history. Thus, in view of the prepon-
derance of evidence, history defined as a sensible infer-
ence from the available records can be probed by many
observers independently, and can be regarded as classi-
cal and objective.

The redundancy ratio of the records R is a measure of
this objectivity. Note that this relatively objective exis-
tence (Zurek, 1998a) is an operational notion, quantified
by the number of times the state of the system can be
determined independently, and not some absolute objec-
tivity. However, and in a sense that can be rigorously
defined, relative objectivity tends to absolute objectivity
in the limit R→`. For example, cloning of unknown
states becomes possible (Bruss, Ekert, and Macchia-
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vello, 1999; Jozsa, 2002) in spite of the no-cloning theo-
rem (Dieks 1982; Wootters and Zurek, 1982). In that
limit, and given the same reasonable constraints on the
nature of the interactions and on the structure of the
environment that underlies that definition of R, it would
take infinite resources such as action, Eqs. (7.5)–(7.9), to
hide or subvert evidence of such an objective history.

There are differences and parallels between the rela-
tively objective histories introduced here and the consis-
tent histories proposed by Griffiths (1984, 1996), and in-
vestigated by Gell-Mann and Hartle (1990, 1993, 1997),
Omnès (1988, 1992, 1994), Halliwell (1999), and others
(Dowker and Kent, 1996; Kiefer, 1996). Such histories
are defined as time-ordered sequences of projection op-
erators Pa1

1 (t1),Pa2

2 (t2),. . . ,Pan

n (tn) and are abbreviated

@Pa# . Consistency is achieved when they can be com-
bined into coarse-grained sets (where the projectors de-
fining a coarse-grained set are given by the sums of the
projectors in the original set) while obeying probability
sum rules: The probability of a bundle of histories
should be a sum of the probabilities of the constituent
histories. The corresponding condition can be expressed
in terms of the decoherence functional (Gell-Mann and
Hartle, 1990):

D~@Pa# ,@Pb#!

5Tr@Pan

n ~ tn!. . .Pa1

1 ~ t1!rPb1

1 ~ t1!. . .Pbn

n ~ tn!# .

(7.21)

Above, the state of the system of interest is described by
the density matrix r. Griffiths’ condition is equivalent to
the vanishing of the real part of the expression above,
Re$D(@Pa#,@Pb#)%5pada,b . As Gell-Mann and Hartle
(1990) emphasize, it is more convenient, and in the con-
text of an emergent classicality more realistic, to require
instead that D(@Pa# ,@Pb#)5pada ,b . Both weaker and
stronger conditions for the consistency of histories were
considered (Goldstein and Page, 1995; Gell-Mann and
Hartle, 1997). The problem with all of them is that the
resulting histories are very subjective: Given an initial
density matrix of the universe it is in general quite easy
to specify many different, mutually incompatible consis-
tent sets of histories. This subjectivity leads to serious
interpretational problems (d’Espagnat, 1989, 1995;
Dowker and Kent, 1996). Thus a demand for exact con-
sistency as one of the conditions for classicality is both
uncomfortable (overly restrictive) and insufficient (since
the resulting histories are very nonclassical). Moreover,
coarse grainings that help secure approximate consis-
tency have to be, in effect, guessed at.

The attitudes adopted by the practitioners of the
consistent-histories approach in view of its unsuitability
for the role of the cornerstone of emergent classicality
differ. Initially, before difficulties became apparent, it
was hoped that such an approach would answer all of
the interpretational questions, perhaps when supple-
mented by a subsidiary condition, i.e., some assumption
about favored coarse grainings. At present, some still
aspire to the original goals of deriving classicality from
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consistency alone. Others may uphold the original aims
of the program, but they also generally rely on
environment-induced decoherence, using in calculations
variants of models we have presented in this paper. This
strategy has been quite successful—after all, decoher-
ence leads to consistency. For instance, the special role
of the hydrodynamic observables (Gell-Mann and
Hartle, 1990; Dowker and Halliwell, 1992; Brun and
Hartle, 1999; Halliwell, 1999) can be traced to their pre-
dictability, or to their approximate commutativity with
the total Hamiltonian [see Eq. (4.41)]. On the other
hand, the original goals of Griffiths (1984, 1996) have
been more modest. Using consistent histories, one can
discuss the sequences of events in an evolving quantum
system without logical contradictions. The ‘‘golden
middle’’ is advocated by Griffiths and Omnès (1999)
who regard consistent histories as a convenient lan-
guage, rather than as an explanation of classicality.

The origin of effective classicality can be traced to
decoherence and einselection. As was noted by Gell-
Mann and Hartle (1990), and elucidated by Omnès
(1992, 1994) decoherence suffices to ensure approximate
consistency. But consistency is both not enough and too
much; it is too easy to accomplish, and does not neces-
sarily lead to classicality (Dowker and Kent, 1996).
What is needed instead is the objectivity of events and
their time-ordered sequences—their histories. As we
have seen above, both can appear as a result of einselec-
tion.

We have already provided an operational definition of
the relatively objective existence of quantum states. It is
easy to apply it to events and histories: When many ob-
servers can independently gather compatible evidence
concerning an event, we call it relatively objective. Rela-
tively objective history is then a time-ordered sequence
of relatively objective events.

Monitoring of the system by the environment leads to
decoherence and einselection. It will also typically lead
to redundancy and hence to an effectively objective clas-
sical existence in the sense of quantum Darwinism. Ob-
servers can independently access redundant records of
events and histories imprinted in the environmental de-
grees of freedom. The number of observers who can ex-
amine evidence etched in the environment can be of the
order of, and is bounded from above by, RJ. Redun-
dancy is a measure of this objectivity and classicality.

As observers record their data, RJ changes. Consider
an observer who measures the ‘‘right observable’’ of E
[i.e., the one with the eigenstates u0&,u1& in the example of
Eq. (7.1)]. Then his records and, as his records decohere,
also their environment, become a part of the evidence,
and are correlated with the preferred basis of the sys-
tem. Consequently RJ computed from Eq. (7.14) in-
creases. Every interaction that increases the number of
records also increases RJ. This is obvious for the ‘‘pri-
mary’’ interactions with the system, but it is also true for
the secondary, tertiary, etc., acts of replication of the in-
formation obtained from the observers who recorded
the primary state of the system, from the environment,
from the environment of the environment, and so on.
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A measurement reveals to the observer his branch of
the universal state vector. The correlations established
alter the observer’s state, his records, and ‘‘attach’’ him
to this branch. He will share it with other observers who
examined the same set of observables, and who have
recorded compatible results.

It is also possible to imagine a stubborn observer who
insists on measuring either the relative phase between
the two obvious branches of the environment in Eq.
(7.2), or the state of the environment in the Hadamard-
transformed basis $u1&,u2&%. In either case the distinction
between the two outcomes could determine the state of
the spin in the $u(&,u^&% basis. However, in that basis
RJ51. Hence, while, in principle, these measurements
can be carried out and yield the correct result, the infor-
mation concerning the $u(&,u^&% basis is not redundant
and therefore not objective: Only one stubborn observer
can access it directly. As a result RJ will decrease.
Whether RJ($u(&,u ^ &%) will become larger than
RJ($u↑&,u↓&%) was before the measurement of the stub-
born observer will depend on a detailed comparison of
the initial redundancy with the amplification involved,
the decoherence, etc.

There is a further significant difference between the
two stubborn observers considered above. When the ob-
server measures the phase between the two sequences of
0’s and 1’s in Eq. (7.2), correlations between the bits of
the environment remain. Thus, even after his measure-
ment, one could find relatively objective evidence of the
past event—the past state of the spin—and, in more
complicated cases, of the history. On the other hand,
measurement of all the environment bits in the $u1&,u2&u
basis will obliterate evidence of such a past.

The relatively objective existence of events is the
strongest condition we have considered here. It is a con-
sequence of the existence of multiple records of the
same set of states of the system. It allows for such mani-
festations of classicality as unimpeded cloning. It implies
einselection of states most closely monitored by the en-
vironment. Decoherence is clearly weaker and easier to
accomplish.

‘‘The past exists only insofar as it is recorded in the
present’’ (a dictum often repeated by Wheeler) may the
best summary of the above discussion. The relatively ob-
jective reality of a few selected observables in our famil-
iar universe is measured by their ‘‘Darwinian’’
fitness—by the redundancy with which they are re-
corded in the environment. This multiplicity of available
copies of the same information can be regarded as a
consequence of amplification, and as a cause of indelibil-
ity. Multiple records safeguard the objectivity of our
past.

VIII. DECOHERENCE IN THE LABORATORY

The biggest obstacle in the experimental study of de-
coherence is, paradoxically, its effectiveness. In the mac-
roscopic domain only the einselected states survive.
Their superpositions are next to impossible to prepare.
In the mesoscopic regime one may hope to adjust the
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size of the system, and thus, interpolate between quan-
tum and classical. The strength of the coupling to the
environment is the other parameter one may employ to
control the decoherence rate.

One of the key consequences of monitoring by the
environment is the inevitable introduction of the
Heisenberg uncertainty into the observable complemen-
tary to the one that is monitored. One can simulate such
uncertainty without any monitoring environment by in-
troducing classical noise. In each specific run of the ex-
periment, for each realization of time-dependent noise,
the quantum system will evolve deterministically. How-
ever, after averaging over different noise realizations, as
it is discussed in Sec. IV.C, the evolution of the density
matrix describing an ensemble of systems may approxi-
mate decoherence due to an entangling quantum envi-
ronment. In particular, the master equation may be es-
sentially the same as that for true decoherence, although
the interpretational implications are more limited. Yet,
using such strategies one can simulate much of the dy-
namics of open quantum systems.

The strategy of simulating decoherence can be taken
further: Not just the effect of the environment, but also
the dynamics of the quantum system can be simulated
by classical means. This can be accomplished when clas-
sical wave phenomena follow equations of motion re-
lated to the Schrödinger equation. We shall discuss ex-
periments that fall into all of the above categories.

Last but not least, while decoherence—through
einselection—helps solve the measurement problem, it
is also a major obstacle to quantum information process-
ing. We shall thus end this section briefly describing
strategies that may allow one to tame decoherence.

A. Decoherence due to entangling interactions

Several experiments fit this category, and more have
been proposed. Decoherence due to emission or scatter-
ing of photons has been investigated by the MIT group
of David Pritchard (Chapman et al., 1995) using atomic
interferometry. Emission or scattering deposits a record
in the environment. It can store information about the
path of the atom providing the photon wavelength is
shorter than the separation between two of the atoms.
In the case of emission this record is not redundant,
since the atom and photon are simply entangled, RJ
;1, in any basis. Scattering may involve more photons,
and a recent careful experiment (Kokorowski et al.,
2001) has confirmed the saturation of decoherence rate
at distances in excess of the photon wavelength (Gallis
and Fleming, 1990; Anglin, Paz, and Zurek, 1997).

There is an intimate connection between interference
and complementarity in the two-slit experiment on one
hand, and entanglement on the other (Wootters and
Zurek, 1979). Consequently, appropriate measurements
of the photon allow one to restore interference fringes in
the conditional subensembles corresponding to a defi-
nite phase between the two photon trajectories (see es-
pecially Chapman et al., 1995, as well as Kwiat, Stein-
berg, and Chiao, 1992; Pfau et al., 1994; Herzog, Kwiat,
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Weinfurter, and Zeilinger, 1995, for implementations of
this ‘‘quantum erasure’’ trick of Hillery and Scully,
1983). Similar experiments have also been carried out
using neutron interferometry (see, for example, Rauch,
1998).

In all of these experiments one is dealing with a very
simplified situation involving a single microsystem and a
single ‘‘unit’’ of decoherence (RJ;1) caused by a single
quantum of the environment. Experiments on a meso-
scopic system monitored by the environment are obvi-
ously much harder to devise. Nevertheless, Haroche,
Raimond, Brune, and their colleagues at the Ecole Nor-
male Supérieure (Brune et al., 1996; Haroche, 1998; Rai-
mond, Brune, and Haroche, 2001) have carried out a
spectacular experiment of this type, yielding solid evi-
dence in support of the basic tenets of the environment-
induced transition from quantum to classical. Their sys-
tem is a microwave cavity. It starts in a coherent state
with an amplitude corresponding to a few photons.

A Schrödinger-cat state is created by introducing an
atom in a superposition of two Rydberg states, u1&5u0&
1u1&: The atom passing through the cavity puts its re-
fractive index in a superposition of two values. Hence
the phase of the coherent state shifts by the amount
correlated with the state of the atom, creating an en-
tangled state:

u→&~ u0&1u1&)⇒u↗&u0&1u↘&u1&5uq&. (8.1)

Arrows indicate relative phase-space locations of coher-
ent states. States of the atom are u0& and u1&. The ‘‘Schrö-
dinger kitten’’ is prepared from this entangled state by
measuring the atom in the $u1&,u2&% basis:

uq&5~ u↗&1u↘&)u1&1~ u↗&2u↘&)u2& . (8.2)

Thus the atom in the state u1& implies preparation of a
‘‘positive cat’’ u]&5u↗&1u↘& in the cavity. Such superpo-
sitions of coherent states could survive forever if there
was no decoherence. However, radiation leaks out of the
cavity. Hence the environment acquires information
about the state inside. Consequences are tested by pass-
ing another atom in the state u1&5u0&1u1& through the
cavity. In the absence of decoherence the state would
evolve as

u]&u1&5~ u↗&1u↘&)~ u0&1u1&)

⇒~ u↑&u0&1u→&u1&)

1~ u→&u0&1u↓&u1&)

5~ u↑&u0&1u↓&u1&)1A2u→&u1&. (8.3)

Above we have omitted the overall normalization, but
retained the (essential) relative amplitude.

For the above state, detection of u1& in the first (pre-
paratory) atom implies the conditional probability of de-
tection of u1&, p1u153/4, for the second (test) atom. De-
coherence will suppress the off-diagonal terms of the
density matrix so that, some time after the preparation,
rcavity that starts, say, as u]&^]u becomes

rcavity5~ u↗&^↗u1u↘&^↘u!/2

1z~ u↗&^↘u1u↘&^↗u!/2. (8.4)
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When z50 the conditional probability is p(1u1)51/2.
In the intermediate cases intermediate values of this

and other relevant conditional probabilities are pre-
dicted. The rate of decoherence, and consequently, the
time-dependent value of z can be estimated from the
cavity quality factor Q, and from the data about the co-
herent state initially present in the cavity. The decoher-
ence rate is a function of the separation of the two com-
ponents of the cat u]&. Experimental results agree with
predictions.

The discussion above depends on the special role of
coherent states. Coherent states are einselected in har-
monic oscillators, and hence, in underdamped bosonic
fields (Anglin and Zurek, 1996). Thus they are the
pointer states of the cavity. Their special role is recog-
nized implicitly above: If number eigenstates were ein-
selected, predictions would obviously be quite different.
Therefore, while the Ecole Normale Supérieure experi-
ment is focused on the decoherence rate, confirmation
of the predicted special role of coherent states in
bosonic fields is its important (albeit implicit) corollary.

B. Simulating decoherence with classical noise

From the fundamental point of view, the distinction
between cases in which decoherence is caused by entan-
gling interactions with the quantum state of the environ-
ment and in which it is simulated by classical noise in the
observable complementary to the pointer is essential.
However, from the engineering point of view (adopted,
for example, by the practitioners of quantum computa-
tion, see Nielsen and Chuang, 2000, for a discussion) this
may not matter. For instance, quantum error-correction
techniques (Shor, 1995; Steane, 1996; Preskill, 1999) are
capable of dealing with either. Moreover, experimental
investigations of this subject often involve both.

The classic experiment in this category was carried
out recently by Wineland, Monroe, and their collabora-
tors (Myatt et al., 2000; Turchette et al., 2000). They used
an ion trap to study the behavior of individual ions in a
Schrödinger-cat state (Monroe et al., 1996) under the in-
fluence of injected classical noise. They also embarked
on a preliminary study of ‘‘environment engineering.’’

Superpositions of two coherent states as well as of
number eigenstates were subjected to simulated high-
temperature amplitude and phase ‘‘reservoirs.’’ This was
done through time-dependent modulation of the self-
Hamiltonian of the system. For the amplitude noise
these are, in effect, random fluctuations of the location
of the minimum of the harmonic trap. Phase noise cor-
responds to random fluctuations of the trap frequency.

In either case, the resulting loss of coherence is well
described by the exponential decay with time, with an
exponent that scales with the square of the separation
between the two components of the macroscopic quan-
tum superposition [e.g., Eq. (5.34)]. The case of the am-
plitude noise approximates decoherence in quantum
Brownian motion in that the coordinate is monitored by
the environment, and hence, the momentum is per-
turbed. (Note that in an underdamped harmonic oscilla-
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tor the rotating-wave approximation blurs the distinc-
tion between x and p, leading to einselection of coherent
states.) The phase noise would arise in an environment
monitoring the number operator, thus leading to uncer-
tainty in phase. Consequently, number eigenstates are
einselected.

The applied noise is classical, and the environment
does not acquire any information about the ion (RI
50). Thus, following a particular realization of the
noise, the state of the system is still pure. Nevertheless,
an ensemble average over many noise realizations is
represented by the density matrix that follows an appro-
priate master equation. Thus, as Wineland, Monroe, and
their colleagues note, decoherence simulated by classical
noise could be in each individual case—for each
realization—reversed by simply measuring the corre-
sponding time-dependent noise either beforehand or af-
terwards, and then applying the appropriate unitary
transformation to the state of the system. By contrast, in
the case of entangling interactions, two measurements,
one preparing the environment before the interaction
with the environment, the other following it, would be
the least required for a chance of undoing the effect of
decoherence.

The same two papers study the decay of a superposi-
tion of number eigenstates u0& and u2& due to an indirect
coupling with the vacuum. This proceeds through en-
tanglement with the first-order environment (that, in ef-
fect, consists of the other states of the harmonic oscilla-
tor) and a slower transfer of information to the distant
environment. Dynamics involving the system and its
first-order environment lead to nonmonotonic behavior
of the off-diagonal terms representing coherence. Fur-
ther studies of decoherence in the ion-trap setting are
likely to follow, since this is an attractive implementa-
tion of the quantum computer (Cirac and Zoller, 1995).

1. Decoherence, noise, and quantum chaos

Following a proposal of Graham, Schlautmann, and
Zoller (1993) Raizen and his group (Moore et al., 1994)
used a one-dimensional (1D) optical lattice to imple-
ment a variety of 1D chaotic systems including the
‘‘standard map.’’ Various aspects of the behavior ex-
pected from a quantized version of a classically chaotic
system were subsequently found, including, in particular,
dynamical localization (Reichl, 1992; Casati and Chir-
ikov, 1995a).

Dynamical localization establishes, in a class of driven
quantum chaotic systems, a saturation of momentum
dispersion, and leads to a characteristic exponential
form of its distribution (Casati and Chirikov, 1995a). Lo-
calization is obviously a challenge to the quantum-
classical correspondence, since in these very same sys-
tems the classical prediction has the momentum
dispersion growing unbounded, more or less with the
square root of time. However, localization sets in after
tL;\2a, where a;1 (rather than on the much shorter



767Wojciech Hubert Zurek: Decoherence, einselection, and the quantum origins of the classical
t\;ln \21 that we have discussed in Sec. III) so it can be
ignored for macroscopic systems. On the other hand, its
signature is easy to detect.

Demonstration of dynamical Anderson localization in
the optical-lattice implementation of the d-kicked rotor
and related studies of quantum chaos have been a sig-
nificant success (Moore et al., 1994). More recently, the
attention of both Raizen and his group in Texas as well
as of Christensen and his group in New Zealand has
shifted towards the effect of decoherence on quantum
chaotic evolution (Ammann et al., 1998; Klappauf et al.,
1998).

In all of the above studies the state of the chaotic
system (d-kicked rotor) was perturbed by spontaneous
emission from the trapped atoms, which was induced by
decreasing the detuning of the lasers used to set up the
optical lattice. In addition, noise was occasionally intro-
duced into the potential. Both groups found that, as a
result of spontaneous emission, localization disappears,
although the two studies differ in some of the details.
More experiments, including some that allow gentler
forms of monitoring by the environment (rather than
spontaneous emission noise) appear to be within reach.

In all of the above cases one deals, in effect, with a
large ensemble of identical atoms. While each atom suf-
fers repeated disruptions of its evolution due to sponta-
neous emission, the ensemble evolves smoothly and in
accord with the appropriate master equation. The situa-
tion is reminiscent of decoherence simulated by noise.
Indeed, experiments that probed the effect of classical
noise on chaotic systems were carried out earlier (Koch,
1995). They were, however, analyzed from a point of
view that does not readily shed light on decoherence.

A novel experimental approach to decoherence and
to irreversibility in open complex quantum systems has
been pursued by Levstein, Pastawski, and their col-
leagues (Levstein, Usaj, and Pastawski, 1998; Levstein
et al., 2000). Using NMR techniques they investigated
the reversibility of dynamics by implementing a version
of spin echo. This promising ‘‘Loschmidt echo’’ ap-
proach has led to renewed interest in the issues that
touch on quantum chaos, decoherence, and related sub-
jects (see, for example, Jacquod, Silvestrov, and Beenak-
ker, 2001; Jalabert and Pastawski, 2001; Gorin and Selig-
man, 2002; Prosen and Seligman, 2002).

2. Analog of decoherence in a classical system

Both the system and the environment are effectively
classical in the last category of experiments, represented
by the work of Cheng and Raymer (1999). They have
investigated the behavior of transverse spatial coherence
during the propagation of an optical beam through a
dense, random dielectric medium. This problem can be
modeled by a Boltzmann-like transport equation for the
Wigner function of the wave field, and exhibits a char-
acteristic increase of decoherence rate with the square
of the spatial separation, followed by saturation at suffi-
ciently large distances. This saturation contrasts with the
simple models of decoherence in quantum Brownian
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
motion that are based on a dipole approximation. How-
ever, it is in good accord with more sophisticated discus-
sions that recognize that, for separations of the order of
the prevalent wavelength in the environment, the dipole
approximation fails and other more complicated behav-
iors can set in (Gallis and Fleming, 1990; Anglin, Paz,
and Zurek, 1997; Paz and Zurek, 1999). A similar result
in a completely quantum case was obtained by Koko-
rowski et al. (2001) using atomic interferometry.

C. Taming decoherence

In many of the applications of quantum mechanics the
quantum nature of the information stored or processed
needs to be protected. Thus decoherence is an enemy.
Quantum computation is an example of this situation. A
quantum computer can be thought of as a sophisticated
interference device that works by performing in parallel
a coherent superposition of a multitude of classical com-
putations. Loss of coherence would disrupt the quantum
parallelism essential for the expected speedup.

In the absence of the ideal—a completely isolated ab-
solutely perfect quantum computer, something easy for a
theorist to imagine but impossible to attain in the
laboratory—one must deal with imperfect hardware
‘‘leaking’’ some of its information to the environment.
And maintaining isolation while simultaneously achiev-
ing a reasonable ‘‘clock time’’ for the quantum computer
is likely to be difficult since both are in general con-
trolled by the same interaction [although there are ex-
ceptions; for example, in the ion-trap proposal of Cirac
and Zoller (1995) interaction is in a sense ‘‘on demand,’’
and is turned on by the laser coupling the internal states
of ions with the vibrational degree of freedom of the ion
chain].

The need for error correction in quantum computa-
tion was realized early on (Zurek, 1984b) but methods
for accomplishing this goal have evolved dramatically
from the Zeno effect suggested then to the very sophis-
ticated (and much more effective) strategies in recent
years. This is fortunate. Without error correction even
fairly modest quantum computations (such as factoring
the number 15 in an ion trap with imperfect control of
the duration of the laser pulses) go rapidly astray as a
consequence of relatively small imperfections (Miquel,
Paz, and Zurek, 1997).

Three different, somewhat overlapping, approaches
that aim to control and tame decoherence, or to correct
errors caused by decoherence or by the other imperfec-
tions of the hardware, have been proposed. We summa-
rize them very briefly, spelling out main ideas and point-
ing out references that discuss them in greater detail.

1. Pointer states and noiseless subsystems

The most straightforward strategy to suppress deco-
herence is to isolate the system of interest (e.g., the
quantum computer). Failing that, one may try to isolate
some of its observables with degenerate pointer sub-
spaces, which then constitute niches in the Hilbert space
of the information-processing system that do not get dis-
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rupted in spite of the coupling to the environment.
Decoherence-free subspaces are thus identical in con-
ception with the pointer subspaces introduced some
time ago (Zurek, 1982), and satisfy (exactly or approxi-
mately) the same Eqs. (4.22) and (4.41) or their equiva-
lents [given, for example, in terms of ‘‘Kraus operators’’
(Kraus, 1983)] that represent the nonunitary conse-
quences of the interaction with the environment in the
Lindblad (1976) form of the master equation.
Decoherence-free subspaces were (re)discovered in the
context of quantum information processing. They ap-
pear as a consequence of an exact or approximate sym-
metry of the Hamiltonians that govern the evolution of
the system and its interaction with the environment (Za-
nardi and Rasetti, 1997; Duan and Guo, 1998; Lidar
et al., 1999; Zanardi, 1998, 2001).

An active extension of this approach aimed at finding
quiet corners of the Hilbert space is known as dynamical
decoupling. There the effectively decoupled subspaces
are induced by time-dependent modifications of the evo-
lution of the system deliberately introduced from the
outside by time-dependent Hamiltonians and/or mea-
surements (see, for example, Viola and Lloyd, 1998; Za-
nardi, 2001). A further generalization and unification of
various techniques leads to the concept of noiseless
quantum subsystems (Knill, Laflamme, and Viola, 2000;
Zanardi, 2001), which may be regarded as a non-
Abelian (and quite nontrivial) generalization of pointer
subspaces.

A sophisticated and elegant strategy that can be re-
garded as a version of the decoherence-free approach
was devised independently by Kitaev (1997a, 1997b). He
has advocated using states that are topologically stable,
and thus, can successfully resist arbitrary interactions
with the environment. The focus here (in contrast to
much of the decoherence-free subspace work) is on de-
vising a system with a self-Hamiltonian that—as a con-
sequence of the structure of the gap in its energy spec-
trum relate to the ‘‘cost’’ of topologically nontrivial
excitations—acquires a subspace isolated de facto from
the environment. This approach has been further devel-
oped by Bravyi and Kitaev (1998) and by Freedman and
Meyer (2001).

2. Environment engineering

This strategy involves altering the (effective) interac-
tion Hamiltonian between the system and the environ-
ment or influencing the state of the environment to se-
lectively suppress decoherence. There are many ways to
implement it, and we shall describe under this label a
variety of proposed techniques (some of which are not
all that different from the strategies we have just dis-
cussed) that aim to protect the quantum information
stored in selected subspaces of the Hilbert space of the
system, or even to exploit the pointer states induced or
redefined in this fashion.

The basic question that started this line of research,
whether one can influence the choice of the preferred
pointer states, arose in the context of the ion-trap quan-
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tum computer proposed by Cirac and Zoller (1995). The
answer given by the theory is, of course, that the choice
of the einselected basis is predicated on the details of
the situation and, in particular, on the nature of the in-
teraction between the system and the environment
(Zurek, 1981, 1982, 1993a). Yet Poyatos, Cirac, and Zol-
ler (1996) have suggested a scheme suitable for imple-
mentation in an ion trap, in which interaction with the
environment, and, in accord with Eq. (4.41), the pointer
basis itself, can be adjusted. The key idea is to recognize
that the effective coupling between the vibrational de-
grees of freedom of an ion (the system) and the laser
light (which plays the role of the environment) is given
by

Hint5
V

2
~s1e2ivLt1s2eivLt!sin@k~a1a1!1f# .

(8.5)

Above, V is the Rabi frequency, vL the laser frequency,
f is related to the relative position of the center of the
trap with respect to the laser standing wave, and k is the
Lamb-Dicke parameter of the transition, while s2(s1)
and a(a1) are the annihilation and creation operators of
the atomic transition and of the harmonic oscillator rep-
resenting ion in the trap, respectively.

By adjusting f and vL and adopting the appropriate
set of approximations (which includes the elimination of
the internal degrees of freedom of the atom) one is led
to the master equation for the system, i.e, for the density
matrix of the vibrational degree of freedom,

ṙ5g~2frf12f1fr2rf1f !. (8.6)

Above, f is an operator with a form that depends on the
adjustable parameters f and vL in Hint , while g is a
constant that also depends on V and h. As Poyatos et al.
show, one can alter the effective interaction between the
slow degree of freedom (the oscillator) and the environ-
ment (laser light) by adjusting the parameters of the ac-
tual Hint .

The first steps towards realization of these ‘‘environ-
ment engineering’’ proposals were taken by the NIST
group (Myatt et al., 2000; Turchette et al., 2000). Similar
techniques can be employed to protect deliberately se-
lected states from decoherence (Carvalho et al., 2001).

Other ideas aimed at controling and even at exploit-
ing decoherence have also been explored in contexts
that range from quantum information processing (Beige
et al., 2000) to preservation of Schrödinger cats in Bose-
Einstein condensates (Dalvit, Dziarmaga, and Zurek,
2000).

3. Error correction and resilient quantum computing

This strategy is perhaps the most sophisticated and
comprehensive, and capable of dealing with the greatest
variety of errors in the most hardware-independent
manner. It is a direct descendant of the error-correction
techniques employed in dealing with classical informa-
tion based on redundancy. Multiple copies of the infor-
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mation are made, and the errors are found and cor-
rected by sophisticated ‘‘majority voting’’ techniques.

One might have thought that implementing error cor-
rection in the quantum setting would be difficult for two
reasons. To begin with, quantum states and hence, quan-
tum information cannot be cloned (Dieks, 1982; Woot-
ters and Zurek, 1982). Moreover, quantum information
is very private, and the measurement that is involved in
majority voting would infringe on this privacy and de-
stroy quantum coherence, making quantum information
classical. Fortunately, both of these difficulties can be
simultaneously overcome by encoding quantum infor-
mation in entangled states of several qubits. Cloning
turns out not to be necessary. And measurements can be
carried out in a way that identifies errors while keeping
quantum information untouched. Moreover, error cor-
rection is discrete; measurements that reveal error syn-
dromes have ‘‘yes-no’’ outcomes. Thus, even though the
information stored in a qubit represents a continuum of
possible quantum states (e.g., corresponding to a surface
of the Bloch sphere) error correction is discrete, allaying
one of the earliest worries concerning the feasibility of
quantum computation—the unchecked ‘‘drift’’ of the
quantum state representing the information (Landauer,
1995).

This strategy [discovered by Shor (1995) and Steane
(1996)] has been since investigated by many (Bennett
et al., 1996; Ekert and Macchiavello, 1996; Laflamme
et al., 1996) and codified into a mathematically appeal-
ing formalism (Gottesman, 1996; Knill and Laflamme,
1997). Moreover, the first examples of successful imple-
mentation (see, for example, Cory et al., 1999) are al-
ready at hand.

Error correction allows one, at least, in principle, to
compute forever, providing that the errors are suitably
small (;1024 per computational step seems to be the
error-probability threshold sufficient for most error-
correction schemes). Strategies that accomplish this en-
code qubits in already encoded qubits (Aharonov and
Ben-Or, 1996; Knill, Laflamme, and Zurek, 1996, 1998a,
1998b; Kitaev, 1997c; Preskill, 1998). The number of lay-
ers of such concatenations necessary to achieve fault
tolerance—the ability to carry out arbitrarily long
computations—depends on the size (and the character)
of the errors, and on the duration of the computation,
but when the error probability is smaller than the
threshold, that number of layers is finite. Overviews of
fault-tolerant computation are already at hand (Preskill,
1999; Nielsen and Chuang, 2000, and references
therein).

An interesting subject related to the above discussion
is quantum process tomography, anticipated by Jones
(1994), and described in the context of quantum infor-
mation processing by Chuang and Nielsen (1997) and by
Poyatos, Cirac, and Zoller (1997). The aim here is to
completely characterize a process, such as a quantum
logical gate, and not just a state. The first deliberate
implementation of this procedure (Nielsen, Knill, and
Laflamme, 1998) has also demonstrated experimentally
that einselection is indeed equivalent to an unread mea-
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surement of the pointer basis by the environment, and
can be regarded as such from the standpoint of applica-
tions (e.g., NMR teleportation in the example above).

IX. CONCLUDING REMARKS

Decoherence, einselection, pointer states, and even
the predictability sieve have become familiar to many in
the past decade. The first goal of this paper was to re-
view these advances and to survey, and—where possible,
to address—the remaining difficulties. The second re-
lated aim was to preview future developments. This has
led to considerations involving information, as well as to
the operational, physically motivated discussions of
seemingly esoteric concepts such as objectivity. Some of
the material presented (including the Darwinian view of
the emergence of objectivity through redundancy, as
well as the discussion of envariance and probabilities) is
rather new, and a subject of research, hence the word
‘‘preview’’ applies here.

New paradigms often take a long time to gain ground.
The atomic theory of matter (which, until the early 20th
century, was ‘‘just an interpretation’’) is a case in point.
Some of the most tangible applications and conse-
quences of new ideas are difficult to recognize immedi-
ately. In the case of atomic theory, Brownian motion is a
good example. Even when the evidence is available, it is
often difficult to decode its significance.

Decoherence and einselection are no exception. They
have been investigated for about two decades. They are
the only explanation of classicality that does not require
modifications of quantum theory, as do the alternatives
(Bohm, 1952; Pearle, 1976, 1993; Leggett, 1980, 1998,
2002; Ghirardi, Rimini, and Weber, 1986, 1987; Penrose,
1986, 1989; Gisin and Percival, 1992, 1993a, 1993b,
1993c; Holland, 1993; Goldstein, 1998). Ideas based on
the immersion of the system in the environment have
recently gained enough support to be described (by
skeptics) as ‘‘the new orthodoxy’’ (Bub, 1997). This is a
dangerous characterization, since it suggests that the in-
terpretation based on the recognition of the role of the
environment is both complete and widely accepted. Cer-
tainly neither is the case.

Many conceptual and technical issues (such as what
constitutes a system) are still open. As for the breadth of
acceptance, ‘‘the new orthodoxy’’ seems to be an opti-
mistic (mis)characterization of decoherence and einse-
lection, especially since this explanation of the transition
from quantum to classical has (with very few exceptions)
not made it into the textbooks. This is intriguing, and
may be as much a comment on the way in which quan-
tum physics has been taught, especially on the under-
graduate level, as on the status of the theory we have
reviewed and its level of acceptance among physicists.

Quantum mechanics has been to date, by and large,
presented in a manner that reflects its historical devel-
opment. That is, Bohr’s planetary model of the atom is
still often the point of departure, Hamilton-Jacobi equa-
tions are used to ‘‘derive’’ the Schrödinger equation, and
an oversimplified version of the quantum-classical rela-
tionship (attributed to Bohr, but generally not doing jus-
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tice to his much more sophisticated views) with the cor-
respondence principle, kinship of commutators and
Poisson brackets, the Ehrenfest theorem, some version
of the Copenhagen interpretation, and other evidence
that quantum theory is really not all that different from
classical—especially when systems of interest become
macroscopic, and all one cares about are averages—is
presented.

The message seems to be that there is really no prob-
lem and that quantum mechanics can be ‘‘tamed’’ and
confined to the microscopic domain. Indeterminacy and
the double-slit experiment are of course discussed, but
to prove peaceful coexistence within the elbow room
assured by Heisenberg’s principle and complementarity.
Entanglement is rarely explored. This is quite consistent
with the aim of introductory quantum-mechanics
courses, which has been (only slightly unfairly) summed
up by the memorable phrase ‘‘shut up and calculate.’’
Discussion of measurement is either dealt with through
models based on the Copenhagen interpretation ‘‘old or-
thodoxy’’ or not at all. An implicit (and sometimes ex-
plicit) message is that those who ask questions that do
not lend themselves to an answer through laborious,
preferably perturbative calculations are ‘‘philosophers’’
and should be avoided.

The above description is of course a caricature. But
given that the calculational techniques of quantum
theory needed in atomic, nuclear, particle, or condensed-
matter physics are indeed difficult to master, and given
that, to date, most of the applications had nothing to do
with the nature of quantum states, entanglement, and
such, the attitude of avoiding the most flagrantly quan-
tum aspects of quantum theory is easy to understand.

Yet, novel applications force one to consider questions
about the information content, the nature of the quan-
tum, and the emergence of the classical much more di-
rectly, with a focus on states and correlations, rather
than on the spectra, cross sections, and the expectation
values. Hence problems that are usually bypassed will
come to the fore. It is hard to brand Schrödinger cats
and entanglement as exotic and make them the center-
piece of a marketable device. I believe that as a result
decoherence will become part of textbook lore. Indeed,
at the graduate level there are already some notable ex-
ceptions among monographs (Peres, 1993) and special-
ized texts (Walls and Milburn, 1994; Nielsen and
Chuang, 2000).

Moreover, the range of subjects already influenced by
decoherence and einselection—by the ideas originally
motivated by the quantum theory of measurements—is
beginning to extend way beyond its original domain. In
addition to atomic physics, quantum optics, and quan-
tum information processing (which were all mentioned
throughout this review) it stretches from material sci-
ences (Karlsson, 1998; Chatzidimitriou-Dreismann et al.,
1997, 2001), surface science, where it seems to be an
essential ingredient explaining the emission of electrons
(Brodie, 1995; Durakiewicz et al., 2001), through heavy-
ion collisions (Krzywicki, 1993) to quantum gravity and
cosmology (Zeh, 1986, 1988, 1992; Kiefer, 1987; Halli-
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
well, 1989; Barvinsky and Kamenshchik, 1990, 1995;
Brandenberger, Laflamme, and Mijic, 1990; Paz and
Sinha, 1991, 1992; Castagnino et al., 1993; Kiefer and
Zeh, 1995; Mensky and Novikov, 1996) and even (quan-
tum) robotics (Benioff, 1988). Given the limitations of
space we have not done justice to most of these subjects,
focusing instead on issues of principle. In some areas
reviews already exist. Thus Giulini et al. (1996) is a valu-
able collection of essays, where, for example, decoher-
ence in field theories is addressed. The dissertation of
Wallace (2002) offers a good (if somewhat philosophi-
cal) summary of the role of decoherence with a rather
different emphasis on similar field-theoretic issues. Con-
ference proceedings edited by Blanchard et al. (2000)
and, especially, an extensive historical overview of the
foundation of quantum theory from the modern per-
spective by Auletta (2000) are also recommended. More
specific technical issues with implications for decoher-
ence and einselection have also been reviewed. For ex-
ample, on the subject of master equations there are sev-
eral reviews with very different emphases including
Alicki and Lendi (1987); Grabert, Schramm, and Ingold
(1988); Namiki and Pascazio (1993); as well as—more
recently—Paz and Zurek (2001). In some areas, such as
atomic Bose-Einstein condensation, the study of deco-
herence has only started (Anglin, 1997; Dalvit, Dziar-
maga, and Zurek, 2001). In many situations (e.g., quan-
tum optics) a useful supplement to the decoherence
view of the quantum-classical interface is afforded by
quantum trajectories—a study of the state of the system
inferred from the intercepted state of the environment
(see Carmichael, 1993; Gisin and Percival, 1993a, 1993b,
1993c; Wiseman and Milburn, 1993). This approach ‘‘un-
ravels’’ the evolving density matrices of open systems
into trajectories conditioned upon the measurement car-
ried out on the environment, and may have—especially
in quantum optics—intriguing connections with the ‘‘en-
vironment as a witness’’ point of view (see Dalvit, Dziar-
maga, and Zurek, 2001). In other areas, such as con-
densed matter, decoherence phenomena have so many
variations and are so pervasive that a separate ‘‘decoher-
ent review’’ may be in order, especially as intriguing ex-
perimental puzzles seem to challenge the theory (Mo-
hanty and Webb, 1997; Kravtsov and Altshuler, 2000).
Indeed, perhaps the most encouraging development is
the increase of interest in experiments that test validity
of quantum physics beyond the microscopie domain
(see, for example, Folman, Krüger, Schmiedmayer, et al.,
2002; Marshall, Simon, Penrose, and Bouwmeester,
2002).

The physics of information and computation is a spe-
cial case. Decoherence is obviously a key obstacle in the
implementation of information-processing hardware
that takes advantage of the superposition principle.
While we have not focused on quantum information
processing, the discussion has often been couched in lan-
guage inspired by information theory. This is no acci-
dent. It is the belief of this author that many of the
remaining gaps in our understanding of quantum physics
and its relation to the classical domain—such as the defi-
nition of systems, or the still mysterious aspects of
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collapse—will follow the pattern of the predictability
sieve and be expanded into new areas of investigation by
considerations that simultaneously elucidate the nature
of the quantum and of information.
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Stern, A., Y. Aharonow, and Y. Imry, 1989, Phys. Rev. A 41,

3436.
Sussman, G. J., and J. Wisdom, 1992, Science 257, 56.
Tegmark, M., 2000, Phys. Rev. E 61, 4194.
Tegmark, M., and H. S. Shapiro, 1994, Phys. Rev. E 50, 2538.
Tegmark, M., and J. A. Wheeler, 2001, Sci. Am. 284, 68.
Turchette, Q. A., et al., 2000, Phys. Rev. A 62, 053807.
Unruh, W. G., 1994, Phys. Rev. A 50, 882.
Unruh, W. G., and W. H. Zurek, 1989, Phys. Rev. D 40, 1071.
Vedral, V., 2003, Phys. Rev. Lett. 90, 050401.
Venugopalan, A., 1994, Phys. Rev. A 50, 2742.
Venugopalan, A., 2000, Phys. Rev. A 6, 012102.
Viola, L., and S. Lloyd, 1998, Phys. Rev. A 58, 2733.
von Neumann, J., 1932, Mathematische Grundlagen der Quan-

tenmechanik (Springer, Berlin); reprinted 1981; English trans-
lation by R. T. Beyer, 1955: Mathematical Foundations of
Quantum Mechanics (Princeton University, Princeton, NJ).

Wallace, D., 2002, Issues in the Foundations of Relativistic
Quantum Theory (Merton College, University of Oxford, Ox-
ford, England).

Walls, D. F., and G. J., Milburn, 1994, Quantum Optics
(Springer, Berlin).

Wehrl, A., 1978, Rev. Mod. Phys. 50, 221.
Wheeler, J. A., 1957, Rev. Mod. Phys. 29, 463.
Wheeler, J. A., 1978, in Mathematical Foundations of Quantum

Theory, edited by A. R. Marlow (Academic, New York), p. 9.
Wheeler, J. A., 1983, in Quantum Theory and Measurement,

edited by J. A. Wheeler and W. H. Zurek (Princeton Univer-
sity, Princeton, NJ), p. 182.

Wheeler, J. A., and W. H. Zurek, 1983, Eds., Quantum Theory
and Measurement (Princeton University, Princeton, NJ).

Wick, G. C., A. S. Wightman, and E. P. Wigner, 1952, Phys.
Rev. 88, 101.

Wick, G. C., A. S. Wightman, and E. P. Wigner, 1970, Phys.
Rev. D 1, 3267.

Wightman, A. S., 1995, Nuovo Cimento B 110, 751.
Wigner, E. P., 1963, Am. J. Phys. 31, 6. Reprinted 1983 in

Quantum Theory and Measurement, edited by J. A. Wheeler
and W. H. Zurek (Princeton University, Princeton, NJ), p.
324.
Rev. Mod. Phys., Vol. 75, No. 3, July 2003
Wisdom, J., 1985, Icarus 63, 272.
Wiseman, H. M., and G. J. Milburn, 1993, Phys. Rev. Lett. 70,

548.
Wiseman, H. M., and J. A. Vaccaro, 1998, Phys. Lett. A 250,

241.
Wootters, W. K., and B. D. Fields, 1989, Ann. Phys. (N.Y.) 191,

363.
Wootters, W. K., and W. H. Zurek, 1979, Phys. Rev. D 19, 473.
Wootters, W. K., and W. H. Zurek, 1982, Nature (London) 299,

802.
Zanardi, P., 1998, Phys. Rev. A 57, 3276.
Zanardi, P., 2001, Phys. Rev. A 63, 012301.
Zanardi, P., and M. Rasetti, 1997, Phys. Rev. Lett. 79, 3306.
Zeh, H. D., 1970, Found. Phys. 1, 69. Reprinted 1983 in Quan-

tum Theory and Measurement, edited by J. A. Wheeler and
W. H. Zurek (Princeton University, Princeton, NJ), p. 342.

Zeh, H. D., 1971, in Foundations of Quantum Mechanics, ed-
ited by B. d’Espagnat (Academic, New York), p. 263.

Zeh, H. D., 1973, Found. Phys. 3, 109.
Zeh, H. D., 1986, Phys. Lett. A 116, 9.
Zeh, H. D., 1988, Phys. Lett. A 172, 311.
Zeh, H. D., 1990, in Complexity, Entropy, and the Physics of

Information, edited by W. H. Zurek (Addison-Wesley, Palo
Alto), p. 405.

Zeh, H. D., 1992, The Physical Basis of the Direction of Time
(Springer, Berlin).

Zeh, H. D., 1993, Phys. Lett. A 172, 189.
Zeh, H. D., 1997, in New Developments on Fundamental Prob-

lems in Quantum Physics, edited by M. Ferrero and A. van
der Merwe (Kluwer, Dordrecht).

Zeh, H. D., 2000, in Decoherence: Theoretical, Experimental,
and Conceptual Problems, edited by Ph. Blanchard et al.
(Springer, Berlin), p. 19.

Zurek, W. H., 1981, Phys. Rev. D 24, 1516.
Zurek, W. H., 1982, Phys. Rev. D 26, 1862.
Zurek, W. H., 1983, in Quantum Optics, Experimental Gravi-

tation, and Measurement Theory, edited by P. Meystre and M.
O. Scully (Plenum, New York), p. 87.

Zurek, W. H., 1984a, in Frontiers in Nonequilibrium Statistical
Physics, edited by G. T. Moore and M. T. Scully (Plenum,
New York, 1986), p. 145.

Zurek, W. H., 1984b, Phys. Rev. Lett. 53, 391.
Zurek, W. H., 1989, Phys. Rev. A 40, 4731.
Zurek, W. H., 1991, Phys. Today 44 (10), 36.
Zurek, W. H., 1993a, Prog. Theor. Phys. 89, 281.
Zurek, W. H., 1993b, Phys. Today 46 (4), 13.
Zurek, W. H., 1994, in From Statistical Physics to Statistical

Inference and Back, edited by P. Grassberger and J.-P. Nadal
(Plenum, New York), p. 341.

Zurek, W. H., 1998a, Philos. Trans. R. Soc. London, Ser. A 356,
1793.

Zurek, W. H., 1998b, Phys. Scr., T 76, 186.
Zurek, W. H., 2000, Ann. Phys. (Leipzig) 9, 855.
Zurek, W. H., 2001, Nature (London) 412, 712.
Zurek, W. H., 2003a, Phys. Rev. A 67, 012320.
Zurek, W. H., 2003b, Phys. Rev. Lett. 90, 120404.
Zurek, W. H., S. Habib, and J.-P. Paz, 1993, Phys. Rev. Lett. 70,

1187.
Zurek, W. H., and J.-P. Paz, 1994, Phys. Rev. Lett. 72, 2508.
Zurek, W. H., and J.-P. Paz, 1995a, Physica D 83, 300.
Zurek, W. H., and J.-P. Paz, 1995b, Phys. Rev. Lett. 72, 2508.


