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Abstract 
Bagging forms a committee of classijiers by bootstrap ag- 
gregation of training sets from a pool of training data. A 
simple alternative to bagging is to partition the data into 
disjoint subsets. Experiments on various datasets show 
that, given the same size partitions and bags, disjoint parti- 
tions result in betterperformance than bootstrap aggregates 
(bags). Many applications (e.g., protein structure predic- 
tion) involve use of datasets that are too large to handle in 
the memory of the typical computer: Our results indicate 
that, in such applications, the simple approach of creating 
a committee of classijiers from disjoint partitions is to be 
preferred over the more complex approach of bagging. 

1. Introduction 
Many data mining applications use data sets that are too 
large to be handled in the memory of the typical computer. 
One possible approach is to sub-sample the data in some 
manner [ 1,2]. However, it can be difficult a priori to know 
how to sub-sample so that accuracy is not affected. An- 
other possible approach is to partition the original data into 
smaller subsets, and form a committee of classifiers [3, 41. 
One advantage of this approach is that the partition size can 
simply be set at whatever amount of the original data can be 
conveniently handled on the available system. Another ad- 
vantage is that the committee potentially has better accuracy 
than a single classifier constructed on all the data. 

In its typical form, bagging involves random sampling 
with replacement from the original pool of training data to 
create “bags” of data for a committee of thirty to one hun- 
dred classifiers. Bagging has been shown to result in im- 
proved performance over a single classifier created on all of 

the original data [5,6,7]. The success of bagging suggests 
that it might be a useful approach to creating a committee 
of classifiers for large data sets. We define large data sets as 
those which do not fit in the memory of a typical scientific 
computer. However, experience with bagging has primarily 
been in the context of “small” data sets. If the original data 
set is too large to handle conveniently, then creating and 
processing thirty or more bags will of course present even 
greater problems. This raises the question of which partic- 
ulars of the bagging approach are essential in the context of 
large data sets. In this work, we show that simple partition- 
ing of a large original data set into disjoint subsets results in 
better performance than creating bags of the same size. 

2. Literature Review 
Breiman’s bagging [5] has been shown to improve classi- 
fier accuracy. Bagging basically combines models learned 
on different samplings of a given dataset. According to 
Breiman, bagging exploits the instability in the classifiers, 
since perturbing the training set produces different classi- 
fiers using the same learning algorithm. Quinlan exper- 
imented with bagging on various datasets and found that 
bagging substantially improved accuracy [6]. However, the 
experiments were performed on “small” datasets, the largest 
one being 20,000 examples. 

Domingos empirically tested two alternative theories 
supporting bagging: (1) bagging works because it approx- 
imates Bayesian model averaging or (2) it works because 
it shifts the priors to a more appropriate region in the deci- 
sion space [8]. The empirical results showed that bagging 
worked possibly because it counter-acts the inherent sim- 
plicity bias of the decision trees. That is, with M different 
bags, M different classifiers are learned, and together their 
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output is more complex than that of the single learner. 
Chan and Stolfo [9] compared arbiter and combiner 

strategies by applying a learning algorithm to disjoint sub- 
sets of data. Their experiments showed that the arbiter 
strategy better sustains the accuracy compared to the clas- 
sifier learned on the entire data set. The combiner strategy 
showed a drop in accuracy with the increase in the number 
of subsets, which can be attributed to the lack of information 
content in the small subsets. However, a few cases resulted 
in an improvement in accuracy. We are interested in disjoint 
subsets of larger original data sets than in [9], and so there 
is reason to expect that accuracy can be maintained. 

Chan and Stolfo relaxed their definition of strict disjoint 
subsets [ 101 by allowing a small amount of overlap across 
the subsets. On the datasets DNA Splice Junction with 
3,190 examples and Protein Coding Region with 20,000 ex- 
amples, it was found that overlapping did not bring any gain 
to their meta-learning strategy. Each classifier trained on a 
disjoint set is biased towards its own set, and when these 
classifiers are combined a protocol of knowledge sharing is 
established, and each individual classifier’s bias is reduced. 
Again, we are interested in “large” data sets relative to those 
considered in this work. 

Hall et al [ 111 learned decision trees using disjoint parti- 
tions of data and then combined the classifiers. It was found 
that using a conflict resolution strategy for combining rules, 
the accuracy usually did not decrease for a small number of 
partitions, at least on the datasets tested. Our current work 
is similar to this, but focuses on comparison of bagging-like 
approaches to simple partitioning of large datasets. 

Provost et a1 [ 1 J found that sub-sampling the data gave 
the same accuracy as the entire dataset at much lower 
computational cost. They analyzed “progressive sampling” 
methods- progressively increasing the sample size until the 
model accuracy was maintained. It was found that adding 
more training instances did not help the accuracy of the clas- 
sifier, and after some number of instances the performance 
of the classifier plateaus. As pointed out in the Discussion, 
our results indicate that simple sub-sampling to produce one 
smaller training set is not a profitable strategy. However, 
more complicated sub-sampling strategies may be useful. 

3. Experiments 
Three sets of experiments were performed. The first uses 
four “small” datasets, representative of those commonly 
used in pattern recognition and machine learning research. 
It compares four approaches to creating a committee of N 
classifiers, with each classifier created using (UN)-th of the 
training data. The performance of the approaches is also 
compared to that of “true bagging” - bags of the same size 
as the pool of training data, randomly sampled with replace- 
ment. The point of this first set of experiments is to iso- 
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Figure 1: Four Approaches to a Committee of Classifiers. 

late the essential factor(s) leading to good performance in 
the committee of classifiers. The second set of experiments 
uses a “moderate” size dataset of almost 300,000 examples. 
The same four approaches are evaluated on this data set. 
The point is to verify that the pattern of performance results 
observed with smaller data sets holds with a larger data set. 

Based on the first two sets of experiments, the disjoint 
partitioning approach is identified as offering the best per- 
formance for a given size of partitionshags. It is also the 
simplest of the approaches considered. The last experiment 
uses a “large” dataset of approximately 3.6 million exam- 
ples to investigate the degree of performance improvement 
that the disjoint partitioning approach can achieve over a 
classifier built on all the original data. 

3.1. Variations of Partitioning & Bagging 
We investigated four different approaches to creating a com- 
mittee of classifiers from an original data set. See Figure 1 
for an illustration. One approach is to simply partition the 
original data into N disjoint partitions of size (UN)-th of the 
original data. Thus the union of the N training sets is identi- 
cal to the original data. Results of this approach are labeled 
with “D’ (for “disjoint”) on the graphs. 

The second approach is to create N bags of size (UN)-th 
of the data. Each bag is created independently by random 
sampling with replacement, so the union of the training sets 
is generally not the same as the original data. This approach 
is labeled “SB” (for “small bags”) on the graphs. Compari- 
son of the SB performance versus that of disjoint partitions 
shows whether the random replication of data elements re- 
sults in any inherent advantage. 

The third approach is like small bags, but sampling with- 
out replacement for each individual bag. Sampling the in- 
dividual bags without replacement, elements of the original 
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data do not repeat within a bag, but may repeat across bags. 
This approach is labeled “NRSB’ (for “no-replication small 
bags”) on the graphs. 

The fourth approach begins with the disjoint partitions. 
Then, independently for each partition, a number of its ele- 
ments are randomly selected with replacement to be added 
to the “bagged disjoint.” Thus the union of the training sets 
is a superset of the original data; all elements of the original 
data appear, plus some random replications. The number of 
added elements is equal to the average number of repeated 
elements in a bag in the “small bags.” Thus a bag used in 
this approach is slightly larger than (UN)-th of the origi- 
nal data. The amount of “extra” data included decreases as 
the bag size decreases. Results of this approach are labeled 
“DB” (for “disjoint bagged”) on the graphs. Comparison of 
the results of this approach to the results of disjoint parti- 
tions looks again at whether the random replication of data 
elements results in any inherent advantage. 

In addition to the above four approaches, we also ran 
“true bagging” on each of the four “small” datasets. By 
“true bagging” we mean creating M bags, each of the size 
of the original data, independently using random sampling 
with replacement. True bagging is expected to out-perform 
committees of classifiers formed on smaller data sets, but 
the point is to provide a baseline performance comparison 
for the other approaches. 

3.2. Datasets 
Three of the small data sets are from the UCI repository, and 
one is from our own research. The “moderate” size dataset 
comes from the problem of predicting the secondary struc- 
ture of proteins. It is the training data set used with a neural 
network that won the CASP-3 secondary structure predic- 
tion contest 1123. This dataset contains almost 300,000 el- 
ements. Each amino acid in a protein can have its structure 
labeled as helix (H), coil (C), or sheet (E). The features for 
a given amino acid are twenty values in the range -17 to 17, 
representing the likelihood of the amino acid being any one 
of twenty basic amino acids. Using a window of size seven- 
teen centered around the target amino acid, gives a feature 
vector of size 340. (Jones [ 121 actually used a window size 
of 15 and scaled the feature values into the range [0,1].) The 
size and class distribution of these datasets is summarized 
in Table 1. 

Note that the experiments include both two-class (Mam- 
mography) and multi-class (Letter, PenDigits, SatImage) 
datasets. They also include datasets that are approximately 
balanced (Letter, PenDigits) and those that are skewed 
(Mammography, SatImage). 

The four approaches to creating a committee of classi- 
fiers, plus true bagging, were applied to each of the “small” 
datasets. The number of bags/partitions was varied from 
one to eight. Given the modest size of the datasets, creating 

Ai789 Bi766 C:736 D:805 E:768 F:775 
G:773 H:734 k755 J:747 K:739 L:761 
M:792 N:783 0:753 P:803 Q:783 R:758 
S:748 T796 U:813 V764 W:752 X:787 

Pendigits dataset (UCI) - 10,992 samples in ten classes 
0:1,143 1:1,143 2:1,141 3:1,055 4:1,144 51,055 
6:1,056 7:1,142 8:1,055 9:1,055 
Satimage dataset (UCI) - 6,435 samples in six classes 
1:1533 2:703 3:1,358 4:626 5:707 7:1,508 

I Mammography dataset - 11,183 samples in two classes 
I 1:10,923 2260 I 
I Jones’ PDB dataset - 299,186 samples in three classes 

H:104,572 C: 128,881- E: 65,733 
PDB dataset - 3,619,461 samples in three classes 
H: 1,254,335 C:1,537,261 E:827,865 

Table 1: Data Sets Sizes and Class Distributions. 

bagdpartitions of less than (1/8)-th the original size is likely 
to starve the classifiers for training data. For the experi- 
ments on the small and moderate size datasets, the reported 
results are calculated from 1 0-fold cross-validation. 

Our “large” dataset also comes from the Protein 
DataBase (PDB) used in the CASP contests [13]. For 
18,098 protein chains taken from the PDB, there are a to- 
tal of 3,679,152 amino acids for structure prediction. This 
training data takes from 1.3 to 30 GB to store, depending 
on how feature values are encoded (e.g. signed char, in- 
teger, or float). The test data for the experiments with the 
large dataset consists of a separate set of data. It is all pro- 
tein chains entered into the PDB from July 11 2000 to July 
28 2000, that are based on X-ray crystallography of three 
angstroms or finer. There were 146 chains entered in this 
time frame, made up of 38,423 amino acids. All results are 
reported on a per chain basis rather than per amino acid, be- 
cause that is how results are reported in the CASP contest. 
Performance on individual amino acids is very similar to the 
average per chain. 

3.3. Base Classifier and Computing Systems 
For the experiments on the small and moderate size datasets, 
release 8 of the C4.5 decision tree system [ 141 was run on 
standard SUN workstations. The one run of the large dataset 
to produce a single classifier was done on a 64-processor 
SGI IRE64 with 32 GB of main memory at Sandia Na- 
tional Labs, also using the standard C4.5 release 8. Creat- 
ing the one decision tree on the large dataset took approxi- 
mately thirty days on the SGI. 

The experiments using partitions of the large dataset 
were run on the DOE’S “ASCI Red“ parallel supercomputer 
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[15]. The ASCI Red has 4,640 compute nodes, each con- 
taining two Pentium I11 processors sharing 256 MB of mem- 
ory. The processors run a version of the UNIX operating 
system. The system is based on a distributed-memory mesh 
architecture, and is capable of 3.15 TeraFLOPS. These ex- 
periments used a version of C4.5 modified with MPI calls 
for parallel execution. The parallel structure of this version 
of C4.5 is quite simple. The disjoint partitions are loaded 
into the different compute node memories and each com- 
pute node independently grows a decision tree. The parallel 
computation to create eight decision trees on one-eighths 
of the large dataset takes approximately ten hours; that is, 
eight processors running in parallel for ten hours. 

4. Results 

s zt t 

Figures 2 through 5 summarize the experimental compar- 
ison of the different approaches on the small datasets de- 
tailed in Table l.  The plots compare the performance of 
two, four, six, and eight disjoint partitions (D) to that of 
C4.5 on the complete data set, and to classifier committees 
formed using the other three approaches (DB, SB, NRSB). 
Results are shown as the paired average difference across 
the ten folds in the ten-fold cross-validation, with standard 
error indicated. 

As an example, the first cluster of four data points on the 
plot in Figure 2 represents the results for a committee of 
two classifiers on the Letter data set. The first point is the 
difference between a committee of two disjoint partitions 
and C4.5 trained on all of the data; note that the committee 
of two classifiers performs significantly worse. The second 
point is the difference between a committee formed using 
two disjoint partitions versus a committee using two disjoint 
bags (DB), the third point is two disjoint partitions versus 
two small bags (SB), and the fourth point is two disjoint 
partitions versus no-replication small bags (NRSB). 

From examining the sequence of plots it is clear that dis- 
joint partitions generally, but not always, beat small bags. 
It appears to make little difference whether the small bags 
are created by sampling with or without replacement. The 
“bagged disjoints” appear to generally perform slightly bet- 
ter than the simple disjoints, but then the training sets for 
the individual decision trees are slightly larger. 

Because it uses constant-size bags as the number of clas- 
sifiers in the committee grows larger, “true bagging” should 
naturally outperform any of the four approaches. Data 
points for “true bagging” performance are given in Table 
2. However, the point is that true bagging is simply not a 
practical option for “large” datasets. For the example large 
dataset here, true bagging would require creating about fifty 
classifiers, each training on a data set of the same size as the 
original data. Recall that creating one classifier on all the 
data took 30 days on a substantial SGI system. When the 

Figure 2: Comparison on Letter Dataset. 

-1 t 

Figure 3: Comparison on PenDigits Dataset. 

SilUnlUgO 
2.5 1 

Figure 4: Comparison on SatImage Dataset. 
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Dataset 
Satimage 
Pendigits 

C4.5 50bags 75 bags 100bags 
86.30 90.89 90.86 90.84 
96.57 98.42 98.43 98.36 - 

Mammography I 98.50 I 98.76 I 98.79 
Letter I 88.10 I 93.54 I 93.65 

98.79 
93.80 

Table 2: Data Points for “True Bagging” Results. 

dataset is too large to handle conveniently in the memory of 
the typical computer, the dataset must be broken into some 
number of practical size, though not “small,” chunks. The 
question addressed here is whether there is any advantage in 
creating the practical size chunks using some bagging-like 
approach, or whether simple partitioning is sufficient. data. 

The comparison of the four approaches on the “mod- 
erate” size dataset are shown in Figure 6. The results are 
plotted here as a simple trend, rather than means of paired 
differences. (The differences and the number of data items 
here are larger, and so the statistical significance of results 
is clearer.) Again, we see that simple disjoint partitioning 
offers excellent performance in comparison to the other op- 
tions. In particular, the “small bags” approach performs 
poorly. Only the “bagged disjoints,” with its slightly larger 
number of elements in each bag, offers any hint of perfor- 
mance improvement over disjoint partitions. 

Figure 7 compares the results of creating one decision 
tree on all of the large dataset versus using a committee of 
N classifiers, for N = 8, 16,24,32, and 40. All of the com- 
mittees were formed using disjoint partitions of size (l/8)- 
th of the large PDB dataset. This size partition just fills the 
memory of the compute nodes on the ASCI Red. For the 
committees of 16, 24, 32, and 40 classifiers, multiple dif- 
ferent partitions of the dataset were used. For example, to 
create a set of sixteen classifiers, eight classifiers trained on 
a different eight-partition of the data were added to those 

0 2 4 6 8 10 12 14 16 
hrcs/BaeS 

Figure 6: Results on (Jones’) “Medium” PDB dataset. 

Figure 7: Partitioning Results for “Large” PDB dataset. 

created on the original eight-partition. 
The average accuracy of a single classifier trained on 

(1/8)-th of the large dataset is 74.1 %. A single decision tree 
created using all the data performs substantially better than 
this, 78.6% versus 74.1%. At the same time, a committee 
of eight classifiers created on (1/8)-ths of the data performs 
substantially better than a single tree created on all the data, 
81.8% versus 78.6%. 

5. Conclusions and Discussion 
The results support several important conclusions. The 
overall conclusion is that datasets too large to handle prac- 
tically in the memory of the typical computer are appropri- 
ately handled by simple partitioning to form a committee 
of classifiers. More specifically, a committee created using 
disjoint partitions can be expected to outperform a commit- 
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tee created using the same number and size of bootstrap ag- 
gregates (“bags”). Also, the performance of the committee 
of classifiers can be expected to exceed that of a single clas- 
sifier built from all the data. 

The following considerations may provide insight into 
the pattern of results. Practical factors aside, one generally 
wants (a) each classifier in a committee to be formed using 
as much data as possible, and (b) the size of the committee 
to be as large as possible. Practical considerations typically 
(a) limit the amount of data that can be used in training a 
single classifier, and (b) limit the size of a classifier com- 
mittee. If the data set is large enough, or the memory limit 
small enough, then partitioning into N disjoint subsets gives 
a reasonable size committee and this approach should suf- 
fice. If the N disjoint partitions result in too small of a com- 
mittee, then the data set may be partitioned multiple times 
to increase committee size. As a rule of thumb, the com- 
mittee size should be thirty or more. Random replication of 
data elements within the training set for a single classifier 
appears to be of value only when a (l/N)-th subset of the 
original data would result in an incompetent classifier. 

Results obtained here seem to support the position that 
that bagging results depend simply on obtaining a “diverse” 
set of classifiers [5, 161. Building classifiers on disjoint par- 
titions of the data provides a set of classifiers that meet this 
requirement. Each individual classifier performs similarly, 
but correctly classifies a (partially) different set of exam- 
ples. 

Some researchers have suggested that many large-data- 
set problems can be solved using only a fraction of the data, 
perhaps by simple sub-sampling. Classical pattern recogni- 
tion would suggest that this question is more appropriately 
viewed in terms of the density of training sample popula- 
tion in the feature space, rather than simply the size of the 
dataset. There is “excess” data only when (parts of) fea- 
ture space are densely populated. The fact that the average 
(1/8)-th partition of our large dataset had performance of 
74.1%, whereas a single classifier trained on all the data 
gave 78.6%, indicates that the original data could not be 
profitably sub-sampled in a simple way. Given that the 
problem has a 340-dimension feature space, this is perhaps 
not surprising, as even 3.6 million examples can result in a 
“sparse” population of such a space. 

, 
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