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Abstract. Bagging and boosting are two popular ensemble methods
that achieve better accuracy than a single classifier. These techniques
have limitations on massive datasets, as the size of the dataset can
be a bottleneck. Voting many classifiers built on small subsets of data
(“pasting small votes”) is a promising approach for learning from mas-
sive datasets. Pasting small votes can utilize the power of boosting and
bagging, and potentially scale up to massive datasets. We propose a
framework for building hundreds or thousands of such classifiers on small
subsets of data in a distributed environment. Experiments show this ap-
proach is fast, accurate, and scalable to massive datasets.

1 Introduction

The last decade has witnessed a surge in the availability of massive datasets.
These include historical data of transactions from credit card companies, tele-
phone companies, e-commerce companies, and financial markets. The relatively
new bioinformatics field has also opened the doors to extremely large datasets
such as the Protein Data Bank [16]. The size of these important datasets poses a
challenge for developers of machine learning algorithms and software — how to
construct accurate and efficient models. The machine learning community has
essentially focused on two directions to deal with massive datasets: data sub-
sampling [14,17], and the design of parallel or distributed algorithms capable of
handling all the data [5,15,10,6]. The latter approaches try to bypass the need for
loading the entire dataset into the memory of a single computer by distributing
the dataset across a group of computers.

Evaluating these two directions leads to the compelling question: “Do we
really need all the data?” The KDD-2001 conference [20] conducted a panel on
subsampling, which overall offered positive views of subsampling. However, given
100 GB of data, subsampling at 10% can itself pose a challenge. Other pertinent
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issues with subsampling are: What subsampling methodology to adopt? What
is the right sample size? To do any intelligent subsampling, one might need to
sort through the entire dataset, which could take away some of the efficiency
advantages. Ideally, one might want to use the existing computational resources
to handle the flood of training data.

Our claim is that distributed data mining can mitigate, to a large extent,
the scalability issues presented by massive training sets. The datasets can be
partitioned into a size that can be efficiently managed on a group of processors.
Partitioning the datasets into random, disjoint partitions will not only overcome
the issue of exceeding memory size, but will also lead to creating diverse classifiers
(each built from a disjoint partition, but the aggregate processing all of the data)
[7]. This can result in an improvement in performance that might not be possible
by subsampling.

To implement this idea, we divide the training set into n disjoint partitions,
and then paste Rvote1 or Ivote2 respectively [4] on each of the disjoint subsets
independently. We call our distributed approaches of pasting Ivotes and Rvotes
DIvote and DRvote respectively. Breiman has shown that pasting together Ivotes
gives accuracy comparable to Adaboost. Our experimental results with Ivote us-
ing C4.5 release 8 [18] agree with Breiman’s results using CART. We also show
that DIvote is comparable to Ivote for small or moderate datasets, while per-
forming better for a large dataset. One major advantage of DIvote is a significant
reduction in training time as compared to Ivote. We ran the distributed exper-
iments on a 24-node Beowulf cluster, though DIvote and DRvote can be easily
applied on a cluster of workstations. Each workstation could build classifiers on
disjoint subsets of data at the same time.

2 Related Work

The machine learning community has generally addressed the problem of massive
datasets by a “divide and conquer approach” — break a dataset into subsets,
learn models on the subsets, and combine them. Chawla et al. [6] studied various
partition strategies and found that an intelligent partitioning methodology —
clustering — is generally better than simple random partitioning, and generally
performs as well as C4.5 learning on the entire dataset. They also found that
applying bagging to the disjoint partitions, and making an ensemble of many
C4.5 decision trees, can yield better results than building a decision tree by
applying C4.5 on the entire dataset.

Bagging, boosting, and their variants have been shown to improve classifier
accuracy [9,3,1,8,12]. According to Breiman, bagging exploits the instability in
the classifiers, since perturbing the training set produces different classifiers using
the same algorithm. However, creating 30 or more bags of 100% size can be
problematic for massive datasets [7]. We observed that for datasets too large to
handle practically in the memory of a typical computer, a committee created
1 In pasting Rvotes, each small training set is created by random sampling.
2 In pasting Ivotes, each small training set is created by importance sampling.
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using disjoint partitions can be expected to outperform a committee created
using the same number and size of bootstrap aggregates (“bags”). Also, the
performance of the committee of classifiers can be expected to exceed that of a
single classifier built from all the data [7].

Boosting [9] also creates an ensemble of classifiers from a single dataset by
looking at different training set representations of the same dataset, focusing on
misclassified cases. Boosting is essentially a sequential procedure applicable to
datasets small enough to fit in a computer’s memory. Lazarevic and Obradovic
proposed a distributed boosting algorithm to deal with massive datasets or very
large distributed homogeneous datasets [13]. In their framework, classifiers are
learned on each distributed site, and broadcast to every other site. The ensemble
of classifiers constructed from each site is used to compute the hypothesis, hj,t,
at the jth site at iteration t. In addition, each site also broadcasts a vector
comprising a sum of local weights, reflecting its prediction accuracy.

They achieved the same or slightly better prediction accuracy than standard
boosting, and they also observed a reduction in the costs of learning and the
memory requirements, for their datasets [13].

Our work is built on Breiman’s pasting votes approach [4], which will be
discussed further in the following sections.

3 Pasting Votes

Breiman proposed pasting votes to build many classifiers from small pieces or
“bites” of data [4]. He proposed two strategies of pasting votes: Ivote and Rvote.
Ivote sequentially generates datasets (and thus classifiers) by sampling, so each
new train dataset has more instances that were more likely to be misclassified
by the ensemble of classifiers already generated. In the Ivote approach, the small
training set (bite) of each subsequent classifier relies on the combined hypothesis
of the previous classifiers, and the sampling is done with replacement. The sam-
pling probabilities rely on the out-of-bag error, that is, a classifier is only tested
on the instances not belonging to its training set. This out-of-bag estimation
gives good estimates of the generalization error [4], and is used to determine the
number of iterations in the pasting votes procedure. Ivote is, thus, very similar
to boosting, but the “bites” are much smaller in size than the original dataset.
Rvote requires the creation of many bags of a very small size (bites), and is a fast
and simple approach. Breiman found that Rvote was not competitive in accuracy
with Ivote or Adaboost. The detailed algorithms behind both the approaches are
presented in Section 4 as part of DIvote and DRvote.

Pasting Ivotes entails multiple random disk accesses, which could swamp
the CPU times. So Breiman proposed an alternate scheme: a sequential pass
through the dataset. In this scheme, an instance is read, and checked to see if it
will make the training set for the next classifier in the aggregate. This is repeated
in a sequential fashion until all N instances (size of a bite) are accumulated. The
terminating condition for the algorithm is a specified number of trees or epochs,
where an epoch is one sequential scan through the entire dataset. However, the
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sequential pass through the dataset approach led to a degradation in accuracy
for a majority of the datasets used in the paper. Breiman also pointed out that
this approach of sequentially reading instances from the disk will not work for
highly skewed datasets. Thus, one important component of the power of pasting
Ivotes is random sampling with replacement.

Breiman also noted that the approach of pasting Ivotes is scalable with mem-
ory. The memory requirement to keep track of which instance belongs in which
small training set and the number of times the instance was given a particular
class is 2JNB bytes, where J is the number of classes and NB is the number of
instances in the entire dataset. The memory requirement for a dataset with 105

records and J = 2 will be close to a gigabyte; the only increase in the memory
will be number of trees stored [4].

In our distributed approach pasting small votes, we divide a dataset into T
disjoint subsets, and assign each disjoint subset to a different processor. On each
of the disjoint partitions, we follow Breiman’s approach of pasting small votes.

4 Pasting DIvotes and DRvotes

The procedure for DIvote is as follows:

1. Divide the dataset into T disjoint subsets.
2. Assign each disjoint subset to a unique processor.
3. On each processor build the first small training set of size N (“bite”) by

sampling with replacement from its subset, and learn a classifier.
4. For the subsequent bites on each of the processors, an instance is drawn

at random from the resident subset of data with all examples having equal
probability of selection [4]. If this instance is misclassified by a majority vote
of the out-of-bag classifiers (those classifiers for which the instance was not
in the training set), then it is selected for the subsequent bite. If not, then
the instance is rejected with probability:

e(k) = p × e(k − 1) + (1 − p) × r(k)
p = 0.75. the same p value as used by Breiman,

k = number of classifiers in the aggregate or ensemble so far, and
r(k) = error rate of the kth aggregated classifiers on a T disjoint subset.

Repeat until N instances have been selected for the bite.
5. Learn the (k + 1)th classifier on the training set (bite) newly created by step

4.
6. Repeat steps 4 and 5, until the out-of-bag error estimate plateaus, or for a

given number of iterations, to produce a desired number of classifiers.
7. After the desired number of classifiers have been learned, combine their

predictions on the test data using a voting mechanism. We used simple
majority voting.
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Pasting DRvotes follows a procedure similar to DIvotes, the only difference
being that each bite is a bootstrap replicate of size N . Each instance through
all iterations has the same probability of being selected. DRvote is very fast, as
no intermediate steps of DIvote — steps 4 and 5 in the above algorithm — are
required. However, DRvote does not provide the accuracies achieved by DIvote.

Pasting DIvotes or DRvotes has the advantage of not requiring any com-
munication between the processors, unlike the distributed boosting approach
by Lazarevic and Obradovic [13]. Thus, there is no time lost in communication
among processors. DIvote can essentially build thousands of trees fast, as on each
processor (hundreds of) trees are built independently. Furthermore, dividing the
dataset into smaller disjoint subsets can also mitigate the need for gigabyte
memory servers. Also, if the disjoint subset size is small compared to the main
memory on a computer, the entire dataset can be loaded in the memory and
randomly accessed; thus, excessive random disk accesses can be avoided. DIvote
reduces the data set size on each processor, hence less examples must be tested
by the aggregate classifiers during training, which also significantly reduces the
computational time.

5 Experiments

We evaluated DIvote and DRvote by experiments on three small datasets, which
were also used by Breiman [4], and one large dataset. We did a 10-fold cross-
validation for the small datasets. Since our large dataset has a non-homologous
test set, we did not run a 10-fold CV. For the small datasets we set N , the size of
each bite, to be 800 examples, while for the large dataset we varied the bite size
from 1/256th, 1/128th, and 1/64th of the entire dataset size. For the distributed
runs, we divided the smaller datasets into 4 disjoint partitions, and the large
dataset into 24 disjoint partitions. We also ran experiments with pasting Ivotes
and Rvotes to get a benchmark of sequential performance.

5.1 Datasets

Our three small datasets are from the UCI repository [2]. The large dataset
comes from the problem of predicting the secondary structure of proteins. Its
training and testing sets (“test set one”) were used in developing and validat-
ing, respectively, a neural network that won the CASP-3 secondary structure
prediction contest [11]. The size of these datasets is summarized in Table 1.

5.2 Base Classifier and Computing Systems

We used the C4.5 release 8 decision tree software for our experiments. The
sequential Rvote and Ivote experiments were run on a 1.4 GHz Pentium 4 linux
workstation with 2 GB of memory, and an 8-processor Sun-Fire-880 with 32 GB
of main memory. We ran DIvote and DRvote experiments on a 24-node Beowulf
cluster. Each node on the cluster has a 900 MHz Athlon processor and 512MB
of memory. The cluster is connected with 100Bt ethernet.
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Table 1. Dataset Sizes, Number of Classes and attributes.

Dataset Dataset size Classes Number of attributes

Satimage 6435 6 36

Pendigits 10992 10 16

Letter 20000 26 16

Jones Training = 209,529; Testing = 17,731 3 315

5.3 Prediction Accuracy Comparison

To statistically validate the results, we performed a two-tailed paired t-test
(α = 0.05) on the 10-fold cross validation results of the small datasets. Table 2
shows the confusion matrix for statistical significance comparison. We observed
identical statistical significance for our experiments with Satimage and Pendig-
its, so we have combined the two results. The results are reported at the end
of 250 iterations. For instance, consider the first row in Table 2. It shows that
DIvote is the same as Ivote, but significantly better than any other approach.
The letter dataset differed from Satimage and Pendigits, as DRvote and Rvote
performed significantly worse than C4.5. However, for letter also, DIvote and
Ivote were comparable, and significantly better than Rvote, DRvote, and C4.5.
Figure 1(a) shows the results on letter dataset.

Table 2. Significance Confusion Matrix for Satimage and Pendigits. Same =
Not statistically different classification accuracy. Better = Statistically higher
classification accuracy.

DIvote Ivote DRvote Rvote C4.5

DIvote Same Better Better Better

Ivote Same Better Better Better

DRvote Worse Worse Same Better

For the large dataset, pasting DIvotes is actually more accurate than pasting
Ivotes. In addition to pasting DIvotes and Ivotes accuracies, Figure 2(b) also
shows that pasting DIvotes produces a more accurate ensemble of classifiers
than the ensemble constructed of classifiers learned on the 24 disjoint subsets.
It is also interesting to note that the average accuracy of a decision tree learned
on bites of size 1/256th of the Jones dataset is below 50%, and the aggregate
of all the not-so-good classifiers gives a performance in the range of 66% to
70% for 50 or more learning iterations. Each of the individual DIvote classifiers
optimizes the small decision space it is constructed on, so the end result is an
ensemble of locally optimum classifiers. Thus, the combined hypothesis of this
ensemble of hundreds or thousands of intelligently created classifiers achieves a
high accuracy.



58 N.V. Chawla et al.

We conjecture that the bites (very small training sets) for DRvote are too
similar to each other. Creating bites from the disjoint partitions, especially of
small datasets, does not provide enough unique instances to each bite. Therefore,
it is possible that even an aggregate of all bites is not a good representation of
the training set, and the classifiers learned on these bites are not very diverse.
For the letter dataset, DRvote and Rvote are significantly worse than C4.5. The
letter dataset has 26 classes with 16 dimensions; each 800 sized bite will contain
approximately 30 instances for each class. Thus, given the high dimensionality,
the 30 examples may not mimic the real distribution of the dataset. To test this
model, we created 100% bags on each disjoint partition [6] of the letter dataset,
and found that the classification accuracy increased significantly as compared to
DRvote or Rvote, but was still not better than DIvote and Ivote. This shows that
100% random bags are introducing more coverage, better individual classifiers,
and diversity compared to the DRvote bites (800 instances). Since DIvote and
Ivote sample heavily from misclassified instances, after each iteration or series of
iterations they focus on different instances, thus creating more diverse classifiers
with potentially more coverage.
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Fig. 1. Accuracy comparisons of DIvote, Ivote, Rvote, DRvote, and C4.5 for the
Letter dataset

5.4 Timing

Table 3 show the timing (user and system time during training) ratios of DIv-
ote to Ivote, and DRvote to Rvote on the Beowulf cluster. The experimental
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Fig. 2. Accuracy comparisons of DIvote, Ivote, Rvote, DRvote, and C4.5 for the
Jones dataset

parameters were: number of iterations = 100; bite size N = 800 for the small
datasets, and bite size N = (1/256) * (Jones dataset size) for the Jones dataset.
The time taken for DIvote and DRvote reflects the average of the time taken for
100 iterations on each of the T (T = 4 for the small datasets; T = 24 for the
large dataset) nodes of the cluster. For fair timing comparisons to DRvote and
DIvote, we also ran 100 iterations of Ivote and Rvote on a single cluster node. It
is noteworthy that we are able to build T *100 DIvote classifiers simultaneously.

One significant advantage of the proposed DIvote approach is that it requires
much less time than Ivote. Since we divide the original training set into T dis-
joint subsets, during training the aggregate DIvote classifiers on a processor test
many fewer instances than aggregate Ivote classifiers (for the Jones dataset each
disjoint partition has only 8730 instances as compared to 209,529 in the entire
dataset). Also, a reduction in the training set size implies that the dataset can
be more easily handled in main memory. The graphs show that as the dataset
size increases, the ratio of DIvote time to Ivote time decreases, which suggests
that the time taken for testing the aggregate classifiers, accumulating their votes,
computing out-of-bag error, and intelligent sampling increases with dataset size.
We would like to note that the same software performs DIvote and Ivote, except
that for the distributed runs we wrote an MPI program to load our pasting votes
software on different nodes of the cluster, and collect results. So, any further im-
provement of the software would be applicable across the board.

It is not surprising that the timings for DRvote and Rvote are very similar,
as both the approaches essentially build many small bags from a given training
set. Nevertheless, DRvote builds T times as many Rvote classifiers in less time.
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Table 3. Ratio of time taken by DIvote to Ivote, and DRvote to Rvote, on a
cluster node.

Dataset DIvote/Ivote DRvote/Rvote

Satimage 0.36 0.91

Pendigits 0.29 0.95

Letter 0.23 0.89

Jones 0.048 0.90

6 Conclusion

The overall conclusion of our work is that pasting DIvotes is a promising ap-
proach for very large datasets. Datasets too large to be handled practically in the
memory of a typical computer are appropriately handled by simple partitioning
into disjoint subsets, and adding another level of learning by pasting DIvotes
or DRvotes on each of the disjoint subsets. Our experiments show that DIvote
is a fast, accurate, and scalable framework. We show that pasting DIvotes is
very comparable in classification accuracy to Ivotes on the small datasets, and
is the best for the large dataset. Our results support the theory that given an
ensemble of diverse classifiers, an improvement in the accuracy can be observed.
Pasting DIvotes is much faster than pasting Ivotes; pasting DIvotes on a pro-
cessor takes less time compared to pasting Ivotes on a processor. Each processor
works independently, without requiring communication at any stage of learning;
the end result is an ensemble of thousands of DIvote classifiers. DIvote is able to
build a representative model of the dataset through this ensemble of hundreds
or thousands of classifiers.

We also conclude that pasting DIvotes is more accurate than pasting DR-
votes. We believe that the combined effects of diversity, good coverage, and
importance sampling are helping DIvote and Ivote. We wish to understand this
more completely, however, and some of our future work is devoted to experiments
designed to separate and illustrate these effects.

The DIvote framework is naturally applicable to the scenario in which datasets
for a problem are already distributed. At each of the distributed sites multiple
classifiers can be built, and the only communication required is the learned clas-
sifiers at the end of training. A section of our future work is also devoted to
experiments on the ASCI Red supercomputer [19].
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