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Abstract

Random subspaces are a popular ensemble construc-
tion technique that improves the accuracy of weak classi-
fiers. It has been shown, in different domains, that random
subspaces combined with weak classifiers such as decision
trees and nearest neighbor classifiers can provide an im-
provement in accuracy. In this paper, we apply the random
subspace methodology to the 2-D face recognition task. The
main goal of the paper is to see if the random subspace
methodology can do as well, if not better, than the single
classifier constructed on the tuned face space. We also pro-
pose the use of a validation set for tuning the face space,
to avoid bias in the accuracy estimation. In addition, we
also compare the random subspace methodology to an en-
semble of subsamples of image data. This work shows that
a random subspaces ensemble can outperform a well-tuned
single classifier for a typical 2-D face recognition problem.
The random subspaces approach has the added advantage
of requiring less careful tweaking.

1. Introduction

Face images are usually represented as high-dimensional
pixel matrices, where in each matrix cell is a gray-level in-
tensity value. These raw feature vectors can be very large
and highly correlated. Moreover, the size of the enrollment
data is usually small. This small sample size coupled with
the very high-dimensionality of raw feature vectors can lead
to a difficult pattern recognition task. The lack of enough
samples in very high dimensions can reduce the accuracy of
nearest neighbor classifiers [1, 2]. In addition, the extreme
sized dimensions can present scalability issues.

To combat these issues of very high feature correlation,
small sample size and computational complexity, the face
images are often transformed into a lower dimensional man-
ifold. One of the most popular techniques for linear trans-
formation in feature space is PCA [3, 4, 5]. PCA reduces the
dimensions by rotating feature vectors from a large highly

correlated feature space (image space) to a smaller feature
space (face space) that has no sample covariance between
the features.

The face space is typically improved by a filtering phase,
wherein some number of the highest and/or lowest eigen
values are discarded. There is some evidence that the ini-
tial face space dimensions might be lighting variations. One
convention is to drop the eigenvector corresponding to the
largest eignevalue and retain 60% of the remaining vectors
[6]. This filtering reduces the dimensionality and increases
the stability of the classifier. But there is no generally ac-
cepted procedure for the number of eigen values to drop
from front or behind, and the ”right” filtering is of course
dependent on the conditions represented in the particluar
set of training images.

Typically, the studies directly tune the performance on
the testing set, and establish an operating point. However,
that performance can be misleading as it is overfit on the
testing set, and the generalization accuracy of the classi-
fier cannot be sufficiently established. We show that given
a probe set for validation and one for testing, the optimal
operating points can be different for both.

The nearest neighbor classifier, a popular choice in the
2-D face-recognition domain, can be very sensitive to the
sparsity in the high-dimensional space. Their accuracy is
often far from optimal because of the lack of enough sam-
ples in the high-dimensional space [1, 2]. Bootstrapping
is commonly applied to mitigate the issues with sparsity in
data [7]. However, bootstrapping can only enrich the sam-
ple space, but not reduce the high-dimensionality, which
can persist to be a problem. Guo and Zhang [8] used the
boosting procedure [9] for face recognition. The random
subspace method [10, 11] can effectively exploit the high
dimensionality of the data. The random subspace method
constructs an ensemble of classifiers on independently se-
lected feature subsets, and combines them using a heuristic
such as majority voting, sum rule, etc.

In this paper, we evaluate random subspaces for counter-
ing the high dimensionality of feature space and data spar-
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Figure 1. Experimental Framework.

sity. The previous work done by Wang and Tang [12] ap-
plied PCA with LDA in the random subspace setting. Our
work differs in various aspects. We use a nearest neighbor
classifier with the Mahalanobis Cosine (MahCosine) dis-
tance measure in this setting. We chose MahCosine as it
is relatively stable and has been shown to give better per-
formances than other distance based measures [13]. Wang
and Tang pre-selected the top 50 dimensions and randomly
selected the other 50. They noticed a performance drop if
they chose all 100 at random. However, in our experiments
we see that constructing completely random subspaces is as
good if not better than a single well-tuned classifier. We
also try different sized subspaces and add more members
to the ensemble. In addition, we compare the random sub-
spaces work to an ensemble of subsamples of data (sim-
liar to bagging) [14, 15, 16]. Lu and Jain [17] also used
a resampling technique, however, they randomly sampled
within each class. They used the LDA classifier. In our
recent paper [18], we constructed ensembles by sampling
from the images, captured under different illumination and
expression conditions, of each subject.

Last but not the least, we propose the use of a validation
set to select the number of eigen vectors in the face space.
Ideally, the classifier is tuned during the training phase and
the testing set is required to be completely out-of-sample.
We thus created three different non-overlapping sets: train-
ing, validation, and testing. If the testing set is utilized at the
time of training, it can lead to overfitting and give biased es-

timates of results. One can also utilize multiple validation
sets, for example by bootstrapping and/or cross-validation,
to identify the operating point, on an average. This is typi-
cal of the wrapper approaches utilized for feature selection
in machine learning [19].

2. Classifier Construction

In this section, we discuss in brief the PCA method-
ology and the MahCosine distance metric [13]. We also
present the random subspaces and subsampling methodolo-
gies. Figure 1 shows the framework for our experimental
procedure. We also include the references to some of the re-
lated work. As shown in the Figure, the random subspaces
and sampling techniques are usually applied either without
any tuning on the face space or the face space tuned directly
on the testing set. We start with the raw feature vectors for
each image, apply PCA, and then apply the ensemble tech-
niques of subsampling and random subspace. Depending
on the experiment, we use either the tuned or the complete
face space. We evaluate the various scenarios, as suggested
in the framework, in this paper.

2.1 PCA

PCA performs a linear transformation in the raw fea-
ture space to construct a lower dimensional manifold [4].
The raw feature vectors are a concatenation of the gray-
level pixel values from the images. Let us assume there
are m images and n pixel values. The snapshot method
is utilized to create the eigenspace. Let Z be a matrix of
(m,n). The mean image of Z is then subtracted from each
of the images in the training set, ∆Zi = Zi − E[Zi].
Let the matrix M represent the resulting ”centered” images;
M = (∆Z1, ∆Z2, ..∆Zm)T . The covariance matrix can
then be represented as: Ω = M.MT . Ω is symmetric and
can be expressed in terms of the singular value decomposi-
tion Ω = U.Λ.UT , where U is an m x m unitary matrix and
Λ = diag(λ1, ..., λm). The vectors U1, ..., Um are a basis
for the m-dimensional subspace. The covariance matrix can
now be re-written as

Ω =
m∑

i=1

ζi.Ui

The coordinate ζi, i ∈ 1, 2, ...m, is called the ζth
i the

principal component. It represents the projection of ∆Z
onto the basis vector U. The basis vectors, Ui , are the prin-
cipal components of the training set. Once the subspace
is constructed, recognition is done by projecting the a cen-
tered probe image and gallery image into the subspace, and
the closest gallery image to probe image is selected as the
match.



2.2 Distance measures

Various distance measures have been evaluated in the
realm of face recognition [20, 6]. For our experiments,
we utilized the MahCosine distance metric in the CSU
code[13]. Our initial experiments showed that MahCosine
significantly outperformed the other distance measures.

The MahCosine measure is the cosine of the angle be-
tween the images after they have been transformed to the
Mahalanobis space Formally, the MahCosine measure be-
tween the images i and j with projects a and b in the Maha-
lanobis space is computed as:

MahCosine(i, j) = cos(θij) =
|a||b|cos(θij)

|a||b|

2.3 Random Subspaces and Subsampling

We used random subspaces and subsampling to construct
ensembles of classifiers. For both the methodologies, we
utilized the same PCA and Mahalanobis distance frame-
work.

2.3.1 Random Subspace

The random subspace method, introduced by Ho [10], ran-
domly selects different feature dimensions and constructs
multiple smaller subsets. A classifier is then constructed
on each of those subsets, and a combination rule is ap-
plied in the end for prediction on the testing set. For the
nearest neighbor algorithm, it simply means that only a
randomly selected subset of the complete face space con-
tributes towards the distance computation. The random
subspace methodology can be potentially useful for face
recognition due to the inherent sparsity and small-sample
size of data. For each random subspace a different near-
est neighbor classifier is constructed projecting the test fea-
ture vector into a different (but potentially) overlapping face
space. Given an m x (m − 1) dimensional eigen-space 1,
where m is the number of images, the feature vector can
be represented as X = (x1, x2, ..., xm−1). Then, multi-
ple random subspaces of size m x p are selected, k times,
where p is the size of the randomly selected subspace,
Xk

p {(x1, x2, ..., xp)|p < (m − 1)}.
For each subject in the testing set, the 1-nearest neigh-

bor is found among each of the m-1 dimensional subspaces,
using the procedure briefly outlined in the PCA discussion
(Section 2.1). This process is repeated for a pre-selected K
number of times. The classification can either be done by
taking the most popular class attached to the test subject or
by aggregating the distance measure computed from each

1For m training images, there are at most m-1 non-zero eigen values.

of the subspaces. We aggregated the distance measure for
our experiments.

The random space method can be outlined as follows:

1. For each k=1,2,..K

(a) Select a p dimensional random subspace, Xk
p ,

from X .

(b) Project the probe and gallery set onto the sub-
space Xk

p .

(c) Construct the nearest neighbor classifier, Ck
p , us-

ing the Mahalanobis Cosine metric. Compute the
corresponding distances by Ck

p for each gallery
and probe image.

2. Aggregate the distances assigned to the probe and
gallery images by each of the Ck classifiers.

3. Rank order the images and compute the rank-one ac-
curacy.

The individual classifiers can be weaker than the aggre-
gate or even the global classifier. Moreover, the subspaces
are sampled independently of each other. An aggregation of
the same can lead to a reduction in the variance component
of the error term, thereby reducing the overall error [16, 15].
There is a popular argument that diversity among the weak
classifiers in an ensemble contributes to the success of the
ensemble [21, 22]. Classifiers are considered diverse if they
disagree on the kind of errors they make. In addition, the
random subspace technique also counters the sparsity in the
data, as the subspace dimensionality gets smaller but the
training set size remains the same.

While the random subspace method has been applied in
various machine learning tasks, it has not received signifi-
cant attention in face recognition. We are aware of only a
recent paper by Wang and Tang [12] for face recognition.
They applied a variant of the random subspace method-
ology using LDA as the base classifier. Their technique
used N = 100 dimensions, and always selected the largest
N0 = 50 dimensions. The remaining N1 = N − N0 di-
mensions were selected randomly from the rest of the face
space. They note that by selecting N1 dimensions randomly
a certain element of diversity is maintained in the ensemble.

We consider the original random subspace methodology
and use a nearest neighbor classifier. The goal is to see if
completely random selection of the subspace performs as
good, if not better, than a carefully selected tuned space.
By introducing a pre-determined set of dimensions, it im-
plies that a certain element of tuning is required. As we
mentioned in the Introduction, tuning of the face space on
the testing set leads to a biased estimate of the performance.
We visit the question of tuning on the testing set later in our
Experimental section. Moreover, we wanted to evaluate the
enemble approaches in the nearest neighbor setting.



2.3.2 Subsampling

For our subsampling experiments, we randomly sampled
without replacement from the training set. We constructed
subsamples that were 80% or 50 % of the size of the train-
ing set. In these experiments, we did not subsample the
dimensions of the face space. The sub-sampling procedure
is similar to bagging, albeit without replacement and not at
100%. We chose sampling without replacement to get as
many unique images in the training set as possible. Typi-
cally, bagging with replacement guarantees at most 63.2%
of the data will be unique in any bootstrap. The subsam-
pling procedure can be outlined as follows:

1. For each k=1,2,..K

(a) Randomly select without replacement x% of the
images from the training set.

(b) Construct the face space, Xk.

(c) Construct a nearest neighbor classifier, Ck by
projecting the probe and gallery set onto the sub-
space Xk. The Mahalanobis cosine measure is
utilized as the distance measure.

2. Aggregate the distances assigned to the probe and
gallery images by each of the Ck classifiers.

3. Rank order the images and compute the rank-one ac-
curacy.

3. Data Collection

The data for this paper was acquired from that avail-
able from the University of Notre Dame2 [23], and from
the Feret database [24]. The subjects participate in the ac-
quisition repeatedly (at most once in a week) over a period
of time. For the purpose of the experiments in this pa-
per, we acquired the color images of the subjects captured
with two side lights on (FERET or LF). In addition, we
only acquired the images with one neutral facial expression
for each subject (Regular or FA). The color images were
taken by a Sony MVC-95 camera with JPEG image sizes of
1600x1200.

The training set is comprised of 600 images of which
462 are from the FERET database and 138 are from the
University of Notre Dame (ND) database. The testing set
comprises of 393 subjects from the Notre Dame database.
These subjects are completely unique from the training set.
The earliest and latest images of these 393 subjects were
partitioned into a gallery set and probe set. The earliest im-
ages of the 393 subjects were selected to create the gallery
set, and the latest images were for the probe set. However,

2http://www.cse.nd.edu/ cvrl

when we performed the tuning experiments on the valida-
tion set, we randomly divided the 393 subjects into two dis-
joint parts for validation and testing. We only considered
the FA/LF images. Please note that the gallery and probe
images were all from the ND data, and disjoint of the 138
subjects selected for the training set. Thus, our training and
testing framework comprised of non-overlapping set of sub-
jects.

4. Experiments

We set up our experiments to answer the following ques-
tions: 1) Can ensemble techniques such as random subspace
and subsampling help in the face recognition task? If yes,
does the size of the subspace and subsample have any im-
pact? 2) Can the face space tuned on a validation set give
the potentially optimal performance on the testing set? How
does the classifier trained on the tuned subspace compare
with the random subspacs and subsampling methodology?

We first elucidate our results using the complete testing
set of 393 subjects in each of the gallery and probe sets.
Given the training set size of 600, the basis vector count is
599. For the random subspace experiments we randomly
selected subsets of the following proportions: 10%, 25%,
40% 50%, and 90% (for the rest of our experiments utilizing
random subspaces, we only used subspaces of 10%, 25%,
and 50%). For the subsampling experiments, we chose the
proportions of 25%, 50% and 80%. In addition, we also
constructed random subspaces on the face space tuned on
the testing set. We set the ensemble size to be 100 for both
random subspaces and subsampling.

Figure 2 shows the result of using the random subspace
methodology. We note that smaller sized subspaces start at
a lower point, but get ahead of the larger sized subspaces.
This is not a surprising result given the sparsity of the data.
Ho [10] also noted a similar result for the hand-writing char-
acter recognition task. The classifiers with larger sized sub-
spaces start at a higher point but then plateau. The weaker
classifiers can potentially be generalizing better and exhibit
a larger diversity in the ensemble. The goal is to reduce the
variance component of the classifiers. By combining classi-
fiers that are reasonably independent of each other, the error
can be reduced. When the subspace size is very large, the
classifiers are not very diverse. This lack of variance af-
fects the overall performance of the ensemble. However,
all the different subspace sizes tend to exceed or equal the
rank-one accuracy obtained by the classifier learned on the
complete face space.

The box-plots shown in Figure 3 exhibit a compelling
trend. The box plot shows the median, upper quartile and
lower quartile values. The extent of the whiskers of the plot
show the range of the values. We can see that as we increase
the subspace size the boxes become more compact. This can
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Figure 2. Random subspaces constructed from the complete face
space and evaluated on the complete testing set.
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Figure 3. The accuracy spread among the classifiers learned on the
random subspaces.

be reflective of the “similar” nature of the subspaces and a
lack of sufficient diversity. Similar results have been noted
by [22, 25].

Figure 4 shows the result of subsampling. The subsam-
ples of size 80% outperform the subsamples of size 50%
and 25% and perform as well as the single classifier learned
on the entire subspace. The 25% and 50% sized subsam-
ples have a much reduced training set size; we believe the
constructed face space is then not very reflective of the com-
plete set of subjects.

To answer the question 2, we randomly divided the test-
ing probe and gallery sets into two halves. One is retained
for validation and the other for testing. This reduced the
number of subjects available for testing, as we divided the
393 subjects into two disjoint parts for validation and test-
ing. Please note that the training subjects were still the
same. We first dropped one vector at a time from the front.
We evaluated the impact of dropping each vector on the val-
idation set. We dropped up to 20 vectors from the front.
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Then, we evaluated the senstivity of the classifier to the re-
tention of eigen vectors from behind. We set a cut-off of
x%, where x ∈ {10,15,..90}, at intervals of 5%. A cut-off of
x% implies that (100-x)% of the vectors are dropped from
behind.
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Figure 5. Results of tuning the face space by dropping eigen vec-
tors from front.

We did not conduct an exhaustive search in both the di-
rections as that can become computationally very expen-
sive — dropping vectors from front and back and evaluating
their combined effect. Figures 5 and 6 shows the results of
tuning process on the validation set in conjunction with the
testing set. Based on the performance on the validation set,
we chose to drop 9 vectors from the front and 35% of the
vectors from the behind, obtaining a performance of 85.2%
on the validation set and 77.15% on the testing set.

Figure 7 shows the result of random subspaces on the
testing set. As evident by the Figure, the random subspaces
at each of 10%, 25%, and 50% exceed the performance ob-
tained by the the tuned face space, given an ensemble size
of greater than 80. The subspace size of 25% is the best
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Figure 7. Random subspaces from the complete face space evalu-
ated on the reduced testing set.

performing on this set. The subspace size of 10% is the
most sensitive in terms of addition of classifiers, and even-
tually approaches the performance of the 25% subspace.
We also constructed an ensemble of subsamples using the
tuned space. The ensemble achieved a rank-one accuracy of
77.15% using a subsample size of 80%, and a rank-one ac-
curacy of 76.14% using a subsample size of 50%. The ran-
dom subspaces are more effective in this domain than the
subsampling techniques. This is interesting because they
are also more computationally feasible.

An obvious question at this stage is — What if we tune
the subspace directly on the testing set?. This kind of tun-
ing has been reported in face recognition papers [26, 6, 12].
We consider the complete gallery and probe sets of 393 sub-
jects each. We again repeat the same procedure of dropping
the vectors from front and behind. We thus dropped 15 vec-
tors from front and 40 obtain an accuracy of 77.6%. This is
similar to the one obtained by running random subspaces on
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Figure 8. Random subspaces from the face space tuned on the
complete testing set of 393 subjects.

the complete subspace. Thus, random subspaces can poten-
tially eliminate the requirement of carefully tuning the face
space. Figure 8 shows the result of tuning on the testing
set. In addition, we also computed the random subspaces
on this tuned-set. As shown in the Figure, the random sub-
space procedure benefits from the initial tuning, if available.
The subspace of 10% is inferior in this case as it is larely un-
derfitting. The number of basis vectors in the tuned-space
is 353, thus implying that in the 10% there are only 35 vec-
tors. We note that 25% is a generally more reasonable size
across all our experiments. Smaller subspaces can underfit.
The larger ones tend to overfit with less variance amongst
them.

We also note that the random subspaces with the MahCo-
sine measure did not require any pre-selection of top n eigen
vectors, contrary to the observation on LDAs by Wang and
Tang [12]. We implemented a similar experiment as them,
albeit with the nearest neighbor classifier. Using a subspace
size of 100 basis vectors [12], we ran two sets of random
subspaces experiments: one with N0 = 0 and N1 = 100
that is all 100 vectors were selected at random; and one
with N0 = 50 and N1 = 50 which is the same as the one
by Wang and Tang. Figure 9 shows the results. We have
different empirical observations than the ones by Wang and
Tang. We believe that a pre-selected and fixed subset makes
the subspaces, with reference to the Mahalanobis distance-
based classfier, invariant and similar to each other. Another
artifact could be the nature of the training data and what it
means for the face space. As a part of our future work we
are going to apply the random subspace technique to differ-
ent types of classifiers (in the 2-D face recognition realm),
as the inductive biases can be very different, and different
types of training images.
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5. Summary and Conclusions

We evaluated the random subspaces methodology for the
2-D face recognition task. We ran multiple sized random
subspaces with the nearest neighbor classifier. We also pro-
posed tuning on a validation set. We also compared the en-
semble of random subspaces to the ensemble of subsamples.

We showed that random subspaces is very competitive,
and often outperforms a single nearest neighbor classifier
learned on the tuned-face space. The random subspaces ap-
proach has the added advantage of requiring less careful
tweaking. The random subspace methodology can easily
be set up in a distributed fashion, thus reducing the overall
computational complexity. Since the subspaces are selected
completely independent of each other, each (distributed)
processor can look at a portion of the subspace and con-
struct a classifier. In fact, we ran our experiments in a com-
pletely distributed fashion on a linux cluster. Also, the ran-
dom subspace method avoids the initial tuning of the face
space, which is almost always required when constructing a
single classifier and can be computationally expensive. We
also showed that random subspaces on a tuned face space,
if available, provides an additional performance boost.

We observed using the box-plots that the individual clas-
sifiers are very weak, however an ensemble of the same pro-
vides an improvement in the accuracy. This diversity is piv-
otal to the success of the ensemble techniques. We also pro-
posed utilization of a validation set to tune the face-space to
mitigate the biased estimates in the accuracy and avoid over-
fitting. We utilized the validation set in a wrapper mode by
dropping vectors from front and behind, independently. The
performance on the validation set and testing sets differed
significantly. This could be an artifact of the time lapses be-
tween the training and the testing images in the validation
and testing sets, respectively. It is important to consider that
as any face recognition system after deployment will be re-

quired to classify at an increasing time-span [23]. We also
observed that random subspaces is a better suited ensemble
technique for 2-D face recognition than subsampling.

We believe the results obtained with the Mahalanobis co-
sine measure should be generally applicable to other dis-
tance measures as well. Moreover, the other relatively
weaker distance measures might have more to gain with the
ensemble techniques. As a part of our future work, we are
going to not only include additional distance measures but
also additional classifiers such as LDA. We are also going
to incorporate a larger set of probe and gallery images. Last
but not the least, the ensemble techniques can potentially be
more useful if the testing and validation sets have different
expressions. The ensembles usually increase the generaliza-
tion, which can be helpful if there are different expressions
and/or lighting conditions in the testing set.
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