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Abstract—Undersampling is a popular technique for unbal-
anced datasets to reduce the skew in class distributions. However,
it is well-known that undersampling one class modifies the
priors of the training set and consequently biases the poste-
rior probabilities of a classifier [9]. In this paper, we study
analytically and experimentally how undersampling affects the
posterior probability of a machine learning model. We formalize
the problem of undersampling and explore the relationship
between conditional probability in the presence and absence of
undersampling. Although the bias due to undersampling does not
affect the ranking order returned by the posterior probability, it
significantly impacts the classification accuracy and probability
calibration. We use Bayes Minimum Risk theory to find the
correct classification threshold and show how to adjust it after
undersampling. Experiments on several real-world unbalanced
datasets validate our results.

I. INTRODUCTION

In several binary classification problems, the two classes
are not equally represented in the dataset. For example, in fraud
detection, fraudulent transactions are normally outnumbered
by genuine ones [8]. When one class is underrepresented in a
dataset, the data is said to be unbalanced. In such problems,
typically, the minority class is the class of interest. Having
few instances of one class means that the learning algorithm
is often unable to generalize the behavior of the minority
class well, hence the algorithm performs poorly in terms of
predictive accuracy [16].

A common strategy for dealing with unbalanced classi-
fication tasks is to under-sample the majority class in the
training set before learning a classifier [1]. The assumption
behind this strategy is that in the majority class there are
many redundant observations and randomly removing some
of them does not change the estimation of the within-class
distribution. If we make the assumption that training and
testing sets come from the same distribution, then when the
training is unbalanced, the testing set has a skewed distribution
as well. By removing majority class instances, the training set
is artificially rebalanced. As a consequence, we obtain different
distributions for the training and testing sets, violating the basic
assumption in machine learning that the training and testing
sets are drawn from the same underlying distribution.

In this paper, we study the impact of the bias introduced
by undersampling on classification tasks with unbalanced data.
We start by discussing literature results showing how the
posterior probability of an algorithm learnt in the presence
of undersampling is related to the conditional probability of
the original distribution. Using synthetic data we see that the
larger the overlap between the two within-class distributions
(i.e. the greater the non-separability of the classification task),
the larger the bias in the posterior probability. The mismatch
between the posterior probability obtained with the original
dataset and after undersampling is assessed in terms of loss
measure (Brier Score), predictive accuracy (G-mean) and rank-
ing (AUC).

Based on the previous works of Saerens et al. [21] and
Elkan [13], we propose an analytical method to correct the
bias introduced by undersampling that can produce well-
calibrated probabilities. The method is equivalent to adjusting
the posterior probability in the presence of new priors. The use
of unbiased probability estimates requires an adjustment to the
probability threshold used to classify instances. When using
class priors as misclassification costs, we show that this new
threshold corresponds to the one used before undersampling.
In order to have complete control over the data generation
process, we have first recourse to synthetic datasets. This
allows us to simulate problems of different difficulty and see
the impact of undersampling on the probability estimates. To
confirm the results obtained with the simulated data, we also
run our experiments on several UCI datasets and a real-world
fraud detection dataset made available to the public.

This paper has the following contributions. First, we review
how undersampling can induce a bias in the posterior proba-
bilities generated by machine learning methods. Second, we
leverage this understanding to develop an analytical method
that can counter and reduce this bias. Third, we show how
to use unbiased probability estimates for decision making in
unbalanced classificiation. We note that while the framework
we derive in this work is theoretically equivalent to the
problem of a change in class priors [21], our perspective is
different. We interpret undersampling as a problem of sample
selection bias, wherein the bias is not intrinsic to the data but
rather introduced artificially [19].
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The paper is organized as follows. Section II introduces
some well-known methods for unbalanced datasets and sec-
tion III formalizes the sampling selection bias due to under-
sampling. Undersampling is responsible for a shift in the pos-
terior probability which leads to biased probability estimates,
for which we propose a corrective method. Section IV shows
how to set the classification threshold to take into account
the change in the priors. Finally, section VI uses real-world
datasets to validate the probability transformation presented in
section III and the use of the classification threshold proposed
in IV.

II. SAMPLIN´ FOR UNBALANCED CLASSIFICATION

Let us consider a binary classification task where the
distribution of the target class is highly skewed. When the
data is unbalanced, standard machine learning algorithms that
maximise overall accuracy tend to classify all observations
as majority class instances [16]. This translates into poor
accuracy on the minority class (low recall), which is typically
the class of interest. There are several methods that deal with
this problem, which we can distinguish between methods that
operate at the data and algorithmic levels [6].

At the data level, the unbalanced strategies are used as a
pre-processing step to re-balance the two classes before any
algorithm is applied. At the algorithmic level, algorithms are
themselves adjusted to deal with the minority class detec-
tion [2]. Here we will restrict ourselves to consider a subset
of data-level methods known as sampling techniques.

Undersampling [11] consists of down-sizing the majority
class by removing observations at random until the dataset
is balanced. In an unbalanced problem, it is often realistic
to assume that many observations of the majority class are
redundant and that by removing some of them at random the
data distribution will not change significantly. However the
risk of removing relevant observations from the dataset is still
present, since the removal is performed in an unsupervised
manner. In practice, this technique is often adopted since it is
simple and speeds up the learning phase.

Oversampling [11] consists of up-sizing the minority class
at random, decreasing the level of class imbalance. By repli-
cating the minority class until the two classes have equal
frequency, oversampling increases the risk of over-fitting by
biasing the model towards the minority class. Other drawbacks
of the approach are that it does not add any new valuable
minority examples and that it increases the training time. This
can be particularly ineffective when the original dataset is
fairly large.

SMOTE [7] over-samples the minority class by generating
synthetic minority examples in the neighborhood of observed
ones. The idea is to form new minority examples by interpo-
lating between examples of the same class. This has the effect
of creating clusters around each minority observation.

In this paper we focus on understanding how under-
sampling affects the posterior probability of a classification
algorithm.

III. THE IMPACT OF SAMPLIN´ ON POSTERIOR
PROBABILITIES

In binary classification we typically learn a model on
training data and use it to generate predictions (class or
posterior probability) on a testing set with the assumption that
both come from the same distribution. When this assumption
does not hold, we encounter the so-called problem of sampling
selection bias [19]. Sampling selection bias can occur due to
a bad choice of the training set. For example, consider the
problem where a bank wants to predict whether someone who
is applying for a credit card will be able to repay the credit at
the end of the month. The bank has data available on customers
whose applications have been approved, but has no information
on rejected customers. This means that the data available to
the bank is a biased sample of the whole population. The bias
in this case is intrinsic to the dataset collected by the bank.

A. Sample Selection Bias due to undersampling

Rebalancing unbalanced data is just the sample selection
bias problem with a known selection bias introduced by design
(rather than by constraint or accident) [19]. In this section,
we investigate the sampling selection bias that occurs when
undersampling a skewed training set.

To begin, let us consider a binary classification task where
the goal is to learn a classifier f : Rn → {0, 1}, whereX ∈ Rn

is the input andY ∈ {0, 1} the output domain. Let us call class
0 negative and class 1 positive. Further, assume that the number
of positive observations is small compared to the number of
negatives, with rebalancing performed via undersampling.

Let us denote as (X ,Y) the original unbalanced training
sample and as (X,Y ) a balanced sample of (X ,Y). This
means that (X,Y ) ⊂ (X ,Y) and it contains a subset of
the negatives in (X ,Y). Let us define s as a random binary
selection variable for each of the N samples in (X ,Y), which
takes the value 1 if the point is in (X,Y ) and 0 otherwise.
It is possible to derive the relationship between the posterior
probability of a model learnt on a balanced subset and the one
learnt on the original unbalanced dataset.

We assume that the selection variable s is independent
of the input x given the class y (class-dependent selection):
p(s|y, x) = p(s|y). This assumption implies p(x|y, s) =
p(x|y), i.e. by removing observation at random in the ma-
jority class we do not change within-class distributions. With
undersampling there is a change in the prior probabilities
(p(y|s = 1) �= p(y)) and as a consequence the class-
conditional probabilities are different as well, p(y|x, s =
1) �= p(y|x). The probability that a point (x, y) is included
in the balanced training sample is given by p(s = 1|y, x).
Let the sign + denote y = 1 and − denote y = 0, e.g.
p(+, x) = p(y = 1, x) and p(−, x) = p(y = 0, x). From
Bayes’ rule, using p(s|y, x) = p(s|y), we can write:

p(+|x, s = 1) =
p(s = 1|+)p(+|x)

p(s = 1|+)p(+|x) + p(s = 1|−)p(−|x)
(1)

As shown in our previous work [9], since p(s = 1|+) = 1
we can write (1) as:

p(+|x, s = 1) =
p(+|x)

p(+|x) + p(s = 1|−)p(−|x)
(2)
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Let us denote β = p(s = 1|−) as the probability of selecting
a negative instance with undersampling, p = p(+|x) as the
posterior probability of the positive class on the original
dataset, and ps = p(+|x, s = 1) as the posterior probability
after sampling. We can rewrite equation (2) as:

ps =
p

p + β(1− p)
(3)

Using (3) we can obtain an expression of p as a function of
ps:

p =
βps

βps − ps + 1
(4)

Balancing an unbalanced problem corresponds to the case

when β = p(+)

p(−)
≈ N

+

N
−
, where N+ and N− denote the

number of positive and negative instances in the dataset. In

the following we will assume that N
+

N
−
provides an accurate

estimation of the ratio of the prior probabilities. For such level
of β, a small variation at the high values of ps induces a large
change in p, while the opposite occurs for small values of
ps [9]. When β = 1, all the negative instances are used for
training, while for β < 1, a subset of negative instances are
included in the training set. As β decreases towards N

+

N
−
, the

resulting training set becomes more balanced. Note that N
+

N
−

is the minimum value for β, as for β < N
+

N
−
we would have

more positives than negatives.

Let’s suppose we have an unbalanced problem where the
positives account for 10% of 10,000 observations (i.e., we
have 1,000 positives and 9,000 negatives). Suppose we want

to have a balanced dataset β = N
+

N
−
≈ 0.11, where ≈ 88.9%

(8000/9000) of the negative instances are discharged. Table I
shows how, by reducing β, the original unbalanced dataset
becomes more balanced and smaller as negative instances are
removed. After undersampling, the number of negatives is
N−

s
= βN−, while the number of positives stays the same

N+

s
= N+. The percentage of negatives (perc−) in the dataset

decreases as N−

s
→ N+.

TABLE I. UNDERSAMPLING A DATASET WITH 1,000 POSITIVES IN
10,000 OBSERVATIONS. Ns DEFINES THE SIZE OF THE DATASET AFTER

UNDERSAMPLING AND N
−

s (N+
s ) THE NUMBER OF NEGATIVE (POSITIVE)

INSTANCES FOR A GIVEN β . WHEN β = 0.11 THE NEGATIVE SAMPLES

REPRESENT 50% OF THE OBSERVATIONS IN THE DATASET.

Ns N
−

s
N
+
s

β perc
−

2,000 1,000 1,000 0.11 50.00
2,800 1,800 1,000 0.20 64.29
3,700 2,700 1,000 0.30 72.97
4,600 3,600 1,000 0.40 78.26
5,500 4,500 1,000 0.50 81.82
6,400 5,400 1,000 0.60 84.38
7,300 6,300 1,000 0.70 86.30
8,200 7,200 1,000 0.80 87.80
9,100 8,100 1,000 0.90 89.01

10,000 9,000 1,000 1.00 90.00

B. Bias and class separability

In this section we are going to show how the impact of
bias depends on the separability nature of the classification
task. Let ω+ and ω− denote the class conditional probabilities
p(x|+) and p(x|−), and π+ (π+

s
) the class priors before (after)

undersampling. It is possible to derive the relation between

the bias and the difference δ = ω+ − ω− between the class
conditional distributions. From Bayes’ theorem we have:

p =
ω+π+

ω+π+ + ω−π−
(5)

Suppose δ = ω+ − ω−, we can write (5) as:

p =
ω+π+

ω+π+ + (ω+ − δ)π−
=

ω+π+

ω+(π+ + π−)− δπ−
=

ω+π+

ω+ − δπ−

(6)
since π+ +π− = 1. Similarly, since ω+ does not change with
undersampling:

ps =
ω+π+

s

ω+ − δπ−

s

(7)

Now we can write ps − p as:

ps − p =
ω+π+

s

ω+ − δπ−

s

−
ω+π+

ω+ − δπ−
(8)

Since ps ≥ p because of (3), 1 ≥ ps ≥ 0 and 1 ≥ p ≥ 0 we
have: 1 ≥ ps−p ≥ 0. In Figure 1 we plot ps−p as a function
of δ when π+

s
= 0.5 and π+ = 0.1. For small values of the

class conditional densities it appears that the bias takes the
highest values for δ values close to zero. This means that the
bias is higher for similar class conditional probabilities (i.e.
low separable configurations).

Fig. 1. ps − p as a function of δ, where δ = ω+ − ω− for values of
ω+ ∈ {0.01, 0.1} when π+s = 0.5 and π+ = 0.1. Note that δ is upper
bounded to guarantee 1 ≥ ps ≥ 0 and 1 ≥ p ≥ 0.

C. Adjusting posterior probabilities to new priors

Equation (3) shows how the conditional distribution of the
balanced configuration relates to the conditional distribution in
the original unbalanced setting. However, after a classification
model is learnt on a balanced training set, it is normally used
to predict a testing set, which is likely to have an unbalanced
distribution similar to the original training set. This means that
the posterior probability of a model learnt on the balanced
training set should be adjusted for the change in priors between
the training and testing sets. In this paper we propose to use
equation (4) to correct the posterior probability estimates after
undersampling. Let us call p′ the bias-corrected probability
obtained from ps using (4):

p′ =
βps

βps − ps + 1
(9)

Equation (9) can be seen as a special case of the framework
proposed by Saerens et al. [21] and Elkan [13] for correcting
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the posterior probability in the case of testing and training sets
sharing the same priors (see Appendix). When we know the
priors in the testing set we can correct the probability with
Elkan’s and Saerens’ equations. However, these probabilities
are usually unknown and must be estimated. If we make the
assumption that training and testing have the same priors we
can used (9) for calibrating ps. Note that the above transforma-
tion will not affect the ranking produced by ps. Equation (9)
defines a monotone transformation, hence the ranking of ps
will be the same as p′. While p is estimates using all the
samples in the unbalanced dataset, ps and p′ are computed
considering a subset of the original samples and therefore their
estimations are subjected to higher variance [9]. The variance
effect is typically addressed by the use of averaging strategies
(e.g. UnderBagging [23]), but is not the focus of our paper.

D. Synthetic datasets

We now use two synthetic datasets to analysis the bias
introduced by undersampling and understand how it affects
the posterior probability. Given the simulated setting we are
able to control the true posterior probability p and measure
the sampling bias embedded in ps. We see that the bias is
larger when the two classes are overlapping and that stronger
undersampling induces a larger bias.

Let us consider two binary classification tasks, wherein
positive and negative observations are drawn randomly from
two distinct normal distributions. For both datasets we set
the number of positives to be 10% of 10,000 observations,
with ω− ∼ N(0, σ) and ω+ ∼ N(μ, σ), where μ > 0. The
distance between the two normal distributions, μ, is used to
control the degree of separation between the classes. When μ
is large, the two classes are well-separated, while for small
μ they strongly overlap. In the first dataset, we simulate a
classification problem with a very low degree of separation
(using μ = 3), in the second a task with well-separated classes
using μ = 15 (see Figure 2). The first simulates a difficult
classification task, the latter an easy one. For both dataset we
set σ = 3.
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Fig. 2. Synthetic datasets with positive and negative observations sampled
from two different normal distributions. Positives account for 10% of the
10,000 random values. On the left we have a difficult problem with overlapping
classes (μ = 3), on the right an easy problem where the classes are well-
separated (μ = 15).

Figure 3 shows how ps changes with β (p corresponds to

β = 1). When β → N
+

N
−
the probability shifts to the left,

allowing for higher probabilities on the right hand side of the

Fig. 3. Posterior probability as a function of β. On the left the task with
μ = 3 and on the right the one with μ = 15. Note that p corresponds to
β = 1 and ps to β < 1.

chart (where positive observations are located). In other words,
removing negative samples with undersampling increases the
positive posterior probability, moving the classification bound-
ary so that more samples are classified as positive. The stronger
the undersampling, the larger the shift, i.e. the drift of ps from
p. The drift is larger in the dataset with non-separable classes
confirming the results of Section III-B.

Figure 4 displays ps, p
′ and p for β = N

+

N
−
in the dataset

with overlapping classes (μ = 3) and we see that p′ closely
approximates p. As p′ ≈ p, we can say that the above
transformation based on (9) is able to correct the probability
drift that occurs with undersampling. The correction seems
particularly effective on the left-hand side (where the majority
class is located), while is less precise on the right-hand side
where we expect to have larger variance on p′ due to the small
number of positive samples.
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Fig. 4. Posterior probabilities ps, p
′ and p for β = N

+

N
−

in the dataset with
overlapping classes (μ = 3).

IV. CLASSIFICATION THRESHOLD WITH UNBIASED

PROBABILITIES

In the previous section we showed how undersampling
induces biased posterior probabilities and presented a method
to correct for this bias. We now want to investigate how to use
them for classification.

A. Threshold with Bayes Minimum Risk

Standard decision making process based on Bayes decision
theory developed in most textbooks on pattern recognition or
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machine learning (see for example [s4], [3], [1s ]) defines the
optimal class of a sample as the one minimizing the risk
(expected value of the loss function). In a binary classification
problem, the risk of the positive and negative class is defined
as follows:

r+ = (1− p)l1,0 + pl1,1

r− = (1− p)l0,0 + pl0,1

where p = p(+|x) and li,j is the loss (cost) incurred in
deciding i when the true class is j.

TABLE II. LOSS k ATRIX

Actual I ositive Actual Negative

I redicted I ositive l1,1 l1,0

I redicted Negative l0,1 l0,0

Bayes decision rule for minimizing the risk can be stated as
follows: assign the positive class to samples with r+ ≤ r−, and
the negative otherwise. This is equivalent to predict a sample
as positive when p > τ and the threshold τ is:

τ =
l1,0 − l0,0

l1,0 − l0,0 + l0,1 − l1,1

Typically the cost of a correct prediction is zero, hence l0,0 = 0
and l1,1 = 0. In an unbalanced problem, the cost of missing a
positive instance (false negative) is usually higher than the cost
of missing a negative (false positive). When the costs of a false
negative and false positive are unknown, a natural solution is
to set the costs using the priors. Let l1,0 = π+ and l0,1 = π−,
where π+ = p(+) and π− = p(−). Then, since π− > π+ we
have l0,1 > l1,0 as desired. We can then write:

τ =
l1,0

l1,0 + l0,1
=

π+

π+ + π−
= π+ (10)

since π+ + π− = 1. This is also the optimal threshold in a
cost-sensitive application where the costs are defined using the
priors [13].

B. Classification threshold adjustment

Even if undersampling produces biased probability esti-
mates, it is often used to balance datasets with skewed class
distributions because several classifiers have empirically shown
better performance when trained on balanced dataset [s5], [14].
Let τs denote the threshold used to classify an observation
after undersampling, form (10) we have τs = π+

s
, where π+

s

is the positive class prior after undersampling. In the case of

undersampling with β = N
+

N
−
(balanced training set) we have

τs = 0.5.

When correcting ps with (9), we must also correct the
probability threshold to maintain the predictive accuracy de-
fined by τs (this is needed otherwise we would use different
misclassification costs for p′). Let τ ′ be the threshold for the
unbiased probability p′. From Elkan [13]:

τ ′

1− τ ′
1− τs

τs
= β (11)

τ ′ =
βτs

(β − 1)τs + 1
(1s )

Using τs = π+
s
, (1s ) becomes:

τ ′ =
βπ+

s

(β − 1)π+s + 1

τ ′ =
β N

+

N
++βN−

(β − 1) N
+

N
++βN−

+ 1
=

N+

N+ + N−
= π+

The optimal threshold to use with p′ is equal to the one for p.
As an alternative to classifying observations using ps with τs,
we can obtain equivalent results using p′ with τ ′. In summary,
as a result of undersampling, a higher number of observations
are predicted as positive, but the posterior probabilities are
biased due to a change in the priors. Equation (1s) allows
us find the threshold that guarantees equal accuracy after the
posterior probability correction. Therefore, in order to classify
observations with unbiased probabilities after undersampling,
we have to first obtain p′ from ps with (9) and then use τ

′ as
a classification threshold.

V. k EASURES OF CLASSIFICATION ACCURACY AND

I ROBABILITY CALIBRATION

The choice of balancing the training set or leaving it
unbalanced has a direct influence on the classification model
that is learnt. A model learnt on a balanced training set has the
two classes equally represented. In the case of an unbalanced
training set, the model learns from a dataset skewed towards
one class. Hence, the classification model learnt after under-
sampling is different from the one learnt on the original dataset.
In this section we compare the probability estimates of two
models, one learnt in the presence and the other in the absence
of undersampling. The probabilities are evaluated in terms of
ranking produced, classification accuracy and calibration.

To asses the impact of undersampling, we first use accuracy
measures based on the confusion matrix (Table III).

TABLE III. CONFUSION k ATRIX

Actual I ositive Actual Negative

I redicted I ositive TI FI

I redicted Negative FN TN

In an unbalanced class problem, it is well-known that
quantities like TI R ( TP

TP+FN
), TNR ( TN

FP+TN
) and average

accuracy ( TP+TN

TP+FN+FP+TN
) are misleading assessment mea-

sures [10]. Let us define I recision = TP

TP+FP
and Recall

= TP

TP+FN
. Typically we want to have high confidence that

observations predicted as positive are actually positive (high
I recision) as well as a high detection rate of the positives
(high Recall). However, I recision and Recall share an inverse
relationship, whereby high I recision comes at the cost of
low Recall and vice versa. An accuracy measure based on
both I recision and Recall is the F-measure, also known as
F1-score or F-score. F-measure (2Precision×Recall

Precision+Recall
) and G-

mean (
√
TPR× TNR) are often considered to be useful and

effective performance measures for unbalanced datasets.

An alternative way to measure the quality of a probability
estimate is to look at the ranking produced by the probability.
A good probability estimate should rank first all the minority
class observations and then those from the majority class.
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In other words, if p̂ is a good estimate of p(+|x), then p̂
should give high probability to the positive examples and
small probability to the negatives. A well-accepted ranking
measure for unbalanced dataset is AUC (Area Under the ROC
curve) [5]. To avoid the problem of different misclassification
costs, we use an estimation of AUC based on the Mann-
Whitney statistic [10]. This estimate measures the probability
that a random minority class example ranks higher than a
random majority class example [15].

In order to measure the probability calibration, we used the
Brier Score (BS) [4]. BS is a measure of average squared loss
between the estimated probabilities and the actual class value.
It allows to evaluate how well the probabilities are calibrated,
the lower the BS the more accurate are the probabilistic
predictions of a model. Let p̂(yi|xi) be the probability estimate
of sample xi to have class yi ∈ {1, 0}, BS is defined as:

BS =
1

N

N∑

i=1

{yi − p̂(yi|xi)}
2 (13)

VI. EXPERIMENTAL RESULTS

In the previous sections we used synthetic datasets to
study the effect of undersampling. We now consider real-world
unbalanced datasets from the UCI repository used in [9]. For
each dataset we adopt a 10-fold cross validation (CV) to test
our models and we repeated the CV 10 times. In particular,
we used a stratified CV, where the class proportion in the
datasets is kept the same over all the folds. As the original
datasets are unbalanced, the resulting folds are unbalanced as
well. For each fold of CV we learn two models: one using
all the observations and the other with the ones remaining
after undersampling. Then both models are tested on the
same testing set. We used several supervised classification
algorithms available in R [20]: Random Forest [18], SVM [17],
and Logit Boost [22].

We denote as p̂s and p̂ the posterior probability estimates
obtained with and without undersampling and as p̂′ the bias-
corrected probability obtained from p̂s with equation (9). Let
τ , τs and τ

′ be the probability thresholds used for p̂, p̂s and p̂
′

respectively, where τ = π+, τs = π+
s
and τ ′ = π+. The

goal of these experiments is to compare which probability
estimates return the highest ranking (AUC), calibration (BS)
and classification accuracy (G-mean) when coupled with the
thresholds defined before. In undersampling, the amount of

sampling defined by β is usually set to be equal to N
+

N
−
, leading

to a balanced dataset where π+
s

= π−

s
= 0.5. However, there

is no reason to believe that this is the optimal sampling rate.
Often, the optimal rate can be found only a posteriori after
trying different values of β [9]. For this reason we replicate

the CV with different β such that {
N+

N
−

≤ β ≤ 1} and for
each CV the accuracy is computed as the average G-mean (or
AUC) over all the folds.

In table V we report the results over all the datasets. For
each dataset, we rank the probability estimates p̂s, p̂ and p̂′

from the worst to the best performing for different values of
β. We then sum the ranks over all the values of β and over all
datasets. More formally, let Ri,k,b ∈ {1, 2, 3} be the rank of
probability i on dataset k when β = b. The probability with
the highest accuracy in k when β = b has Ri,k,b = 3 and the

TABLE IV. DATASETS FROM THE UCI REPOSITORY USED IN [9].

Datasets N N
+

N
−

N
+
/N

ecoli 336 35 301 0.10
glass 214 17 197 0.08
letter-a 20000 789 19211 0.04
letter-vowel 20000 3878 16122 0.19
ism 11180 260 10920 0.02
letter 20000 789 19211 0.04
oil 937 41 896 0.04
page 5473 560 4913 0.10
pendigits 10992 1142 9850 0.10
PhosS 11411 613 10798 0.05
satimage 6430 625 5805 0.10
segment 2310 330 1980 0.14
boundary 3505 123 3382 0.04
estate 5322 636 4686 0.12
cam 18916 942 17974 0.05
compustat 13657 520 13137 0.04
covtype 38500 2747 35753 0.07

one with the lowest has Ri,k,b = 1. Then the sum of ranks for
the probability i is defined as

∑
k

∑
b
Ri,k,b. The higher the

sum, the higher the number of times that one probability has
higher accuracy than the others.

For AUC, a higher rank sum means a higher AUC and
hence a better ranking returned by the probability. Similarly,
with G-mean, a higher rank sum corresponds to higher predic-
tive accuracy. However, in the case of BS, a higher rank sum
means poorer probability calibration (larger bias). Table V has
in bold the probabilities with the best rank sum according to
the different metrics. For each metric and classifier it reports
the p-values of the paired t-test based on the ranks between p̂
and p̂′ and between p̂ and p̂s.

In terms of AUC, we see that p̂s and p̂′ have better
performances than p̂ for LB and SVM. The rank sum is the
same for p̂s and p̂′ since the two probabilities are linked by a
monotone transformation (equation (9)). If we look at G-mean,
p̂s and p̂′ return better accuracy than p̂ two times out of three.
In this case, the rank sums of p̂s and p̂′ are the same since
we used τs and τ ′ as the classification threshold, where τ ′ is
obtained from τs using (12). If we look at the p-values, we
can strongly reject the null hypothesis that the accuracy of p̂s
and p̂ are from the same distribution. For all classifiers, p̂ is
the probability estimate with the best calibration (lower rank
sum with BS), followed by p̂′ and p̂s. The rank sum of p̂′ is
always lower than the one of p̂s, indicating that p̂

′ has lower
bias than p̂s. This result confirms our theory that equation (9)
allows one to reduce the bias introduced by undersampling.

In summary from this experiment we can conclude that
undersampling does not always improve the ranking or classi-
fication accuracy of an algorithm, but when it is the case we
should use p̂′ instead of p̂s because the first has always better
calibration.

We now consider a real-world dataset, composed of credit
card transactions from September 2013 made available by our
industrial partner. 1 It contains a subset of online transactions
that occurred in two days, where we have 492 frauds out
of 284,807 transactions. The dataset is highly unbalanced,
where the positive class (frauds) account for 0.172% of all
transactions, and the minimum value of β is ≈ 0.00173.
In Figure 5 we have the AUC for different values of β.

1The dataset is available at http://www.ulb.ac.be/di/map/adalpozz/data/
creditcard.Rdata
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TABLE V. SUM OF RANKS AND P-VALUES OF THE PAIRED T-TEST
BETWEEN THE RANKS OF p̂ AND p̂′ AND BETWEEN p̂ AND p̂s FOR

DIFFERENT METRICS. IN BOLD THE PROBABILITIES WITH THE BEST RANK

SUM (HIGHER FOR AUC AND G-MEAN, LOWER FOR BS).

Metric Algo
∑
Rp̂

∑
Rp̂s

∑
R
p̂
′ ρ(Rp̂, Rp̂s

) ρ(Rp̂, Rp̂
′ )

AUC LB 22,516 23,572 23,572 0.322 0.322
AUC RF 24,422 22,619 22,619 0.168 0.168
AUC SVM 19,595 19,902o5 19,902o5 0.873 0.873

G-mean LB 23,281 23,189.5 23,189.5 0.944 0.944
G-mean RF 22,986 23,337 23,337 0.770 0.770
G-mean SVM 19,550 19,925 19,925 0.794 0.794

BS LB 19809o5 29448.5 20402 0.000 0.510
BS RF 18336 28747 22577 0.000 0.062
BS SVM 17139 23161 19100 0.001 0.156

The boxplots of p̂s and p̂′ are identical because of (9), they

increase with β → N
+

N
−
and have higher median than the

one of p̂. This example shows how in case of extreme class
imbalance, undersampling can improve predictive accuracy of
several classification algorithms.
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Fig. 5. Boxplot of AUC for different values of β in the Credit-card dataset.
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Fig. 6. Boxplot of BS for different values of β in the Credit-card dataset.

In Figure 6 we have the BS for different values of β. The
boxplots of p̂′ show in general smaller calibration error (lower
BS) than those of p̂s and the latter have higher BS especially
for small values of β. This supports our previous results, which
found that the loss in probability calibration for p̂s is greater
the stronger the undersampling.

VII. CONCLUSION

In this paper, we study the bias introduced in the posterior
probabilities that occurs as an artifact of undersampling. We
use several synthetic datasets to analyze this problem from a
theoretical perspective, and then ground our findings with an
empirical evaluation over several real-world datasets.

The first result of the paper is that the bias due to the
instance selection procedure in undersampling is essentially
equivalent to the bias the occurs with a change in the priors
when class-within distributions remain stable. With undersam-
pling, we create a different training set, where the classes are
less unbalanced. However, if we make the assumption that the
training and testing sets come from the same distribution, it
follows that the probability estimates obtained after undersam-
pling are biased. As a result of undersampling, the posterior
probability p̂s is shifted away from the true distribution, and
the optimal separation boundary moves towards the majority
class so that more cases are classified into the minority class.

By making the assumptions that prior probabilities do not
change from training and testing, i.e. they both come form the
same data generating process, we propose the transformation
given in (9), which allows us to remove the drift in p̂s due to
undersampling. The bias on p̂s registered by BS gets larger for
small values of β, which means stronger undersampling pro-
duces probabilities with poorer calibration (larger loss). With
synthetic, UCI and Credit-card datasets, the drift-corrected
probability (p̂′) has significantly better calibration than p̂s
(lower Brier Score).

Even if undersampling produces poorly calibrated proba-
bility estimates p̂s, several studies have shown that it often
provides better predictive accuracy than p̂ [25], [14]. To
improve the calibration of p̂s we propose to use p̂′ since
this transformation does not affect the ranking. In order to
maintain the accuracy obtained with p̂s and the probability
threshold τs, we proposed to use p̂

′ together with τ ′ to account
for the change in priors. By changing the undersampling
rate β we give different costs to false positives and false
negatives, combining p̂′ with τ ′ allows one to maintain the
same misclassification costs of a classification strategy with
p̂u and τu for any value of β.

Finally, we considered a highly unbalanced dataset (Credit-
card), where the minority class accounts for only 0.172% of all
observations. In this dataset, the large improvement in accuracy
obtained with undersampling was coupled with poor calibrated
probabilities (large BS). By correcting the posterior probability
and changing the threshold we were able to improve calibration
without losing predictive accuracy. Obtaining well-calibrated
classifiers is particularly important in decision systems based
on fraud detection. This is one of the rare papers making
available the fraud detection dataset used for testing.
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APPENDIX

Let pt = p2yt = +|xt) be the posterior probability for
a testing instance 2xt, yt), where the testing set has priors:

π−

t
=

N
−

t

Nt

and π+
t

=
N
+

t

Nt

. In the unbalanced training set we

have π− = N
−

N
, π+ = N

+

N
and p = p2+|x). After undersam-

pling the training set π−

s
= βN

−

N
++βN−

, π+
s

= N
+

N
++βN−

and

ps = p2+|x, s = 1). If we assume that the class conditional
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distributions p(x|+) and p(x|−) remain the same between
the training and testing sets, Saerens et al. [21] show that,
given different priors between the training and testing sets,
the posterior probability can be corrected with the following
equation:

pt =

π
+

t

π
+
s

ps

π
+

t

π
+
s

ps +
π
−

t

π
−

s

(1− ps)
(14)

Let us assume that the training and testing sets share the same
priors: π+

t
= π+ and π−

t
= π−:

pt =

π
+

π
+
s

ps

π
+

π
+
s

ps + π
−

π
−

s

(1− ps)

Then, since

π+

π+s
=

N
+

N
++N−

N
+

N
++βN−

=
N+ + βN−

N+ + N−
(15)

π−

π−

s

=
N
−

N
++N−

βN
−

N
++βN−

=
N+ + βN−

β(N+ + N−)
(16)

we can write

pt =

N
+
+βN

−

N
++N−

ps
N
++βN−

N
++N−

ps + N
++βN−

β(N++N−)
(1− ps)

=
βps

βps − ps + 1

The transformation proposed by Saerens et al. [21] is equiv-
alent to equation (4) and the one developed independently by
Elkan [13] for cost-sensitive learning:

pt = π+
t

ps − π+
s
ps

π+s − π+s ps + π+
t
ps − π+

t
π+s

(17)

pt =
(1− π+

s
)ps

π
+
s

π
+

t

(1− ps) + ps − π+s

using (15), π+
t

= π+ and π−

t
= π−:

pt =

βN
−

N
++βN−

ps

N
++N−

N
++βN−

(1− ps) + ps −
N
+

N
++βN−

=
βps

βps − ps + 1
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