
Generalization Methods in Bioinformatics

Steven Eschrich
Department of Computer
Science and Engineering

University of South Florida
4202 East Fowler Avenue,

Tampa, FL 33620

eschrich@csee.usf.edu

Nitesh V. Chawla
Department of Computer
Science and Engineering

University of South Florida
4202 East Fowler Avenue,

Tampa, FL 33620

chawla@csee.usf.edu

Lawrence O. Hall
Department of Computer
Science and Engineering

University of South Florida
4202 East Fowler Avenue,

Tampa, FL 33620

hall@csee.usf.edu

ABSTRACT
Protein secondary structure prediction and high-throughput
drug screen data mining are two important applications in
bioinformatics. The data is represented in sparse feature
spaces and can be unrepresentative of future data. Su-
pervised learners in this context will display their inher-
ent bias toward certain solutions, generally solutions that
�t the training set well. In this paper, we �rst describe
an ensemble approach using subsampling that scales well
with dataset size. A su�cient number of ensemble mem-
bers using subsamples of the data can yield a more accurate
classi�er than a single classi�er using the entire dataset. Ex-
periments on several datasets demonstrate the e�ectiveness
of the approach. We report results from the KDD Cup 2001
drug discovery dataset in which our approach yields a higher
weighted accuracy than the winning entry. We then extend
our ensemble approach to create an over-generalized classi-
�er for prediction by reducing the individual subsample size.
The ensemble strategy using small subsamples has the ef-
fect of averaging over a wider range of hypotheses. We show
that both protein secondary structure prediction and drug
discovery prediction can be improved by the use of over-
generalization, speci�cally through the use of ensembles of
small subsamples.

1. INTRODUCTION
Bioinformatics is a rapidly expanding �eld involving a signif-
icant contribution from the data mining community. Many
di�erent problems are grouped into the general category of
bioinformatics, including protein secondary structure pre-
diction, drug discovery, DNA microarray analysis, gene pre-
diction and genome analysis [17]. In this paper, we focus
on two particular problems in which data mining can con-
tribute: drug discovery and protein secondary structure pre-
diction. Both of these �elds demonstrate distinct character-
istics as data mining problems. We will discuss the two
areas and then attempt to describe what we believe is the
common thread | the need for \over-generalization" on the
part of any learner. Once we have described the overall con-
cept we introduce a subsampling technique that we believe
demonstrates this generalization. We also show that pre-
dictive accuracy can be improved through the use of over-
generalization.

1.1 Protein Secondary Structure Prediction
Proteins are a key component of life and central to our un-
derstanding of cellular processes. A protein consists of a
linear chain of amino acids; each amino acid can be one of
twenty di�erent types. The key nature of proteins is not
their one-dimensional structure, but rather how they fold
back on themselves. Proteins can take on several di�erent
con�gurations and these are chemically important. Many
di�erent forces act upon the protein chain in order to create
such folds, including ionic, hydrogen, van der Waals and hy-
drophobic interactions [13]. Much of the process by which a
sequence of amino acids forms a more complex structure is
not completely understood. X-ray crystallography has been
the principal means of elucidating the structure of many
proteins, however it has been applied to only a small frac-
tion of the total number that can exist [13]. The process
is di�cult and error-prone. However, if we wish to under-
stand a cellular process or perhaps design a drug to inhibit
a protein-ligand interaction we must �rst understand the
secondary structure of a protein. Presently structural pre-
diction is most successful when su�ciently similar homologs
are known [17]. Homologs, or similar protein chains, can
be used to estimate the structure of an un-visualized pro-
tein. When there are no close homologs to a protein, the
structural prediction can be very poor.

New protein sequences are constantly being discovered and
often comprise very di�erent and distinct chains of amino
acids. Modern biochemistry can not yet fully describe the
ways in which a strand of amino acids may fold. Data mining
techniques can be used in an attempt to predict this struc-
ture. The CASP contest [21] is one method of encouraging
the research community to focus on secondary structure pre-
diction. In the latest such contest (CASP-4), the winner was
PSIPRED [18]. The author used the PSI-BLAST [1] pro-
�les for a set of protein chains as training data for a neural
network. The network used a window of 15 amino acids
within the protein chains and an ensemble of four neural
networks was built. Each feature was the log likelihood of
substitution of an amino acid. Earlier work by some of the
authors have attempted to understand the process through
which PSIPRED succeeded. We provide one such expla-
nation here, both as a followup and a new direction from
earlier work.

1.2 Drug Discovery
The second problem we consider within this paper is drug
discovery. This is an challenging �eld that encompasses both
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protein secondary structure prediction and many other dif-
�cult steps. For this paper, we consider only one small
aspect of the entire process | prediction of drug-like ac-
tivity of a compound based on its structure. We use a
simpli�ed description of a molecule and attempt to predict
if the molecule will exhibit drug-like behavior in a high-
throughput screening. Drug discovery encompasses under-
standing cellular processes, predicting protein structures,
and estimating interactions between a molecule and the nor-
mal biological molecular targets [12]. Chemists and biolo-
gists would ideally like to fully understand the pathways
involved in a disease and from this knowledge develop a
molecule (or several molecules) that can interact with the
disease agents to neutralize them [12]. However, many com-
plex interactions are occurring at the cellular level that makes
the full rational drug design process extremely di�cult. Mod-
ern pharmaceutical companies pursue methods that attempt
to circumvent some of these problems through the use of
high-throughput screening. Since we do not have full knowl-
edge of the physical and electrostatic forces governing com-
plex interactions of proteins, enzymes and ligands, we can
instead try to test many available compounds for a desired
response. This is the so-called lead �nding stage of drug
discovery. Modern testing technology has developed to the
point that this process can be automated. Many compounds
can be quickly tested and leads can be identi�ed from these
results. These leads can be analyzed more closely and struc-
turally similar compounds can be investigated for poten-
tially higher e�cacy.

Data mining within drug discovery involves predicting if a
compound is likely to demonstrate drug-like activity in the
presence of a given disease (or simply a given chemical tar-
get). High-throughput screens result in a large amount of
data for analysis. Ideally, in silico screening of compounds
could replace the need for HTS in identifying leads. Current
data mining techniques can not only be used to predict an
untested compound's activity but also can identify incon-
sistent and potentially incorrect HTS results. We use data
mining tools to predict the activity of a molecule based on
solely on it's structural characteristics. Much work in drug
discovery involves the hypothesis that compounds with sim-
ilar structure are likely to exhibit similar pharmacological
activity [24; 7]. We use the simple bit-string �ngerprint rep-
resentation of a compound's structure [11; 28]. The atom-
pair �ngerprints were generated by Tripos, Inc.

2. BACKGROUND

2.1 Ensembles
An ensemble of classi�ers is a set of classi�ers whose indi-
vidual decisions are combined in some way to classify new
examples [14]. Many popular meta-learning techniques in
computer science can be conveniently described within this
framework. An ensemble consists of a set of possibly di�er-
ent classi�er types. The output of each classi�er is combined
in one of many di�erent ways in order to reach a �nal clas-
si�cation. This de�nition is broad, however it encompasses
many di�erent popular techniques within the same frame-
work, including bagging [4] and boosting [16].

The approach introduced within this paper is similar in
spirit to bagging [4]. Bagging, or bootstrap aggregation,
generates many bootstrap samples of a dataset, using sam-
pling with replacement. Each sample is the size of the train-

ing set, although it will contain multiple copies of some ex-
amples and not include others. For su�ciently large datasets,
it can be easily shown that these samples will contain ap-
proximately 63.2% of the unique examples from the original
dataset [2]. The sample is then used to construct a model
to be used by the classi�er. The overall bagged classi�er
(ensemble) is the aggregation of each individual classi�er.
The outputs are combined via majority vote, a common
and reasonable approach when using ensembles. Breiman
also introduced the notion of Rvotes [6], which is an en-
semble of classi�ers similar to bagging. However, Rvoting
uses subsamples that are much smaller than the full size of
the training set. Results in [6] indicate the approach is not
always as e�ective as bagging.
Empirical evaluations of ensembles show that they often out-
perform individual classi�ers. Several requirements are gen-
erally considered necessary:

1. Ensemble members must be diverse.

2. Ensemble members must be reasonably accurate.

Diversity in ensembles is a crucial requirement. Dietterich
[14] argues this can be seen as the averaging of many di�er-
ent consistent hypotheses within the same region of hypoth-
esis space. Statistics and common sense tell us that with
no other knowledge, taking the average of the possible esti-
mates for a value yields a reasonable approximation to the
value. Speci�cally, this averaging tends to reduce the vari-
ance introduced by individual models [20]. This argument
also indicates the rationale behind the requirement that en-
semble members must be reasonably accurate. Otherwise
we include many outliers or inconsistent hypotheses in the
averaging operation, thus increasing the variance of the av-
eraged hypothesis. The use of diversity in classi�cation is an
important issue within our approach; we propose generating
many diverse classi�ers.

2.2 Subsampling and Scalability
Subsampling is a popular technique for data reduction in
data mining and machine learning. Many di�erent approaches
are possible and statistical bounds on worst-case error can
be used to determine a worst-case subsample size. On the
other hand a purely empirical method would require plot-
ting an error curve using increasingly larger subsample sizes
until a plateau in error is seen [26]. The progressive sam-
pling technique addresses the determination of sample size.
However progressive sampling requires results from prior it-
erations thereby creating a serial learning approach. Single
subsamples, in either the empirical or theoretical approach,
are often widely varying in classi�cation accuracy depend-
ing on the particular random subsample. For instance, the
accuracy from successive subsamples of size 50% can widely
vary from subsample to subsample. Ensemble methods are
successful at averaging classi�cation results from the ensem-
ble members. This is the strategy used by bagging [4]. Many
diverse classi�ers can be generated and the overall ensemble
is in some sense an average of the representative region of
hypothesis space. Moreover, ensemble methods like bagging
are parallel in nature. Each bag can be generated and a
model can be constructed in parallel. Bagging is not a scal-
able approach to data mining since each individual bag is
the size of the full training set. Therefore, we would like
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to combine the use of subsampling with the averaging (and
generalization) of ensembles.
Some of the authors previously addressed the inadequacy of
using small bags in a protein secondary structure prediction
problem [9]. They concluded that choosing random, disjoint
partitions of a dataset creates ensembles that are as accurate
as using the same size subsamples (with or without replace-
ment). Generating bags of very large datasets are believed
to potentially create overly similar models, thus hurting the
overall ensemble. Below we intend to address this issue and
describe some empirically determined heuristics for deter-
mining appropriate parameters for subsampling.

3. APPROACH
Protein secondary structure prediction and drug discovery
data mining are both di�cult problems in bioinformatics.
They have several common features with respect to data
mining. First, the data comes from very noisy environ-
ments. Protein structures are not always completely correct
and thus a training set of structures may consist of possibly
inconsistent results. High throughput screening is a very
noisy environment in which the actual measurement of ac-
tivity can be disturbed by contaminants and environmental
conditions. Noisy data is nothing new to the data mining
community, however the total problem space is su�ciently
large and the number of labeled examples is su�ciently small
that noise can be a signi�cant problem.
Another common di�culty in both structure prediction and
drug discovery involves the violation of the iid assumption.
This assumption is that each example is independently and
identically distributed. Machine learning uses this reason-
able assumption as the basis for creating generalized models
from a set of examples. Otherwise, a classi�er using these
models is constructed to predict properties for which noth-
ing is known or can be inferred. However, the independence
assumption is generally weak for both protein structure pre-
diction and drug discovery. Protein secondary structure pre-
diction is necessarily limited to those proteins that have been
investigated and submitted to structural analysis. Predic-
tions are desired for proteins that may be signi�cantly dif-
ferent in structure, for example new and novel sequences.
Drug discovery also involves this issue | candidate com-
pounds may be screened because they are likely to be suc-
cessful or because they are the most plentiful in supply. For
instance, the Diversity set of compounds from the National
Cancer Institute is composed of diverse chemical represen-
tatives, however the set of choices was necessarily restricted
to those for which there was a su�cient supply [25].
Classi�er generalization is the ability of a classi�er to make
reasonable predictions beyond the data it has already seen.
If a classi�er simply memorizes the existing patterns, then
nothing can be said about new examples. Thus all clas-
si�ers generalize to some extent. We propose the use of
\over-generalization", or generalizing the classi�er response
as broadly as possible to avoid the hazards inherent to these
two domains. This principle is used in bagging [4]; we intro-
duce a similar technique for over-generalization in a scalable
framework. In particular, Dietterich [15] observed that bag-
ging with C4.5 generates very accurate classi�ers, yet the
classi�ers are not very diverse (as compared to boosting or
randomized C4.5). By using less data (through small sub-
samples) we expect to create less accurate individual classi-

�ers [19]. The addition of C4.5, an unstable learner, yields
an ensemble of weak, diverse classi�ers. Stability in a classi-
�er can be achieved through averaging over many individual
instances [5]. Since we increase the diversity of the group of
classi�ers, we expect more classi�ers to be needed to achieve
stability in the ensemble.

Therefore, we expect that an ensemble of subsamples can
produce a stable and accurate composite classi�er. Breiman's
bagging and Rvote schemes are the two extremes in ensem-
bles of subsamples. This technique is also similar to the
work presented in [19] in which very weak models are gen-
erated randomly. Many such weak models result in an over-
all accurate classi�er. We empirically investigate a middle-
ground in this work, in which the classi�ers can be made
successively weaker by reducing the subsample size. We de-
termine some heuristics to choose subsample size and the
number of ensemble members. We also investigate the abil-
ity of over-generalization in each classi�er of an ensemble to
more accurately predict the non-homologous structures seen
within the protein secondary structure prediction dataset.

Several key decisions must be made with regard to the en-
semble of subsamples algorithm. Random subsampling of
the dataset can be done with or without replacement. Sub-
sampling with replacement is often used due to its simpler
implementation and simpler statistical math [23]. When us-
ing ensembles of subsamples for over-generalization, we wish
to �nd a small subset of data that can both be represen-
tative and minimal. Therefore sampling with replacement
would reduce the number of unique representatives within
the reduced training set, which could handicap the learner's
ability. We examined the results from subsampling with re-
placement on four modest-sized datasets and found the clas-
si�cation accuracies tended to be lower. We believe that the
need for coverage in the training dataset is too important
to allow a replicated example to take the place of a poten-
tially important representative example. The bagging tech-
nique does not face this problem, since many large bootstrap
samples are taken. Minimizing the size of the subsample
dictates the use of a no-replacement subsampling strategy.
Another key factor in the ensemble of subsamples approach
is the combination strategy for the ensemble. Ensembles
are combined using many di�erent schemes, including ma-
jority voting, weighted voting based on accuracy estimates
and meta-learning over classi�er output. Majority voting is
often used and is generally a good choice [22]. Therefore we
chose a simple majority vote method, both for the simplicity
and scalability of the approach.

The implementation of an ensemble of subsamples is straight-
forward and requires only two parameters: the size of each
subsample and the total number of subsamples taken. We
restrict the subsample size to the range of [5%; 50%] of the
size of the original training set for experimentation. We �nd
that the larger sample sizes produce better classi�ers than
smaller ones. The total number of subsampled sets taken is
described below. One key contribution of this paper is the
correlation between the subsample size and the number of
subsamples.

3.1 Ensemble Task Size
An important design parameter in any ensemble of classi-
�ers is the number of ensemble members. In the context
of subsampling, we must decide on the number of indepen-
dent subsampled sets to create. We can simply choose a
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range of numbers (e.g., 1-20 subsamples) and evaluate the
di�erent ensembles. However, we �nd that normalizing the
number of subsamples taken relative to the subsampling size
creates an easier and more accurate comparison between en-
sembles using di�erent subsampling percentages. We do this
by de�ning two measures of task size, which are related to
the number of examples used in learning.

We �rst de�ne the size of an individual learning task, LTS.
The LTS is the number of examples required for learning,
as a fraction of the total dataset size. The size of the total
dataset is used as the normalizing factor. A single learner
using the entire dataset for learning would have an LTS of
1.

LTS =
num examples

total dataset size
(1)

The overall complexity of the ensemble can be measured as
the Ensemble Task Size (ETS). With the use of subsam-
pling, each learner is given a reduced number of examples
from which to learn. Therefore individual learning tasks are
reduced in complexity. However, we would like to capture
the notion that the ensemble as a whole may have an in-
creased overall learning task size. The learning can be done
in parallel, therefore the ETS does not necessarily indicate
longer training time. The ETS is simply derived from the
LTS as seen in Equation 2. Two illustrative examples are
included below.

ETS =

EX

i=1

LTSi (2)

Consider �rst the simple data partitioning strategy of ran-
dom disjoint partitioning. A dataset is simply split into four
equal-sized partitions of 1=4th size of the full dataset. Each
learner in this simple ensemble would individually have a
learning task size (LTS) of 0:25. The computed ETS for
this example is 1:0, re
ecting the fact that the problem as
a whole has not been enlarged or decreased. Next, consider
bagging as an ensemble strategy. Each ensemble member is
given a bag, or subsample (with replacement) of size equiva-
lent to 100% of the dataset. Therefore each ensemble mem-
ber has an LTS of 1:0. Thus we do not reduce the size of
any individual learner's task. Additionally, the total En-
semble Task Size (ETS) is ETS = 4 � 1:0 or 4:0. This
larger value for the ETS represents the fact that we are in
some sense increasing the total number of examples learned
(across ensemble members) and clearly indicates the scala-
bility problems inherent to bagging.

The ETS measures the complexity of the ensemble in terms
of the number of examples in the original dataset. Therefore
we can directly compare ensembles of subsamples with dif-
ferent subsample sizes. In addition, we have a direct method
of comparing the various subsamples with the well-known
bagging approach.

4. RESULTS
We begin by demonstrating the accuracy of small subsam-
ples on several commonly-used machine learning datasets
from the UCI Machine Learning Repository [3]. The datasets
chosen were page block, pendigits, satimage and letter. The
letter dataset was the largest with 20,000 examples. A ten-

fold cross-validation was performed for each combination of
subsample size and ETS. The accuracy reported is the mean
accuracy across the 10 folds. We use C4.5R8 [27] as the
learner. Table 1 shows the performance on these reference
datasets using C4.5 and small subsamples. Figures 1{4 show
accuracy results for these datasets. The choice of using 25%
subsamples and an ETS of 5 was observed to be the most ac-
curate. A one-tailed paired-di�erence t-test was performed
between the folds using C4.5 and the small subsamples at
the 95% con�dence level. In each of the reference datasets,
the improvement in accuracy was statistically signi�cant as
noted in the table.

Subsampling
Dataset C4.5 25%, ETS=5 t value

page 96.95 97.28y 2.90
satimage 86.51 89.08y 9.11
pendigits 96.33 97.52y 5.69
letter 88.08 90.44y 9.76

Table 1: UCI Repository Results. ydenotes statistical sig-
ni�cance.

Page-Block 
Ensembles of Subsamples
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Figure 1: 10-fold results on the page-block dataset. Results
are average accuracy across the folds.
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Figure 2: 10-fold results on the satimage dataset. Results
are average accuracy across the folds.

We next demonstrate our ensemble of small subsamples ap-
proach on both a protein secondary structure prediction
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Figure 3: 10-fold results on the pendigits dataset. Results
are average accuracy across the folds.
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Figure 4: 10-fold results on the letter dataset. Results are
average accuracy across the folds.

problem and two drug discovery problems. We again use
the C4.5R8 [27] decision tree learner for experiments. Sev-
eral of the problems use existing training and testing sets;
we use ten-fold cross-validation where no such training and
testing sets exist. Additionally, we examine the protein sec-
ondary structure prediction dataset using both a ten-fold
cross-validation on the training set and later using the pro-
vided test set.
The MAO (Monoamine Oxidase) inhibitor dataset used in
this paper was originally used in [7] for drug activity predic-
tion. It consists of a diverse set of compounds manually
selected from the Abbott Laboratories stock of potential
drugs. These compounds are represented in a �ngerprint
format, known as an atom-pair �ngerprint and were gener-
ated by Tripos, Inc. All pairs of atom types are considered,
and for each pair of atom types (for example, nitrogen and
carbon) the smallest number of bonds between each N-C pair
are calculated. A 10 bit feature represents these distances
as either existing or not within the molecule. This process is
done for all atom type pairs, generating a bit string of 1200
features (120 pairs of atom types, each pair having 10 bits).
The dataset consists of the atom-pair �ngerprint and the
classi�cation. Each compound was determined to be active
or inactive in a particular assay { based on the measured
inhibition of MAO.

The KDD Cup 2001 contest consisted, in part, of predicting

the activity of compounds binding to thrombin. The rep-
resentation of the compounds is in an unknown bit-string
format, consisting of 139,351 features (bits). Compounds
are classi�ed as either active or inactive much like the MAO
dataset. There were only 1,909 training examples and only
42 active examples. The test set consisted of 634 com-
pounds. The winner from the KDD Cup 2001 contest de-
tailed his approach in [10]. Surprisingly, he was able to use
only four particular features (bits) in his �nal classi�er. We
will use the same four-feature dataset from [10]. Accuracies
for this contest problem are reported as weighted accuracies,
which is the average accuracy computed from the individual
class accuracies. The winner was able to achieve a 68.44%
weighted accuracy using a Bayesian network [10].
The protein secondary structure prediction dataset is de-
scribed in [18] as the training and testing sets (\train and
test set one") used to develop and validate the neural net-
work that won the CASP-3 secondary structure prediction
contest. It consists of a set of 1,219 protein chains. The pro-
teins are submitted to PSI-BLAST [1] and a scoring matrix
representing the log-likelihood of each of the amino acids
being substituted is returned. This matrix for the protein is
split into windows of 15 amino acids and each window is used
as an example, together with the protein structure (helix,
strand or coil). In addition, an N/C terminus bit is added for
amino acid. The training set consists of 209,529 examples
of dimension 315, representing 1,156 protein chains. The
test set (used in the second set of experiments) consisted of
17,731 examples representing 63 protein chains.
We analyze the e�ects of ensembles of subsamples on clas-
si�cation accuracy within the two bioinformatics domains
described above. We use the MAO dataset and the Jones
training set for our �rst experiments. Figures 5 and 6 show
the average 10-fold classi�cation accuracy as both the sub-
sample size and the number of subsamples vary. Recall that
the ensemble task size is the number of subsamples (nor-
malized by the size of the subsample). The general trend
in both graphs is that the accuracy tends to stabilize at ap-
proximately an ETS of 2 to 4. At this point, we see that
increasing the subsample size leads to higher accuracies.

For the MAO dataset, only the 50% subsample size performs
consistently better than the baseline C4.5. Table 2 shows
the ten-fold results for both the baseline C4.5 and the best
performing subsample for the MAO dataset. This result is
statistically signi�cant in a paired-di�erence t-test between
fold results using a one-tailed test at the 90% con�dence
level. However, even in the cases in which the improvements
are not statistically signi�cant, the classi�cation accuracy
on drug activity prediction can still be considered biologi-
cally signi�cant. In the Jones training dataset, all but one
of the subsamples perform better than the baseline C4.5,
with statistical signi�cance. An important observation from
these graphs is that in both cases the accuracy improved
with larger subsample size. Also, an ensemble in which each
learner used at most 50% of the full training data is more
accurate than a single model built using the entire dataset.

Next we examined the e�ect of subsampling on the throm-
bin dataset. Figure 7 shows the test set weighted accuracy
as the subsample size and ETS vary. We see that the 10%
subsamples approach is much lower in accuracy than the
baseline C4.5 method. Both the 25% and 50% subsample
approaches yield higher accuracies than the baseline. In fact,
the weighted accuracy using 50% subsamples with an ETS
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50% subsamples
Baseline C4.5 ETS=4.5

87.88 87.88
86.67 86.67
82.42 85.45
84.76 85.37
82.93 84.76
84.76 84.15
86.59 86.59
86.59 85.98
87.20 87.20
84.76 87.20

Table 2: MAO AFP 10 fold cross-validation comparison.
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Figure 5: 10-fold results on the MAO afp dataset. Results
are average accuracy across the folds.

of both 2 and 3 was 68.55%. The KDD Cup 2001 winning
weighted accuracy was 68.44%. Therefore the subsampling
approach using 4 features was able to outperform the win-
ning KDD Cup entry.

Finally, we explore the use of over-generalization in two of
the datasets. In the case of the MAO dataset, we use a
modi�ed version of the �ngerprint. This �ngerprint still
uses the atom-pair concept, however rather than storing the
existence of an atom pair at a particular bond length we also
include the count of the number of such bonds. Therefore
instead of 1200 bits in the representation, we have 1200 inte-
gers. This di�erent �ngerprint signi�cantly expands the size
of the feature space and therefore spreads the existing com-
pounds out in this feature space. We expect it to be more
di�cult to predict activity as a result. Over-generalization
should be important in this context to capture the general
relationships among the compounds. We can directly test
the over-generalization ability of our ensemble on the Jones
dataset by using the training set and the test set, which con-
sists of non-homologous chains. Predicting the structure of
non-homologous chains is very di�cult for a classi�er. We
believe that by creating overly-generalized classi�ers we can
capture some of the large-scale patterns in the data.

Figures 8 and 9 show the over-generalization tests on the
protein secondary structure prediction and drug discovery
datasets. In both cases, we see the opposite e�ect as com-
pared to the results from the previous experiment | the
smaller subsample size actually increases performance. The
non-homologous protein chains require a more general model
of protein secondary structure in order to estimate the struc-
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Figure 6: 10-fold results on Jones training set. Results are
average accuracy across the folds.
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Figure 7: Thrombin (KDD Cup 2001) test set evaluation.

tural di�erences on such widely di�erent and unseen exam-
ples. Likewise for the drug discovery dataset we see that by
the use of the atom-�ngerprint count representation we are
creating a much larger feature space, requiring a much more
generalized classi�er. Table 3 shows the results for both
baseline C4.5 and for 25% subsamples with an ETS of 5.
The improvement on the MAO dataset using subsampling,
in this case, is statistically signi�cant using a one-tailed
paired-di�erence t-test at the 95% con�dence level. Thus,
in both cases we force the classi�ers to over-generalize and
therefore provide better generalization on unseen instances.
Generalization occurs in a scalable fashion by taking many
small subsamples of the dataset.

25% subsample
Baseline C4.5 ETS=5

84.85 87.27
86.67 86.67
83.64 84.85
83.54 84.76
82.93 82.93
79.27 85.37
85.98 87.20
85.98 85.98
85.37 87.20
86.59 87.20

Table 3: MAO AFPC 10 fold cross-validation comparison.
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Figure 8: 10-fold cross-validation results on MAO AFPC
dataset. Results are average accuracy across the folds.
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Figure 9: Jones test set evaluation.

5. CONCLUSION
The ensemble of small subsamples approach is a scalable,
distributed learning method. The major di�culty involved
in subsampling, namely classi�er instability, is mitigated us-
ing the ensemble approach. The approach is scalable, since
no single learner is required to use the entire training set.
We empirically show through a series of experiments that
the use of 25% subsamples and an ensemble task size of 4
can exceed the performance of C4.5 using the entire training
set on three datasets from the bioinformatics domain. An
ensemble of subsamples can even exceed the winning clas-
si�cation accuracy on the KDD Cup 2001 drug discovery
dataset.
As mentioned earlier in the paper, some of the authors have
previously examined the use of \small bags" within the pro-
tein secondary structure prediction problem [9]. The small
bag approach was compared with creating disjoint partitions
of equal size. For the same size partitions, they found that
using disjoint partitions was as good or better than the small
bagging approach. This paper, in part, extends this work
by showing that with a su�ciently large number of small
bags subsampled without replication, the performance in-
creases. An important consideration for using this approach
as opposed to disjoint partitions is the overall number of sub-
samples required (the Ensemble Task Size or ETS). Gener-
ally the performance of the ensemble does not improve over
the baseline C4.5 performance until the ETS value is larger
than 1.0. This is equivalent to using a total amount of data

greater than the original dataset. However, the key advan-
tage to the subsampling approach is that no single classi�er
is required to use this amount of data. With an appropriate
implementation in a parallel or distributed learning envi-
ronment, the additional storage overhead is minimal. The
ensemble approach is only practical in a distributed envi-
ronment in which the maximum serial learning task time is
the time required to learn over a subsample of the total data
or perhaps for very large datasets that cannot �t in a single
main memory.

One particular concern within the biological problem do-
mains is the adequacy of a decision tree learner such as
C4.5 [8]. Decision trees often consider partitioning of data
by choosing a single feature at each split in the tree. In both
the representation of a protein chain from amino acids and
the structural characteristics of a molecule, we expect the
relationships and interdependence of multiple features to be
a key descriptive aspect. As a result, more sophisticated
algorithms such as neural networks may be more appropri-
ate. For example, a simple feed-forward back-propagation
neural network with 75 hidden units produces a per chain
accuracy of 72.51% on the Jones test set. The highest accu-
racy using our subsampling ensemble approach within this
paper is 67.67% using 7% subsample sizes. The existence
of signi�cant feature dependence is likely the reason for the
large improvement gains that are seen in both experiments
on the protein prediction dataset. We believe that C4.5 can-
not adequately capture these correlations, although the use
of ensemble techniques signi�cantly improves the accuracy.
Further work on this problem will require classi�ers capable
of integrating multiple features in the same decision point
(i.e. a non axis-parallel decision surface). Many of the clas-
si�ers capable of such consideration are extremely expensive
in computation time for large datasets and many features.
We believe that the use of subsampling is one method of uti-
lizing these more sophisticated algorithms in this large-scale
domain.

Over-generalization in learning from the protein structure
and drug discovery �elds is an important issue. The inher-
ent noise and violation of independence assumptions indi-
cate that over-generalization is a useful technique. We de-
scribe a method of using an ensemble of small subsamples as
a solution to the over-generalization requirement. Choosing
smaller subsamples of data leads to more diverse classi�ers,
which in combination with the ensemble approach tends to
average the hypotheses. Averaging over more potential hy-
potheses leads to a more general hypothesis overall, with
respect to a particular training set. This more general hy-
pothesis is precisely what is needed for the di�cult biolog-
ical domains considered. We demonstrate that this over-
generalization technique can lead to classi�cation accuracy
gains in both drug discovery and protein secondary structure
prediction.

6. ACKNOWLEDGMENTS
This research was partially funded by Tripos, Inc.; the United
States Department of Energy through the Sandia National
Laboratories LDRD program and ASCI VIEWS Data Dis-
covery Program, contract number DE-AC04-76D000789; and
the National Science Foundation, contract number NSF EIA-
013-768.

BIOKDD02: Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conference) page 31



7. REFERENCES

[1] S.F. Altschul, T.L. Madden, A.A. Scha�er, J.H. Zhang,
Z. Zhang, W. Miller, and D.J. Lipman. Gapped BLAST
and PSI-BLAST: a new generation of protein database
search programs. Nucl. Acids Res., 1997.

[2] Eric Bauer and Ron Kohavi. An empirical comparison
of voting classi�cation algorithms: bagging, boosting,
and variants. Machine Learning, 36:105{142, 1999.

[3] C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998.

[4] L. Breiman. Bagging predictors. Machine Learning,
24(2):123{140, 1996.

[5] L. Breiman. Heuristics of instability and stabilization in
model selection. The Annals of Statistics, 24(6):2350{
2383, 1996.

[6] L. Breiman. Pasting small votes for classi�cation in
large databases and on-line. Machine Learning, 36:85{
103, 1999.

[7] Robert D. Brown and Yvonne C. Martin. Use of
structure-activity data to compare structure-based
clustering methods and descriptors for use in compound
selection. Journal of Chemical Information and Com-
puter Sciences, 36(3):572{584, 1996.

[8] N. V. Chawla, T. E. Moore, K. Bowyer, L. O.
Hall, C. Springer, and P. Kegelmeyer. Investigation of
bagging-like e�ects and decision trees versus neural nets
in protein secondary structure prediction. In Workshop
on Data Mining in Bioinformatics, Knowledge Discov-
ery and Data Mining (KDD), 2001.

[9] N.V. Chawla, T.E. Moore, K.W. Bowyer, L.O. Hall,
W .P. Kegelmeyer, and C. Springer. Bagging is a
small dataset phenomenon. In Proceedings of the Inter-
national Conference of Computer Vision and Pattern
Recognition (CVPR), Hawaii, December 2001.

[10] Jie Cheng, Christos Hatzis, Hisashi Hayashi, Mark A.
Krogel, Shinichi Morishita, David Page, and Jun Sese.
Kdd cup 2001 report. SIGKDD Explorations, 3(2):47{
64, January 2002.

[11] Robert D. Clark, David E. Patterson, Farhad Soltan-
shahi, James F. Blake, and James B. Matthew. Visu-
alizing substructural �ngerprints. Journal of Molecular
Graphics and Modelling, pages 404{411, 2000.

[12] Cynthia Corwin and Irwin D. Kuntz. Database search-
ing: Past, present and future. In Yvonne C. Martin and
Peter Willett, editors, Designing Bioactive Molecules,
pages 1{16. American Chemical Society, Washington,
D.C., 1998.

[13] James Darnell, Harvey Lodish, and David Baltimore.
Molecular Cell Biology. Scienti�c American Books,
1990.

[14] T. G. Dietterich. Ensemble methods in machine learn-
ing. In J. Kittler and F. Roli, editors, First Interna-
tional Workshop on Multiple Classi�er Systems, Lec-
ture Notes in Computer Science, pages 1{15, New York,
2000. Springer Verlag.

[15] T. G. Dietterich. An experimental comparison of three
methods for constructing ensembles of decision trees:
bagging, boosting, and randomization. Machine Learn-
ing, 40(2):139{158, 2000.

[16] Y. Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119{139, August 1997.

[17] Cynthia Gibas and Per Jambeck. Developing Bioinfor-
matics Computer Skills. O'Reilly and Associates, 2001.

[18] David T. Jones. Protein secondary structure prediction
based on decision-speci�c scoring matrices. Journal of
Molecular Biology, 292:195{202, 1999.

[19] E. M. Kleinberg. An overtraining-resistant stochastic
modeling method for pattern recognition. The Annals
of Statistics, 24(6):2319{2349, 1996.

[20] R. Kohavi and D. H. Wolpert. Bias plus variance de-
composition for zero-one loss functions. In L. Saitta,
editor, Machine Learning: Proceedings of the Thir-
teenth International Conference, pages 275{283. Mor-
gan Kaufmann, 1996.

[21] Lawrence Livermore National Labora-
tory. Protein structure prediction center.
http://predictioncenter.llnl.gov.

[22] Louisa Lam and Ching Y. Suen. Application of majority
voting to pattern recognition: An analysis of its behav-
ior and performance. IEEE Transactions on Systems,
Man, and Cybernetics { Part A: Systems and Humans,
1997.

[23] H. Liu and H. Motoda, editors. Instance Selection and
Construction for Data Mining. Kluwer Academic Pub-
lishers, 2001.

[24] Yvonne C. Martin, Peter Willett, et al. Diverse view-
points on computational aspects of molecular diver-
sity. Journal of Combinatorial Chemistry, 3(3):231{
250, May/June 2001.

[25] Developmental Therapeutics Program. Diversity set in-
formation. National Cancer Institute, National Insti-
tutes of Health, http://dtp.nci.nih.gov.

[26] Foster Provost, David Jensen, and Tim Oates. E�cient
progressive sampling. In Proceedings of the Fifth Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD-99), pages 23{32, 1999.

[27] J.R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1992.

[28] Peter Willett, John M. Barnard, and Geo�rey M.
Downs. Chemical similarity searching. Journal
of Chemical Information and Computer Science,
38(6):983{996, 1998.

BIOKDD02: Workshop on Data Mining in Bioinformatics (with SIGKDD02 Conference) page 32


