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Abstract：Protein secondary structure prediction and high—throughput drug screen data mining are two 

important applications in bioinformatics．111e data is~presented in sparse feature spaces and can be 

unrepresentative of future data．There is certainly some noise in the data an d there may be significant 

noise．Supervised learners in this context will display their inherent bias toward certain solutions， 

generally solutions that fit the training set wel1．In this paper，we first describe an ensemble approach 

using subsampling that scales well with dataset size．A su~cient number of ensemble membe rs using 

subsamplesofthedatacan yield amore accurate classifierthan  a single classifierusingthe entiredataset． 

Experiments on several da tasets demonstrate the effectiveness of the approach．、Ⅳe report results from 

theKDDCup2001 drug discoverydatasetinwhichour approachyields ahigherweighted accuracythan thewinning entry． 

We then ex—·tend our ensemble approach to create an  over-·generalized classifier for prediction by reducing the individual 

subsam ple size．Th e ensemble strategy using small subsam ples has the effec t of avemging over a wider ran ge of hypotheses． 

W e show that both protein secondary structure prediction and drug discovery prediction can be im proved by the use of 

over-generalization，specifically through the use of ensembles of small subsam ples． 
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Bioinformatics is a mpidy expanding field involving a 

significant contribution from the data mining community． 

Man y differentproblems are groupedintothe general category 

of bioinformatics， including protein secondary structure 

prediction，drug discovery，DNA microarray an alysis，gene 

predictionand genomeanalysis[17]．In thispaper，wefocuson 

tw o particular problems  in which data mining can  contribute： 

drugdiscoveryandprotein secondary structureprediction．Both 

of these fields demonstrate distinct characteristies as data 

mining problems ．Th ey are both complex domains in which 

noisein theform ofincorrect classlabe ls can effect a smallto 

medium num ber of exam ples．、Ⅳe will diSCUSS the tw o areas 

andthen attempttodescribe whatwebelieveisthecommonthread 

— the need for“over—generali7ation'’Oil the part of any learner
．  

Once we have described the overall concept we introduce a 

subsamp~g technique that we believe demonstrates this 

generzli7ation．We also show that predictive accuracy can be  

improvedttaough theuseofover—generalization． 

1．1 Protein Secondary Structure Prediction 

Proteins are a key component of life and central to our 

understanding of ce llular processes．A protein consists of a 

linear chain of amino acids；each amino acid can be  one of 

tw enty different types．Th e key nature of proteins is not their 
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one．dimensional structure，but rather how they fold back on 

them—selves． Proteins can  take on several different 

configurations and these are chemically im po rtant．Man y 

different forces act upo n the protein chain in order to create 

such folds，including ionic，hydrogen，van der W aals an d 

hydrophobic interactions[13]．Much of the process by which a 

sequenceofam in—o acids forms amore complex structure isnot 

completely understood．X-ray crystallography has been the 

principal means ofelucidating the structure ofmany proteins， 

howeverithas been appliedto only a smallfractionofthetotal 

number that can exist[13]．Th e process is difficult and 

error—prone．However,if we wish to understand a eellular 

process or pe rhaps design a drug to inhibit a protein—ligan d 

interactionwemustfirstun derstandthe secondary structure of 

a protein．Presently structural prediction is most successful 

when sufficiently similar homologs are known[17]．Homologs， 
or similar protein chains，can  be used to estimate the structure 

ofan us-visualizedprotein． ，llenthere are no closehomologs 

to a protein，the structural prediction can be  very poor．New 

protein sequences are constantly be ing discovcred an d often 

comprise very different and distinct chains of am ino acids
．  

Modem biochemi stry can  not yet fully describe the ways in 

which a strand of amino acids may fold
． Data mining 

techniques can be  used in an attempt to predict this structure
． 

111e CASP contest[21】is one method of encouraging the 

research comm unity tofocus on secondary structureprediction． 

In the latest such contest(CASP-4)，the winner was PSⅡlRED 

[18]．111e author used the PSI-BLAST[1】promes for a set of 

protein chains as training data for a neural netw ork
． 111e 

netw ork used  a window of 15 amino acids within the protein 

chainsandan ensembleoffour neuralnetw orkswas built
． Each 

feature was the log likelihood of subIstitution ofan  amino acid
．  

Earlier work by some of the authors have attempted  to 

un derstand the process through which PS邛II D succeeded
． 
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W e provide one such explanation here，both as afollowup and 

anew directionfrom earlierwork． 

1．2 DrugDiscovery 

111e second problem we consider within this paper is drug 

discovery．T s is all challenging field that encompasses both 

protein sec ondary structure prediction an d many other difileult 

steps．For this pape r，we consider only one small aspect of the 

entire process ．．—— prediction of drug--like activity of a 

tom—pound based on its structure．W e use a simplified 

descriptionofamolec nlean d attempttopredictifthemolecule 

will exhibit drug—like behavior in a high—throughput screening． 

Drug discovery encompasses understanding cellular processes， 

predicting protein structures， an d estimating interactions 

between a molecule and the normal biologi【cal molecular 

targets【121．Chemists and biologists would ideally like to fully 

understand the pathways involved in a disease an d from this 

knowledge develop a molecnle(or several molecnles)that can 

interact with the disease agents to neutralize them [121． 

However，many complex interactions are occurring at the 

cellular level that makes the fu11 rational drug design process 

extremely difficult．Modern pharmaceutical companies pursue 

methods that attempt to circumvent some of these problems 

through the use ofhigh—throughput screening．Since we do not 
have full kn owled ge of the physical an d elec trostatic forces 

govermng complex mter-actlons of protems，enzymes an d 

ligands，we can instead try to test many available compounds 

for a desired respo nse．Thjs is the so—called  lead finding stage 

of drug discovery．Modern testing technology has developed to 

thepointthatthis proc ess canbe automated．Many compo unds 

can  be quicklY tested an d leads can be identified from these 

results．These leads carl be an alyzed more elosely and 

structurally similar compo unds can be investigated for 

po tentially higher effi cacy．Data mining within drug discovery 

involves predicting if a compoun d is likely to demonstrate 

drug—like activity in the presence of a given disease(or simply 

a given chemical target)．High-throughput screens result in a 
large amountofdata foran alysis．Ideally，in sflico screening of 

compo unds could re-place the need for HTS in identilying 

leads．Current da ta mining techniques can not only be used to 

predict an untested tom—pound’s activity but also can identify 

inconsistent and po tentially incorrect HTS results．We use data 

mining tools to predict the activity of a molecule based on 

solely on it’s structural characteristics．Much work in drug 

discovery involves the hypo thesis that compo un ds with similar 

structure are likely to exhibit similar pharmacological activity 

【241，【71．We use the simple bit-string fingerprintrepresentation 

of a compound’s structure 【l1】， 【28]． The atom．pair 

fingerprints were generated by Tri-pos，Inc． 

2 Background 

2．1 Ensembles 

An ensemble of classifiers is a set of classifiers whose 

individual decisions aIe combinedin somewayto classifynew 

exam ples【1 4]．Many popnlar meta-learning techniques in 

computer science can be conveniently described within this 

fram e—work．Anensemble consists ofa setofpossiblydifferent 

classifier types．The output of each classifier is combined  in 

one of many different ways in order to reach a final 

classification．Thjs defmition is broad．however it encompasses 

manydifferentpopnlar techniques withinthe salnefram ework， 

including bagging [4】 and boosting 【16]．The approach 

introduced within this paper is similar in spirit to bagging【4]． 

Bagging，or bootstrap aggregation，generates many boo tstrap 

sam ples of a dataseL using sam pling with re—placement．Each 

sam ple is the size of the training set，although it will contain 

multiple copies of some exam ples an d not include others．For 

sufficiently large datasets．it can  be easily shown that these 

sam ples will contain approximately 63．2％ of the unique 

exam plesfromtheoriginal dataset[21．Th e sam pleisthenused 

to construct a model to be used by the classifier．The overall 

bagged classifier (ensemble) is the aggregation of each 

individual classifier．Th e outputs are combined via majority 

vote， a common and reasonable approach when using 

ensembles．Breiman also introduced the notion of Rvotes【6】， 

which is an ensemble of classifiers similar to bagging． 

However，Rvoting uses subsam ples that are much smaller than  

the fu1l size of the training set．Results in【61 indicate the 

approach is not always as effective as bagging．Empirical 

evaluations of ensembles show 

individual classifiers． Several 

considered necessary： 

that they often out—pe rform  

requirements are generally 

1)Ensemble members must be diverse． 

2)Ensemble members must be reasonably accurate． 

Diversity in ensembles is a crucial requirement． 

Dietterich【14】argues this Call be seen as the averaging of 

man ydifferent consistenthypotheseswithinthe salneregionof 

hypothesis space．Statistics an d common sense tell us that with 

no other kn owledge， taking the average of the po ssible 

estimates for a value yields a reasonable approximation to the 

value．Specifically，this averaging tends to reduce the variance 

introduced by individual models【20]．This argument also 

indicates the rationale behind the req uirement that ensemble 

members must be reasonably accurate．Otherwise we include 

man y outliers or inconsistent hypo theses in the averaging 

operation， thus in—creasing the variance of the averaged 

hypothesis．Th euseofdiversity in classificationisan important 

issuewithinour approach；wepropo se generatingmanydiverse 

classifiers． 

2．2 Subsampling and Scalability 

Subsampling is a popular technique for data red uction in 

da ta mining andmachinelearning．Man ydifferent approaches 

are po ssible and statistical bounds on worst-case error can  be 

used  to determine a worst-case subsample size．On the other 

han d apurely empirical methodwould require plottingan elror 

CHIVe using increasingly larger subsample sizes un til a plateau 

in error is seen 【26]．The progressive sam pling technique 

addresses the determination of sam ple size
． However 

progressive sam pling requires results from prior iterations 

thereby creating a serial learning approach
． Single subsamples， 

in eimer me emp-mca1 or retica1 appmach
， are of n widely 

Varying iIl classi五catjon accuracy depend g on me panicular 

m dom subs锄 ple．For instance，me accuracy f_ronl successive 
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subsamples of size 50％ Call widely vary from subsample to 

subsample．Ensemble methods are successful at averaging 

classification results from the ensemble members．This is the 

strategy used by bagging[4】．Many diverse classifiers can be 

generated an d the over-an ensemble is in some sense an 

average of the representative region of hypothesis space． 

Moreover，ensemble methods like bagging are parallel in nature． 

Each bag can be  generated and a mod el can  be constructed in 

paralle1．Bagging is not a scalable approach to data mining 

since each individual bag is the size of the fu11 training set． 

n Ierefore．we would like to combine the use of subsampling 

with the averaging(and generalization)of ensembles．Some of 

the authors previously addressed the inadequacy of using small 

bags in a protein secondary structure prediction problem [9】． 

Thev concluded that choosing random，disjoint partitions of a 

dataset cle．ates ensemblesthat areas accurateas usingthe sanle 

size subsam rIles(with or without replacement)．Generating 

bags of very large datasets are be fieved to potentially create 

overly similar mod els，thus hurting the overall ensemble． 

Below we intend to address this issue an d describe  some 

empirically determined heuristics for detennining appropriate 

parametersfor subsampling． 

3 Approach 

Protein secondary structure prediction and drug discovery 

data mining are both d龋 cult problems in bioinformatics．They 

have several common features with respect to data mining． 

First,the data comes from very noisy env~onments．Protein 

structures arenotalways completely correctandthus atraining 

set of structures may consist of possibly inconsistent results．， 

High throughput screening is a very noisy environment in 
which the actual measurement of activity can be disturbed by 

contaminants an d env~onmental conditions．Noisy data is 

nothing new to the data mining community，however the total 

problem space  is sufficiently large an d the numbe r of labe led  

exam ples is sufficiently small that noise can  be a significant 

problem． Another common diffi culty in bo th stnlcture 

prediction and drug discovery involves the violation of the iid 

assumption． This assumption is that each exam ple is 

independently an d identically distributed．Machine learning 

uses this reasonable assumption as the basis for creating 

generalized mod els from a set of exam ples．Otherwise，a 

classifier using these mod els is constructed to predict properties 

for which nothing is known or can  be  inferred．However，the 

independence assumption is generally weak for bo th protein 

stnlcture prediction an d drug discovery．Protein secondary 

stnlcture predictionis necessarilylimitedtothose proteinsthat 

have been investigated and submitted to structural analysis． 

Predictions are desired for proteins that may be  significan tly 

different in structure，for exam ple new and novel sequences． 

Drug discovery also involves this issue ．．—— candida te 

compo unds may be  screened because they are likely to be 

successful orbecause they arethemostplentifulin supply
．
For 

instance，the Diversity set of compounds from the National 

Cancer Institute is compo sed of diverse chemi cal 

representatives，however the set of choices was necessarily 

restricted to those for which there was a sufficient supply[25]． 

Classifier generalization is the ability of a classifier to make 

reasonable predictions beyond the data it has already seen．If a 

classifier simply memorizes the existing patterns，then nothing 

canbe said abo utnew exam ples．Th us all classifiers generalize 

to some extent．W eproposetheuseof “over-generalization'’，or 

generalizing the classifier respo nse as broadly as po ssible to 

avoid the hazards inherent to these two domains．This principle 

is used in bagging[4]；we introduce a similar technique for 

over-generalization in a scalable fram ework．In particular。 

Dietterich[15】observed that bagging with C4．5 generates very 

accurate classifiers，yet the classifiers are not very diverse(as 

compared to boosting or randomi zed C4．51．By using less data 

(throu【gh small subsamples)we expect to create less accurate 

individual classifiers【l9】．The addition of C4．5，an unstable 

learner，yields an ensemble of weak ， diverse classifiers． 

Stabilityin a classifier can be achieved through averaging over 

many individual instances f51．Since we increase the diversity 

of the group of classifiers，we expect more classifiers to be 

needed to achieve stability in the ensemble．nIerefore．we 

expect that an ensemble of subsam ples can prod uce a stable 

and accurate compo site classifier．Breiman ’s bagging and 

Rvote schemes are the two extremes in ensembles of 

subsamples ．Thistechniqueisalso similartothework 

presented in [19】in which very weak models are generated 

randomly．Many suchweak mod elsresultin an overall accurate 

classifier．W e empirically investigate a mi ddle．ground in this 

work．in whichthe classifiers can be made successivelyweak er 

by reducing the subsam ple size．We determine some heuristics 

to choo se subsam ple size and the numbe r of ensemble 

mem-bers． W e also investigate the ability of 

over-generalization in each classifier of an ensemble to more 

accurately predict the non-homologous strucBxres seen within 

the protein secondary structure prediction da taset．Several key 

decisions must be  made with regard to the ensemble of 

subsamples algorithm．Ran dom subsampling ofthe da taset Call 

be done with or without replacement．Subsam pling wiⅡl 

replacementisoftenused duetoits simplerim plementationand 

simpler statistical math f23】．、Ⅳhen using ensembles of 

subsamples for over-generalization．we wish to find a small 

subset of da ta that can bo th be  representative and minima1． 

Th erefore sam pling with replacement would reduce the numbe r 

ofuniquerepresentativeswithinthe reducedtrainingset,which 

could handicap the learner’s abilit、，．We examined  the results 

from subsampling with replacement on four mod est-sized 

da tasets an d foun d the classification accuracies tended  to be  

lower．W e be lieve that the need for coverage in the training 

dataset is too  im portant to allow a replicated exam ple to take 

theplaceofapo tentiallyim po rtantrepresentative exam ple．TIle 

bagg ingtechniquedoesnotface thisproblem,since manylarge 

bootstrap sam ples a嚣 taken． Iinilnizing 吐le si2e 0f tl屺 

subs锄 ple dictatesⅡle use 0f a no_r印la伽 ent slIbs锄 g 

s吮tegy．Anomer key fact0r inⅡle ense ble of subs锄 ples 

apprOach is Ⅱle c伽  inadon s的 tegy f0r Ⅱle en sel田lble． 

Ensembles are cOmbiⅡed using many di lerem schemes， 

includiIlg majority votiIlg，weighted votiIlg based 0n accumcy 
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estimatesandmeta—learningoverclassifieroutput．Majority individuallearningtask。LTS．TheLTSistIlenumberof

Th e~ rewechoseasimplemajorityvotemethod，bothfor山e size．Thesizeof山etotaldatasetisusedas山enormalizing
sim plicityandscalabilityof山eapproach．Th eim plementation factor．A single learnerusing 山e entiredatasetflorlearning

ofallensemble0fsubsamplesisstraightforwardandrequires wouldhavean LTS0f1
．

omy‘w0p。r锄 eterS：山e。‘。eofeachsubs锄 ple。nd山e删 LTS
： 竺竺竺竺婴 !竺 (1)

num berofsubsamplestaken．Werestrictthesubsamplesizeto total datasetsize 。

th
．
erange，【5％j50％】oI．th．esize0fttIeoriginaltrainingset TheoverancomplexityoftheensemblecaIlbemeasuredt
or．expenmen‘霉011．．．we．fmdtIlattIlelargersampleslzes astheEnsembleTaskSize(ETS)．Withtheuseofsubsamplin臣
p?ducebetterc’aSsifIe冀ttlansmallerones．Thetotalnumber eachle锄eris百venareducednumberofex锄plesflm三研
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～
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⋯
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．
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．

1ow．W One key whichtole锄
．盂幽reindividualleamingtasks三础c三

。竺 b7 ．0t竺 p掣 lsme。删anon姚een山e incomplexity．However，wewouldliketo乙aptIlrethenotionsubsamp‘es。zeaIldttle
num be rofSBbsam ples‘ thattheensembleaSawholemavhaveaIli孟reaSedovera】l

An im portant design parameter in any ensemble of thereforetheETSdoesnotnecessarilyindicate longertraining

classifiersisthenumber0feisemblem锄be≤Inthecontext time·TheETSissimplyderivedfromtheLTSasseenin
ofsubsanlpnng，wemustdecideonthenum berofindependent Equation2·Tw0illustrativeexam plesareincluded be low

．

subsampledsetstocreate．weCansimplychoosearangeof ETS：丫 LTS； f21
numbers(e⋯g 1-20subsamples)andevaluatethedif_ferent 。鲁 ‘ 一

easieran dmore accurate comparisonbe tweenensemblesusing eq ual-sized partitionsof1，4血 size 0fttle fulldataset
． Each
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has not been enlarged or decreased．Next,consider bag百ng as 
all ensemble strategy．Each ensemble member is given a bag，or 

subsample(with replacement)of size equivalent to l00％ of the 

dataset．Therefore each ensemble membe r has an I S 0f l：0． 

Thus we do not reduce the size of any individual learner’s task． 

Additionally．thetotalEnsembleTask Size(ETS)isETS=4 x 

1．0 or4．0．TllislargervaluefortheETSrepresentsthefactthat 

we are in some sense increasing the total number of examples 

learned (across ensemble members)and clearly indicates the 

scalability problems inherent to bag百ng．The ETS measures 
the complexity of the ensemble in terms of the number of 

exam ples in the original dataset．Th erefore we can directly 

compare ensembles of subsam ples wim different subsam ple 

sizes．In addition，we have a direct method of comparing the 

various subsam ples with the well-known bagging approach． 

4 Resuits 

W e be2in by demonstrating the accuracy of small 

subsam ples on several commonly．used  machine learning 

datasets from the UCI Machine Learning Repository【3】．The 

datasets chosen were page block,pendigits，satimage and letter． 

The letter dataset was the largest wim 20．000 examples．A 

ten．．fold cross．．validation was performed for each combination 

of sub．sam ple size an d ETS．The accuracy reported is the mean 

accuracy across the 10 folds．Weuse C4．5R8 f271 as thelearner 

Table I shows the perform an ce on these reference datasets 

using C4．5 and small subsam ples．Figures l-4 show accuracy 

results for these datasets．Th e choice ofusing 25％ subsam ples 

an d an ErS of 5 was observed  to be the most accurate．A 

one．．tailed paired．．difference t-test was pe rform ed  be tween the 

folds using C4．5 and the small subsam ples at the 95％ 

confidence leve1． In each of the reference datasets。 the 

improvement in accuracy was statisticaUy significant as noted 

in thetable． 

Table 1 UCI Repository Results．t denotes Statistical Signincanee 

W e next demonstrate our ensemble of small subsam ples 

approach on both a protein secondary structure prediction 

problem an d two drug discovery problems．W e again use the 

C4．5R8【27】decision tree learner for experiments．Several of 

the problems use existing training an d testing sets；we use 

ten-fold cro ss-validation where no such training and testing sets 

exist．Additionally，we examine the protein secondary structure 

prediction datasetusing both aten-fold cross．validation onthe 

training set an d later using the provided test set
．
Th e MAO 

(Monoamine Oxidase)inhibitor dataset used in this paper was 

originally used 【7】f0r drug activity prediction．It consists of 

a diverse set of compo unds manually selected from the Abbott 

Laboratories stock of potential drugs
． These compounds are 

represented m a fingerprint format, kn own as an atom-pair 

fingerprintandwere generatedbyTripos
． Inc．Allpairsofatom 

types are considered，and for each pair of atom types(for 

exam ple，nitrogen and carbon)the smallest number of bonds 

be tw een each N．C pair are calcnlated．A 10 bit feature 

represents these distances as either existing or not within the 

molecnle．Tllis process is done for all atom type pairs， 

generating a bit string of l200 features(120 pairs of atom types， 

each pairhaving 10 bits)．Th edataset consists ofthe atom-pair 

fingerprint and the classification． Each compo und was 

determined to be  active or inactive in a particular assay-based 

on the measured inhibition of MAO．Th e KDD Cup 200l 

contest consisted， in part, of pred icting the activity of 

compo unds binding to thrombin．The representation of the 

compounds is in an  unknown bit-string form at，consisting of 

l39．35l features(bits)．Compounds are classified as either 

active orinactivemuchliketheMAO dataset．Th erewere only 

l。909仃ainin2 exam ples an d only 42 active exam ples．Th e test 

set consisted of 634 compounds．The winner from the KDD 

Cup 200l contest detailed his approach in【10]．Surprisingly，he 

was able to use only four particnlar features(bits)in his final 

classifier．We will use the same four-feature dataset from 『10]． 

Accuracies for this contest problem are repo rted as weighted 

accuracies，which is the average accuracy computed from the 

individual class accuracies．The winner was able to achieve a 

68．44％ weighted accuracy using a Bayesian network『10]．The 

protein secondary structure prediction dataset is de．scribed in 

fl81 as the training and testing sets ("train and test set one”) 

used to develop and validate the neural netw ork that won the 

CASP．3 secondary structure prediction contest．It consists of a 

set of 1．219 protein chains．Th e proteins are submitted  to 

PSI．BLAST 【l】 and a scoring matrix representing the 

l0g．1ikelihood of each of the amino acids being substituted is 

returned ．Tllismatrixfortheprotein is sDhtinto windows of15 

amino acids an d each window is used as an exam ple。together 

with the protein structure(helix，strand or coil)．In addition。an 

N，C terminus bit is added for amino acid．Th e training set 

consists of 209，529 exam ples of dim ension 315，representing 

l，156 protein chains．Th e test set(used in the second set of 

experiments)consisted of 17，73l exam ples representing 63 

protein chains． We analyze the effects of ensembles of 

subsam ples on classification accuracy within the tw o 

bioinformatics domains described above．We use the MA0 

da taset an d the Jones training set for our first expe riments． 

Figures 5 and 6 show the average 10．fold classification 

accuracy as bo th the subsam ple size and the numbe r of 

subsam ples vary．Recall that the ensemble task size is the 

number of subsam ples (normalized by the size of the 

subsam ple)，Th e general trend in both graphs is that the 

accuracy tends to stabilize at approximately an ETS 0f 2 to 4． 

Atthispoint，we see thatincreasingthe subsam ple size leadsto 

higher accuracies．For the MAO dataset, only the 50％ 

subsam ple size performs consistently better than the baseline 

C4．5．Table 11 shows me ten．f0ld results f0r b0m me baselIme 

C4．5 and me best perf_0nIling subs锄 ple f0r me MA0 dataset． 

Thjs result is statisticaUy significant in a p捌 ．diflference t．test 

bet、Ⅳeen f0ld results using a one．taiJed test at me 90％ 

c0 ideIlce leve1．H0wever，even in me cases in wllich me 

impmvementS are n0t statistically significaIlt’me classifica曲 n 

accuracy 0n dmg activity p础 icti0n can sdU be c0nside陀d 

biol0百cally sigIlificaIlt．1n me J0nes g dataset，all but 
one 0f me subs锄 ples perfbnn better maIl me baseliIle C4

．5， 

wim s伽 stica1 significance．An importaJ1t 0bserv 0n flmm 

mese aphs is mat in b0m cases me accuracy improved wim 
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larger subsample size Also，aJ1 ensemble in which each learner 

usedatmost5O％ ofthefu11training dataismore accuratethan 

a single model built using the entire dataset．Next we examined 

the effect of subsampling on the thrombin dataset．Figure 7 

shows the test set weighted accuracy as the subsample size an d 

ETS vary．W e see that the 10％ subsamples approach is much 

lower in accuracy than the baseline C4．5 method ．Both the 25％ 

and 50％ subsample approaches yield higher accuracies than  

the baseline．In fact, the weighted accuracy using 5O％ 

subsamples with an ETS of both 2 an d 3 was 68．55％．The 

KDD Cup 2001 winning weighted accuracy was 68．44％． 

Therefore the subsampling approach using 4 features was able 

tooutperform thewinningKDD Cupentry． 

Table 2： MA0 AFP 10 fold crO -validation COlflB 

Finally，we explore the use of over-generalization in two 

of the datasets．In the case of the MAO dataset, we use a 

modified version of the fingerprint．This fmgerprint still uses 

the atom-pair concept, however rather than storing the 

existence of an atom pair at a particular bOnd length we also 

M Ao ·AFP 

2 3 4 5 

一 baseline 

+ 5 
一 25％ 

+ 1慨  

Ensemble Task Size 

Fig．5． 1O-fold resultsontheMAO a lpdataset．Results are 
average accuracy across the folds．IMAO-AFP] 

72 

71 

70 

分69 
墨 68 

寻67 
66 

65 

64 

63 

jones 
1 O-fold cross validation 

3 

一 ⋯  ～ 一  ． ． ． ． ⋯ ． ． — ， 

4 5 

一 baseline 

一 25％ 

一 10％ 

一 5％ 

Ensemble Task Size 

Fig．6．1O-fold results onJonestraining set
． Results are 

average accuracy aCI~SS the folds．[jones training set] 

include the count of the number of such bonds．Therefore 

instead of 12O0 bits in the representation，we have 1200 

integers．This different fmgerprint significantly expands the 

size of the feature space and therefore spreads the existing 

compounds out in this feature space．We expect it to be  more 

difficult to pred ict activity as a result．Over-generalization 

should be  important in this context to capture the general 

relationships among the compounds．W e can directly test the 

over-generalization ability of our ensemble on the Jones dataset 

by using the training set and the test set, which consists Of 

non-homologous chains． Predicting the structure of 

non-homologous chains is very difficult for a classifier．W e 

be ~eve that by creating overly—generalized classifiers we can 

capture some ofthe large—scale patterns in the data．Figures 8 

and 9 show the ove~generalization tests on the protein 

secondary structure prediction an d drug discovery datasets． 

In both cases，we see the opposite effect as compared  to 

the results from the previous experiment ．．—— the smaller 

subsample size actually increases perform an ce． 11he 

non-homologous protein chains require a more general mod el 

ofprotein secondary structure in order to estimate the structural 

differences on such widely different and unseen exam ples． 

Likewise for the drug discovery dataset we see that by the use 

of the atom-fin gerprint coun t representation we are creating a 

much larger feature space，requiring a much more generalized 

classifier．Table 3 shows the results for both baseline C4．5 an d 

for25％ subsampleswithan ETSof5．11heimprovementonthe 

MAO dataset using subsam pfin g，in this case，is statistically 

significan tusing aone—tailed paired-differencet-test atthe95％ 

confidenceleve1．功 Hs in bo th casesweforcetheclassifiers to 

over-generalize and therefore provide better generalization on 

un seeninstances．Generalizationoccursin a scalablefashionby 

taking many small subsamples of the dataset． 

5 Conclusion 

Th e ensemble of small subsamples approach is a scalable， 

distributed learning method．The major difficulty involved in 
subsampling，nam ely classifier instability，is mitigated using 

the ensemble approach．11he approach is scalable，since no 

single learner is required to use the entire training set．、 

empirically show through a series of experiments that the use 
Of25％ subsamples and an ensemble task size of4 can exceed 

70 

要68 

重 
至器 
言58 
≥56 

Thrombin Test Set 

4 Features 

＼ 一 
1 2 3 4 5 

Ensemble Task Size 

— ba seline 

+ 5O％ 

+ 25％ 

+ 1O％ 

Hg．7． Thrombia(KDDCap2001)test setevaluation． 

[ThrombinTestSet4Features】 

the performance of CA．5 using the entire training set on three 
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云60 
‘， 
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50 
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2 3 4 5 

Ensemble Task Size 

—．-baseline 

一 33％ 
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Fig．8．1O-fold Cl'OSS-validation results on M AO AFPC dataseL 

Results Are average accuracy Rcross the folds Fig．9．Jones test set evaluadon．Uones Test Set Evaluation] 

datasets from the bioinformatics domain．An ensemble of sub— 

samples can even exceed the winning classification accuracy 

ontheKDD Cup 2001 drugdiscoverydataset． 

TABLE 3 IdAO AFPC 10foldcross-valida tioncomparison 

As mentioned earlier in the paper,some of the authors 

have previously examined  the use of‘‘small bags’’within the 

protein secondary structure prediction problem 【9】．The small 

bag approachwas comparedwith creatingdisjointpartitions of 
equal size．For the same size partitions，they found that using 

disjointpartitionswasas goodorbetterthanthe small bagging 
approach．Tllis paper．in part,extends this work by showing 

廿lat with a su伍 ciently large numbe r of small bags subsam pled  

without mplication，the pe rformance increases．An  important 

consideration for using this approach as opposed to disjoint 
partitions is the overall num ber of subsam ples required(the 

EnsembleTaskSizeorETS1．Generallythepe rformanceofthe 

ensemble does not im prove over the baseline C4．5 performance 

un til the ETS value is larger than  1．0．Tllis is eq uivalent to 

using a total amoun t of data greater than  the original dataset． 

However,the key advantage to the subsam pling approach is 

廿lat no single classifier is required to use this am ount ofdata． 

W i廿l an appropriate implementation in a parallel or dislributed 

learning env~onmenL the additional storage overhead is 

minima1．The ensemble approach is only practical in a 

distributed environment in which the maximum  serial learning 

task time is the time required to learn over a subsam ple ofthe 

total data orpe rhapsforvery largeda tasetsthat cannotfitin a 

single main memory． 

One particular concem within the biological problem 

domainsisthe adequacyofadecisiontreelCaViler suchas C4
．5 

【8】．Decision tl"O~s often consider partitioning of data by 

choosing a single feature at each sprit in the tree．In both the 

representation of a protein chain from amino acids and the 

structural characteristics of a molecule， we expect the 

relationships and interdepe ndence of multiple features to be a 

key descriptive aspect． As a result, more sophisficated 

algorithms such as neural networks may be more appropriate
．  

For exam ple，a sim ple feed—forward back-propagation neural 

netw orkwith 75hidden units produces ape r chain accuracy of 

72．51％ on the Jones test set．The highest accuracy using our 

subsam pling ensemble approach within this paper is 67．67％ 

using 7％ subsam ple sizes．Th e existence of significan t featul~ 

dependence is likely the reason forthe large im provement gains 

廿lat ale seen in both experiments on the protein prediction 

da taset．We be lieve that C4．5 cannot adeq uately capture these 

correlations， although the use of ensemble techniques 

significantly improves the accuracy．Further work on this 

problem will require classifiers capable ofintegrating multiple 

features in the same decision point“．e．a non axis．parallel 

decision surface)．Many of the classifiers capable of such 

consideration are extremely expe nsive in computation time for 

large datasets an d man y features．W e be lieve that the use of 

subsam pling is one method of utilizing these more 

sophisticated algorithms in this large．scale domain． 

Over-generalization in learning from the protein structure an d 

drug discovery fidds is an  im po rtant issue．The inherent noise 

an d violation of independence assumptions indicate that 

over-generalization is a useful technique．We describe  a 

method ofusing an  ensemble of small subsam ples as a solution 

to the over-generalization requirement． Choo sing smaller 

subsam ples of da ta leads to more diverse classifiers，which in 

combination with the ensemble approach tends to average the 

hypo theses．Averaging over more po tential hypotheses leads to 

a more general hypothesis overall，with respect to a particular 

training set．Tllis more general hypothesis is precisely what is 

needed for the difficult biological domains considered．We 

demonstrate that this over-generalization technique can  lead to 

classification accuracy gains in bo th drug discovery and protein 

secondary structure prediction． 
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